Commit
·
41c19fb
verified
·
0
Parent(s):
Duplicate from m-a-p/MusiLingo-long-v1
Browse filesCo-authored-by: Yinghao Ma <[email protected]>
- .gitattributes +35 -0
- README.md +132 -0
- config.json +34 -0
- configuration_musilingo.py +29 -0
- model-00001-of-00003.safetensors +3 -0
- model-00002-of-00003.safetensors +3 -0
- model-00003-of-00003.safetensors +3 -0
- model.safetensors.index.json +735 -0
- modelling_musilingo.py +2275 -0
.gitattributes
ADDED
|
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
| 2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
| 3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
| 4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
| 5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
| 6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
| 7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
| 8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
| 9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
| 10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
| 11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
| 12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
| 13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
| 14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
| 15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
| 16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
| 17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
| 18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
| 19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
| 20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
| 21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
| 22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
| 23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
| 24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
| 25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
| 26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
| 27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
| 28 |
+
*.tar filter=lfs diff=lfs merge=lfs -text
|
| 29 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
| 30 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
| 31 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
| 32 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
| 33 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
|
@@ -0,0 +1,132 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
language:
|
| 3 |
+
- en
|
| 4 |
+
license: cc-by-4.0
|
| 5 |
+
tags:
|
| 6 |
+
- music
|
| 7 |
+
- art
|
| 8 |
+
---
|
| 9 |
+
# Model Card for Model ID
|
| 10 |
+
## Model Details
|
| 11 |
+
### Model Description
|
| 12 |
+
The model consists of a music encoder ```MERT-v1-300M```, a natural language decoder ```vicuna-7b-delta-v0```, and a linear projection laer between the two.
|
| 13 |
+
|
| 14 |
+
This checkpoint of MusiLingo is developed on the MusicInstruct (MI)-long and can answer long instructions with music raw audio, such as querying about the subjective feelings etc.
|
| 15 |
+
You can use the [MI](https://huggingface.co/datasets/m-a-p/Music-Instruct) dataset for the following demo
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
### Model Sources [optional]
|
| 19 |
+
- **Repository:** [GitHub repo](https://github.com/zihaod/MusiLingo)
|
| 20 |
+
- **Paper [optional]:** __[MusiLingo: Bridging Music and Text with Pre-trained Language Models for Music Captioning and Query Response](https://arxiv.org/abs/2309.08730)__
|
| 21 |
+
<!-- - **Demo [optional]:** [More Information Needed] -->
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
## Getting Start
|
| 26 |
+
```
|
| 27 |
+
from tqdm.auto import tqdm
|
| 28 |
+
|
