Commit
·
683b5f3
1
Parent(s):
edc4233
Upload README.md
Browse files
README.md
ADDED
|
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
language: el
|
| 3 |
+
datasets:
|
| 4 |
+
- aesdd
|
| 5 |
+
tags:
|
| 6 |
+
- audio
|
| 7 |
+
- audio-classification
|
| 8 |
+
- speech
|
| 9 |
+
license: apache-2.0
|
| 10 |
+
---
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
~~~
|
| 14 |
+
# requirement packages
|
| 15 |
+
!pip install git+https://github.com/huggingface/datasets.git
|
| 16 |
+
!pip install git+https://github.com/huggingface/transformers.git
|
| 17 |
+
!pip install torchaudio
|
| 18 |
+
!pip install librosa
|
| 19 |
+
!git clone https://github.com/m3hrdadfi/soxan
|
| 20 |
+
cd soxan
|
| 21 |
+
~~~
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
# prediction
|
| 25 |
+
~~~
|
| 26 |
+
import torch
|
| 27 |
+
import torch.nn as nn
|
| 28 |
+
import torch.nn.functional as F
|
| 29 |
+
import torchaudio
|
| 30 |
+
from transformers import AutoConfig, Wav2Vec2FeatureExtractor
|
| 31 |
+
|
| 32 |
+
import librosa
|
| 33 |
+
import IPython.display as ipd
|
| 34 |
+
import numpy as np
|
| 35 |
+
import pandas as pd
|
| 36 |
+
~~~
|
| 37 |
+
|
| 38 |
+
~~~
|
| 39 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 40 |
+
model_name_or_path = "Bagus/wav2vec2-xlsr-greek-speech-emotion-recognition"
|
| 41 |
+
config = AutoConfig.from_pretrained(model_name_or_path)
|
| 42 |
+
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(model_name_or_path)
|
| 43 |
+
sampling_rate = feature_extractor.sampling_rate
|
| 44 |
+
model = Wav2Vec2ForSpeechClassification.from_pretrained(model_name_or_path).to(device)
|
| 45 |
+
~~~
|
| 46 |
+
|
| 47 |
+
~~~
|
| 48 |
+
def speech_file_to_array_fn(path, sampling_rate):
|
| 49 |
+
speech_array, _sampling_rate = torchaudio.load(path)
|
| 50 |
+
resampler = torchaudio.transforms.Resample(_sampling_rate)
|
| 51 |
+
speech = resampler(speech_array).squeeze().numpy()
|
| 52 |
+
return speech
|
| 53 |
+
|
| 54 |
+
|
| 55 |
+
def predict(path, sampling_rate):
|
| 56 |
+
speech = speech_file_to_array_fn(path, sampling_rate)
|
| 57 |
+
inputs = feature_extractor(speech, sampling_rate=sampling_rate, return_tensors="pt", padding=True)
|
| 58 |
+
inputs = {key: inputs[key].to(device) for key in inputs}
|
| 59 |
+
|
| 60 |
+
with torch.no_grad():
|
| 61 |
+
logits = model(**inputs).logits
|
| 62 |
+
|
| 63 |
+
scores = F.softmax(logits, dim=1).detach().cpu().numpy()[0]
|
| 64 |
+
outputs = [{"Emotion": config.id2label[i], "Score": f"{round(score * 100, 3):.1f}%"} for i, score in enumerate(scores)]
|
| 65 |
+
return outputs
|
| 66 |
+
~~~
|
| 67 |
+
|
| 68 |
+
# prediction
|
| 69 |
+
~~~
|
| 70 |
+
# path for a sample
|
| 71 |
+
path = '/data/jtes_v1.1/wav/f01/ang/f01_ang_01.wav'
|
| 72 |
+
outputs = predict(path, sampling_rate)
|
| 73 |
+
~~~
|
| 74 |
+
|
| 75 |
+
~~~
|
| 76 |
+
[{'Emotion': 'anger', 'Score': '98.3%'},
|
| 77 |
+
{'Emotion': 'disgust', 'Score': '0.0%'},
|
| 78 |
+
{'Emotion': 'fear', 'Score': '0.4%'},
|
| 79 |
+
{'Emotion': 'happiness', 'Score': '0.7%'},
|
| 80 |
+
{'Emotion': 'sadness', 'Score': '0.5%'}]
|
| 81 |
+
~~~
|