--- license: mit base_model: facebook/xlm-v-base tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: scenario-TCR-XLMV_data-cl-cardiff_cl_only_alpha results: [] --- # scenario-TCR-XLMV_data-cl-cardiff_cl_only_alpha This model is a fine-tuned version of [facebook/xlm-v-base](https://huggingface.co/facebook/xlm-v-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.1025 - Accuracy: 0.3387 - F1: 0.1932 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 1123 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 1.09 | 250 | 1.0991 | 0.3164 | 0.3136 | | 1.0996 | 2.17 | 500 | 1.0987 | 0.3333 | 0.1667 | | 1.0996 | 3.26 | 750 | 1.0987 | 0.3333 | 0.1667 | | 1.0993 | 4.35 | 1000 | 1.0988 | 0.3333 | 0.1667 | | 1.0993 | 5.43 | 1250 | 1.0988 | 0.3333 | 0.1667 | | 1.0998 | 6.52 | 1500 | 1.0990 | 0.3333 | 0.1667 | | 1.0998 | 7.61 | 1750 | 1.0987 | 0.3333 | 0.1667 | | 1.0996 | 8.7 | 2000 | 1.0993 | 0.3333 | 0.1667 | | 1.0996 | 9.78 | 2250 | 1.0986 | 0.3333 | 0.1667 | | 1.0998 | 10.87 | 2500 | 1.0990 | 0.3333 | 0.1667 | | 1.0998 | 11.96 | 2750 | 1.0987 | 0.3333 | 0.1667 | | 1.0994 | 13.04 | 3000 | 1.0986 | 0.3333 | 0.1667 | | 1.0994 | 14.13 | 3250 | 1.1003 | 0.3333 | 0.1667 | | 1.0988 | 15.22 | 3500 | 1.0988 | 0.3333 | 0.1667 | | 1.0988 | 16.3 | 3750 | 1.0986 | 0.3333 | 0.1667 | | 1.0991 | 17.39 | 4000 | 1.0986 | 0.3349 | 0.2410 | | 1.0991 | 18.48 | 4250 | 1.0990 | 0.3333 | 0.1667 | | 1.0959 | 19.57 | 4500 | 1.0984 | 0.3395 | 0.1945 | | 1.0959 | 20.65 | 4750 | 1.1009 | 0.3341 | 0.1821 | | 1.0898 | 21.74 | 5000 | 1.1051 | 0.3364 | 0.1934 | | 1.0898 | 22.83 | 5250 | 1.1045 | 0.3372 | 0.2101 | | 1.0851 | 23.91 | 5500 | 1.1036 | 0.3403 | 0.2024 | | 1.0851 | 25.0 | 5750 | 1.1100 | 0.3426 | 0.2129 | | 1.0836 | 26.09 | 6000 | 1.1027 | 0.3426 | 0.2045 | | 1.0836 | 27.17 | 6250 | 1.0999 | 0.3418 | 0.1990 | | 1.0845 | 28.26 | 6500 | 1.1027 | 0.3380 | 0.1918 | | 1.0845 | 29.35 | 6750 | 1.1025 | 0.3387 | 0.1932 | ### Framework versions - Transformers 4.33.3 - Pytorch 2.1.1+cu121 - Datasets 2.14.5 - Tokenizers 0.13.3