| 29 |
+
import torch
|
| 30 |
+
from torch.utils.data import DataLoader
|
| 31 |
+
from transformers import Wav2Vec2FeatureExtractor
|
| 32 |
+
from transformers import StoppingCriteria, StoppingCriteriaList
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
class StoppingCriteriaSub(StoppingCriteria):
|
| 37 |
+
def __init__(self, stops=[], encounters=1):
|
| 38 |
+
super().__init__()
|
| 39 |
+
self.stops = stops
|
| 40 |
+
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor):
|
| 41 |
+
for stop in self.stops:
|
| 42 |
+
if torch.all((stop == input_ids[0][-len(stop):])).item():
|
| 43 |
+
return True
|
| 44 |
+
return False
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
class StoppingCriteriaSub(StoppingCriteria):
|
| 48 |
+
def __init__(self, stops=[], encounters=1):
|
| 49 |
+
super().__init__()
|
| 50 |
+
self.stops = stops
|
| 51 |
+
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor):
|
| 52 |
+
for stop in self.stops:
|
| 53 |
+
if torch.all((stop == input_ids[0][-len(stop):])).item():
|
| 54 |
+
return True
|
| 55 |
+
return False
|
| 56 |
+
|
| 57 |
+
def get_musilingo_pred(model, text, audio_path, stopping, length_penalty=1, temperature=0.1,
|
| 58 |
+
max_new_tokens=300, num_beams=1, min_length=1, top_p=0.5, repetition_penalty=1.0):
|
| 59 |
+
|
| 60 |
+
# see https://huggingface.co/m-a-p/MusiLingo-musicqa-v1 for load_audio function definition
|
| 61 |
+
audio = load_audio(audio_path, target_sr=24000,
|
| 62 |
+
is_mono=True,
|
| 63 |
+
is_normalize=False,
|
| 64 |
+
crop_to_length_in_sample_points=int(30*16000)+1,
|
| 65 |
+
crop_randomly=True,
|
| 66 |
+
pad=False).cuda()
|
| 67 |
+
processor = Wav2Vec2FeatureExtractor.from_pretrained("m-a-p/MERT-v1-330M",trust_remote_code=True)
|
| 68 |
+
audio = processor(audio,
|
| 69 |
+
sampling_rate=24000,
|
| 70 |
+
return_tensors="pt")['input_values'][0].cuda()
|
| 71 |
+
|
| 72 |
+
audio_embeds, atts_audio = model.encode_audio(audio)
|
| 73 |
+
|
| 74 |
+
prompt = '<Audio><AudioHere></Audio> ' + text
|
| 75 |
+
instruction_prompt = [model.prompt_template.format(prompt)]
|
| 76 |
+
audio_embeds, atts_audio = model.instruction_prompt_wrap(audio_embeds, atts_audio, instruction_prompt)
|
| 77 |
+
|
| 78 |
+
model.llama_tokenizer.padding_side = "right"
|
| 79 |
+
batch_size = audio_embeds.shape[0]
|
| 80 |
+
bos = torch.ones([batch_size, 1],
|
| 81 |
+
dtype=torch.long,
|
| 82 |
+
device=torch.device('cuda')) * model.llama_tokenizer.bos_token_id
|
| 83 |
+
bos_embeds = model.llama_model.model.embed_tokens(bos)
|
| 84 |
+
# atts_bos = atts_audio[:, :1]
|
| 85 |
+
inputs_embeds = torch.cat([bos_embeds, audio_embeds], dim=1)
|
| 86 |
+
# attention_mask = torch.cat([atts_bos, atts_audio], dim=1)
|
| 87 |
+
outputs = model.llama_model.generate(
|
| 88 |
+
inputs_embeds=inputs_embeds,
|
| 89 |
+
max_new_tokens=max_new_tokens,
|
| 90 |
+
stopping_criteria=stopping,
|
| 91 |
+
num_beams=num_beams,
|
| 92 |
+
do_sample=True,
|
| 93 |
+
min_length=min_length,
|
| 94 |
+
top_p=top_p,
|
| 95 |
+
repetition_penalty=repetition_penalty,
|
| 96 |
+
length_penalty=length_penalty,
|
| 97 |
+
temperature=temperature,
|
| 98 |
+
)
|
| 99 |
+
output_token = outputs[0]
|
| 100 |
+
if output_token[0] == 0: # the model might output a unknow token <unk> at the beginning. remove it
|
| 101 |
+
output_token = output_token[1:]
|
| 102 |
+
if output_token[0] == 1: # if there is a start token <s> at the beginning. remove it
|
| 103 |
+
output_token = output_token[1:]
|
| 104 |
+
output_text = model.llama_tokenizer.decode(output_token, add_special_tokens=False)
|
| 105 |
+
output_text = output_text.split('###')[0] # remove the stop sign '###'
|
| 106 |
+
