if [ -z "$HF_HUB_CACHE" ]; then export HF_HUB_CACHE="$HOME/.cache/huggingface/hub" fi # full datasets dataset_names="biology earth_science economics psychology robotics stackoverflow sustainable_living leetcode pony aops theoremqa_questions theoremqa_theorems" model_args="\ --embedder_name_or_path hanhainebula/reason-embed-qwen3-8b-0928 \ --embedder_model_class decoder-only-base \ --query_instruction_format_for_retrieval 'Instruct: {}\nQuery: {}' \ --pooling_method last_token \ --devices cuda:0 cuda:1 cuda:2 cuda:3 cuda:4 cuda:5 cuda:6 cuda:7 \ --cache_dir $HF_HUB_CACHE \ --embedder_batch_size 8 \ --embedder_query_max_length 8192 \ --embedder_passage_max_length 8192 \ " split_list=("examples") for split in "${split_list[@]}"; do eval_args="\ --task_type short \ --use_special_instructions True \ --eval_name bright_short \ --dataset_dir ./bright_short/data \ --dataset_names $dataset_names \ --splits $split \ --corpus_embd_save_dir ./bright_short/corpus_embd \ --output_dir ./bright_short/search_results/$split \ --search_top_k 2000 \ --cache_path $HF_HUB_CACHE \ --overwrite False \ --k_values 1 10 100 \ --eval_output_method markdown \ --eval_output_path ./bright_short/eval_results_$split.md \ --eval_metrics ndcg_at_10 recall_at_10 recall_at_100 \ " cmd="python -m FlagEmbedding.evaluation.bright \ $eval_args \ $model_args \ " echo $cmd eval $cmd done