Update api.py
Browse files
api.py
CHANGED
|
@@ -1,70 +1,84 @@
|
|
| 1 |
import numpy as np
|
| 2 |
import pandas as pd
|
| 3 |
-
import
|
| 4 |
-
import
|
| 5 |
-
import torch.optim as optim
|
| 6 |
-
from sklearn.model_selection import train_test_split
|
| 7 |
-
from sklearn.metrics import accuracy_score
|
| 8 |
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
|
|
|
|
|
|
| 14 |
|
| 15 |
-
def forward(self, x):
|
| 16 |
-
x = torch.relu(self.fc1(x))
|
| 17 |
-
x = self.fc2(x)
|
| 18 |
-
return x
|
| 19 |
|
| 20 |
-
#
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
|
| 26 |
-
|
| 27 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 28 |
|
| 29 |
-
|
|
|
|
| 30 |
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
learning_rate = 0.01
|
| 36 |
-
epochs = 100
|
| 37 |
|
| 38 |
-
# Initialize model
|
| 39 |
-
model = PlacementModel(input_size, hidden_size, output_size)
|
| 40 |
-
criterion = nn.CrossEntropyLoss()
|
| 41 |
-
optimizer = optim.Adam(model.parameters(), lr=learning_rate)
|
| 42 |
|
| 43 |
-
#
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 47 |
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
outputs = model(inputs)
|
| 51 |
-
loss = criterion(outputs, labels)
|
| 52 |
-
loss.backward()
|
| 53 |
-
optimizer.step()
|
| 54 |
-
|
| 55 |
-
if epoch % 10 == 0:
|
| 56 |
-
print(f'Epoch [{epoch+1}/{epochs}], Loss: {loss.item():.4f}')
|
| 57 |
-
|
| 58 |
-
# Evaluate model
|
| 59 |
-
with torch.no_grad():
|
| 60 |
-
inputs = torch.tensor(X_test_fullstk.values, dtype=torch.float32)
|
| 61 |
-
labels = torch.tensor(y_test.values, dtype=torch.long)
|
| 62 |
-
|
| 63 |
-
outputs = model(inputs)
|
| 64 |
-
_, predicted = torch.max(outputs.data, 1)
|
| 65 |
-
accuracy = accuracy_score(labels, predicted)
|
| 66 |
-
|
| 67 |
-
print(f'Test Accuracy: {accuracy:.4f}')
|
| 68 |
-
|
| 69 |
-
# Save model
|
| 70 |
-
torch.save(model.state_dict(), 'placement_model.pth')
|
|
|
|
| 1 |
import numpy as np
|
| 2 |
import pandas as pd
|
| 3 |
+
import gradio as gr
|
| 4 |
+
import pickle
|
|
|
|
|
|
|
|
|
|
| 5 |
|
| 6 |
+
# Load trained models
|
| 7 |
+
with open('rf_hacathon_fullstk.pkl', 'rb') as f1:
|
| 8 |
+
rf_fullstk = pickle.load(f1)
|
| 9 |
+
with open('rf_hacathon_prodengg.pkl', 'rb') as f2:
|
| 10 |
+
rf_prodengg = pickle.load(f2)
|
| 11 |
+
with open('rf_hacathon_mkt.pkl', 'rb') as f3:
|
| 12 |
+
rf_mkt = pickle.load(f3)
|
| 13 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
|
| 15 |
+
# Define input and output functions for Gradio
|
| 16 |
+
def predict_placement(option, degree_p, internship, DSA, java, management,
|
| 17 |
+
leadership, communication, sales):
|
| 18 |
+
if option == "Fullstack":
|
| 19 |
+
new_data = pd.DataFrame(
|
| 20 |
+
{
|
| 21 |
+
'degree_p': degree_p,
|
| 22 |
+
'internship': internship,
|
| 23 |
+
'DSA': DSA,
|
| 24 |
+
'java': java,
|
| 25 |
+
},
|
| 26 |
+
index=[0])
|
| 27 |
+
prediction = rf_fullstk.predict(new_data)
|
| 28 |
+
probability = rf_fullstk.predict_proba(new_data)[0][1]
|
| 29 |
+
elif option == "Marketing":
|
| 30 |
+
new_data = pd.DataFrame(
|
| 31 |
+
{
|
| 32 |
+
'degree_p': degree_p,
|
| 33 |
+
'internship': internship,
|
| 34 |
+
'management': management,
|
| 35 |
+
'leadership': leadership,
|
| 36 |
+
},
|
| 37 |
+
index=[0])
|
| 38 |
+
prediction = rf_mkt.predict(new_data)
|
| 39 |
+
probability = rf_mkt.predict_proba(new_data)[0][1]
|
| 40 |
|
| 41 |
+
elif option == "Production Engineer":
|
| 42 |
+
new_data = pd.DataFrame(
|
| 43 |
+
{
|
| 44 |
+
'degree_p': degree_p,
|
| 45 |
+
'internship': internship,
|
| 46 |
+
'communication': communication,
|
| 47 |
+
'sales': sales,
|
| 48 |
+
},
|
| 49 |
+
index=[0])
|
| 50 |
+
prediction = rf_prodengg.predict(new_data)
|
| 51 |
+
probability = rf_prodengg.predict_proba(new_data)[0][1]
|
| 52 |
|
| 53 |
+
else:
|
| 54 |
+
return "Invalid option"
|
| 55 |
|
| 56 |
+
if prediction == 1:
|
| 57 |
+
return f"{probability:.2f}"
|
| 58 |
+
else:
|
| 59 |
+
return f"{probability:.2f}"
|
|
|
|
|
|
|
| 60 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 61 |
|
| 62 |
+
# Create Gradio interface
|
| 63 |
+
iface = gr.Interface(
|
| 64 |
+
fn=predict_placement,
|
| 65 |
+
inputs=[
|
| 66 |
+
gr.inputs.Dropdown(["Fullstack", "Marketing", "Production Engineer"],
|
| 67 |
+
label="Select Option"),
|
| 68 |
+
gr.inputs.Number(label="Degree Percentage"),
|
| 69 |
+
gr.inputs.Number(label="Internship"),
|
| 70 |
+
gr.inputs.Checkbox(label="DSA"),
|
| 71 |
+
gr.inputs.Checkbox(label="Java"),
|
| 72 |
+
gr.inputs.Checkbox(label="Management"),
|
| 73 |
+
gr.inputs.Checkbox(label="Leadership"),
|
| 74 |
+
gr.inputs.Checkbox(label="Communication"),
|
| 75 |
+
gr.inputs.Checkbox(label="Sales"),
|
| 76 |
+
],
|
| 77 |
+
outputs=gr.outputs.Textbox(label="Placement Prediction"),
|
| 78 |
+
title="Placement Prediction",
|
| 79 |
+
description=
|
| 80 |
+
"Predict the chances of placement for different job roles using machine learning models.",
|
| 81 |
+
)
|
| 82 |
|
| 83 |
+
# Launch Gradio app
|
| 84 |
+
iface.launch(share=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|