output_text = output_text.split('Assistant:')[-1].strip()
|
| 107 |
+
return output_text
|
| 108 |
+
|
| 109 |
+
musilingo = AutoModel.from_pretrained("m-a-p/MusiLingo-long-v1", trust_remote_code=True)
|
| 110 |
+
musilingo.to("cuda")
|
| 111 |
+
musilingo.eval()
|
| 112 |
+
|
| 113 |
+
prompt = "this is the task instruction and input question for MusiLingo model"
|
| 114 |
+
audio = "/path/to/the/audio"
|
| 115 |
+
stopping = StoppingCriteriaList([StoppingCriteriaSub([torch.tensor([835]).cuda(),
|
| 116 |
+
torch.tensor([2277, 29937]).cuda()])])
|
| 117 |
+
response = get_musilingo_pred(musilingo.model, prompt, audio_path, stopping, length_penalty=100, temperature=0.1)
|
| 118 |
+
|
| 119 |
+
```
|
| 120 |
+
|
| 121 |
+
# Citing This Work
|
| 122 |
+
|
| 123 |
+
If you find the work useful for your research, please consider citing it using the following BibTeX entry:
|
| 124 |
+
```
|
| 125 |
+
@inproceedings{deng2024musilingo,
|
| 126 |
+
title={MusiLingo: Bridging Music and Text with Pre-trained Language Models for Music Captioning and Query Response},
|
| 127 |
+
author={Deng, Zihao and Ma, Yinghao and Liu, Yudong and Guo, Rongchen and Zhang, Ge and Chen, Wenhu and Huang, Wenhao and Benetos, Emmanouil},
|
| 128 |
+
booktitle={Proceedings of the 2024 Annual Conference of the North American Chapter of the Association for Computational Linguistics (NAACL 2024)},
|
| 129 |
+
year={2024},
|
| 130 |
+
organization={Association for Computational Linguistics}
|
| 131 |
+
}
|
| 132 |
+
```
|
config.json
ADDED
|
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"architectures": [
|
| 3 |
+
"MusilingoModel"
|
| 4 |
+
],
|
| 5 |
+
"auto_map": {
|
| 6 |
+
"AutoConfig": "configuration_musilingo.MusiLingoConfig",
|
| 7 |
+
"AutoModel": "modelling_musilingo.MusilingoModel"
|
| 8 |
+
},
|
| 9 |
+
"bos_token_id": 1,
|
| 10 |
+
"device_8bit": 0,
|
| 11 |
+
"end_sym": "\n",
|
| 12 |
+
"eos_token_id": 2,
|
| 13 |
+
"hidden_act": "silu",
|
| 14 |
+
"hidden_size": 4096,
|
| 15 |
+
"initializer_range": 0.02,
|
| 16 |
+
"intermediate_size": 11008,
|
| 17 |
+
"llama_model": "lmsys/vicuna-7b-delta-v0",
|
| 18 |
+
"low_resource": false,
|
| 19 |
+
"max_position_embeddings": 2048,
|
| 20 |
+
"max_txt_len": 32,
|
| 21 |
+
"mert_model": "m-a-p/MERT-v1-330M",
|
| 22 |
+
"model_type": "musilingo",
|
| 23 |
+
"num_attention_heads": 32,
|
| 24 |
+
"num_hidden_layers": 32,
|
| 25 |
+
"pad_token_id": 0,
|
| 26 |
+
"prompt_path": "",
|
| 27 |
+
"prompt_template": "###Human: {} ###Assistant: ",
|
| 28 |
+
"rms_norm_eps": 1e-06,
|
| 29 |
+
"tie_word_embeddings": false,
|
| 30 |
+
"torch_dtype": "float32",
|
| 31 |
+
"transformers_version": "4.39.3",
|
| 32 |
+
"use_cache": true,
|
| 33 |
+
"vocab_size": 32001
|
| 34 |
+
}
|
configuration_musilingo.py
ADDED
|
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from transformers import PretrainedConfig
|
| 2 |
+
|
| 3 |
+
|
| 4 |
+
PATH = "."
|
| 5 |
+
|
| 6 |
+
class MusiLingoConfig(PretrainedConfig):
|
| 7 |
+
model_type = "musilingo"
|
| 8 |
+
is_encoder_decoder = True
|
| 9 |
+
def __init__(self,
|
| 10 |
+
mert_model = "m-a-p/MERT-v1-330M",
|
| 11 |
+
llama_model = f'lmsys/vicuna-7b-delta-v0',
|
| 12 |
+
prompt_path = "",
|
| 13 |
+
prompt_template = '###Human: {} ###Assistant: ',
|
| 14 |
+
max_txt_len = 32,
|
| 15 |
+
end_sym = '\n',
|
| 16 |
+
low_resource = False,
|
| 17 |
+
device_8bit = 0,
|
| 18 |
+
# linear_ckpt_path = "",
|
| 19 |
+
**kwargs):
|
| 20 |
+
self.mert_model = mert_model
|
| 21 |
+
self.llama_model = llama_model
|
| 22 |
+
self.prompt_path = prompt_path
|
| 23 |
+
self.prompt_template = prompt_template
|
| 24 |
+
self.max_txt_len = max_txt_len
|
| 25 |
+
self.end_sym = end_sym
|
| 26 |
+
self.low_resource = low_resource
|
| 27 |
+
self.device_8bit = device_8bit
|
| 28 |
+
# self.linear_ckpt_path = linear_ckpt_path
|
| 29 |
+
super().__init__(**kwargs)
|
model-00001-of-00003.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:b3dfb974964f6b723d558e3107ee5b98ae1f13a08e681dfe7106806a01078e74
|
| 3 |
+
size 4986465504
|
model-00002-of-00003.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:54cb40c370505a6378fa41c4a30c352df90599ce458f55e36716d874cf292c31
|
| 3 |
+
size 4947397256
|
model-00003-of-00003.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:2641d9106fd9436f8698e9a0a7ca44fc88ef5a51aa6703df879379ad3af6aa8c
|
| 3 |
+
size 4821600024
|
model.safetensors.index.json
ADDED
|
@@ -0,0 +1,735 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"metadata": {
|
| 3 |
+
"total_size": 14755365376
|
| 4 |
+
},
|
| 5 |
+
"weight_map": {
|
| 6 |
+
"model.audio_encoder.encoder.layer_norm.bias": "model-00001-of-00003.safetensors",
|
| 7 |
+
"model.audio_encoder.encoder.layer_norm.weight": "model-00001-of-00003.safetensors",
|
| 8 |
+
"model.audio_encoder.encoder.layers.0.attention.k_proj.bias": "model-00001-of-00003.safetensors",
|
| 9 |
+
"model.audio_encoder.encoder.layers.0.attention.k_proj.weight": "model-00001-of-00003.safetensors",
|
| 10 |
+
"model.audio_encoder.encoder.layers.0.attention.out_proj.bias": "model-00001-of-00003.safetensors",
|
| 11 |
+
"model.audio_encoder.encoder.layers.0.attention.out_proj.weight": "model-00001-of-00003.safetensors",
|
| 12 |
+
"model.audio_encoder.encoder.layers.0.attention.q_proj.bias": "model-00001-of-00003.safetensors",
|
| 13 |
+
"model.audio_encoder.encoder.layers.0.attention.q_proj.weight": "model-00001-of-00003.safetensors",
|
| 14 |
+
"model.audio_encoder.encoder.layers.0.attention.v_proj.bias": "model-00001-of-00003.safetensors",
|
| 15 |
+
"model.audio_encoder.encoder.layers.0.attention.v_proj.weight": "model-00001-of-00003.safetensors",
|
| 16 |
+
"model.audio_encoder.encoder.layers.0.feed_forward.intermediate_dense.bias": "model-00001-of-00003.safetensors",
|
| 17 |
+
"model.audio_encoder.encoder.layers.0.feed_forward.intermediate_dense.weight": "model-00001-of-00003.safetensors",
|
| 18 |
+
"model.audio_encoder.encoder.layers.0.feed_forward.output_dense.bias": "model-00001-of-00003.safetensors",
|
| 19 |
+
"model.audio_encoder.encoder.layers.0.feed_forward.output_dense.weight": "model-00001-of-00003.safetensors",
|
| 20 |
+
"model.audio_encoder.encoder.layers.0.final_layer_norm.bias": "model-00001-of-00003.safetensors",
|
| 21 |
+
"model.audio_encoder.encoder.layers.0.final_layer_norm.weight": "model-00001-of-00003.safetensors",
|
| 22 |
+
"model.audio_encoder.encoder.layers.0.layer_norm.bias": "model-00001-of-00003.safetensors",
|
| 23 |
+
"model.audio_encoder.encoder.layers.0.layer_norm.weight": "model-00001-of-00003.safetensors",
|
| 24 |
+
"model.audio_encoder.encoder.layers.1.attention.k_proj.bias": "model-00001-of-00003.safetensors",
|
| 25 |
+
"model.audio_encoder.encoder.layers.1.attention.k_proj.weight": "model-00001-of-00003.safetensors",
|
| 26 |
+
"model.audio_encoder.encoder.layers.1.attention.out_proj.bias": "model-00001-of-00003.safetensors",
|
| 27 |
+
"model.audio_encoder.encoder.layers.1.attention.out_proj.weight": "model-00001-of-00003.safetensors",
|
| 28 |
+
"model.audio_encoder.encoder.layers.1.attention.q_proj.bias": "model-00001-of-00003.safetensors",
|
| 29 |
+
"model.audio_encoder.encoder.layers.1.attention.q_proj.weight": "model-00001-of-00003.safetensors",
|
| 30 |
+
"model.audio_encoder.encoder.layers.1.attention.v_proj.bias": "model-00001-of-00003.safetensors",
|
| 31 |
+
"model.audio_encoder.encoder.layers.1.attention.v_proj.weight": "model-00001-of-00003.safetensors",
|
| 32 |
+
"model.audio_encoder.encoder.layers.1.feed_forward.intermediate_dense.bias": "model-00001-of-00003.safetensors",
|
| 33 |
+
"model.audio_encoder.encoder.layers.1.feed_forward.intermediate_dense.weight": "model-00001-of-00003.safetensors",
|
| 34 |
+
"model.audio_encoder.encoder.layers.1.feed_forward.output_dense.bias": "model-00001-of-00003.safetensors",
|
| 35 |
+
"model.audio_encoder.encoder.layers.1.feed_forward.output_dense.weight": "model-00001-of-00003.safetensors",
|
| 36 |
+
"model.audio_encoder.encoder.layers.1.final_layer_norm.bias": "model-00001-of-00003.safetensors",
|
| 37 |
+
"model.audio_encoder.encoder.layers.1.final_layer_norm.weight": "model-00001-of-00003.safetensors",
|
| 38 |
+
"model.audio_encoder.encoder.layers.1.layer_norm.bias": "model-00001-of-00003.safetensors",
|
| 39 |
+
"model.audio_encoder.encoder.layers.1.layer_norm.weight": "model-00001-of-00003.safetensors",
|
| 40 |
+
"model.audio_encoder.encoder.layers.10.attention.k_proj.bias": "model-00001-of-00003.safetensors",
|
| 41 |
+
"model.audio_encoder.encoder.layers.10.attention.k_proj.weight": "model-00001-of-00003.safetensors",
|
| 42 |
+
"model.audio_encoder.encoder.layers.10.attention.out_proj.bias": "model-00001-of-00003.safetensors",
|
| 43 |
+
"model.audio_encoder.encoder.layers.10.attention.out_proj.weight": "model-00001-of-00003.safetensors",
|
| 44 |
+
"model.audio_encoder.encoder.layers.10.attention.q_proj.bias": "model-00001-of-00003.safetensors",
|
| 45 |
+
"model.audio_encoder.encoder.layers.10.attention.q_proj.weight": "model-00001-of-00003.safetensors",
|
| 46 |
+
"model.audio_encoder.encoder.layers.10.attention.v_proj.bias": "model-00001-of-00003.safetensors",
|
| 47 |
+
"model.audio_encoder.encoder.layers.10.attention.v_proj.weight": "model-00001-of-00003.safetensors",
|
| 48 |
+
"model.audio_encoder.encoder.layers.10.feed_forward.intermediate_dense.bias": "model-00001-of-00003.safetensors",
|
| 49 |
+
"model.audio_encoder.encoder.layers.10.feed_forward.intermediate_dense.weight": "model-00001-of-00003.safetensors",
|
| 50 |
+
"model.audio_encoder.encoder.layers.10.feed_forward.output_dense.bias": "model-00001-of-00003.safetensors",
|
| 51 |
+
"model.audio_encoder.encoder.layers.10.feed_forward.output_dense.weight": "model-00001-of-00003.safetensors",
|
| 52 |
+
"model.audio_encoder.encoder.layers.10.final_layer_norm.bias": "model-00001-of-00003.safetensors",
|
| 53 |
+
"model.audio_encoder.encoder.layers.10.final_layer_norm.weight": "model-00001-of-00003.safetensors",
|
| 54 |
+
"model.audio_encoder.encoder.layers.10.layer_norm.bias": "model-00001-of-00003.safetensors",
|
| 55 |
+
"model.audio_encoder.encoder.layers.10.layer_norm.weight": "model-00001-of-00003.safetensors",
|
| 56 |
+
"model.audio_encoder.encoder.layers.11.attention.k_proj.bias": "model-00001-of-00003.safetensors",
|
| 57 |
+
"model.audio_encoder.encoder.layers.11.attention.k_proj.weight": "model-00001-of-00003.safetensors",
|
| 58 |
+
"model.audio_encoder.encoder.layers.11.attention.out_proj.bias": "model-00001-of-00003.safetensors",
|
| 59 |
+
"model.audio_encoder.encoder.layers.11.attention.out_proj.weight": "model-00001-of-00003.safetensors",
|
| 60 |
+
"model.audio_encoder.encoder.layers.11.attention.q_proj.bias": "model-00001-of-00003.safetensors",
|
| 61 |
+
"model.audio_encoder.encoder.layers.11.attention.q_proj.weight": "model-00001-of-00003.safetensors",
|
| 62 |
+
"model.audio_encoder.encoder.layers.11.attention.v_proj.bias": "model-00001-of-00003.safetensors",
|
| 63 |
+
"model.audio_encoder.encoder.layers.11.attention.v_proj.weight": "model-00001-of-00003.safetensors",
|
| 64 |
+
"model.audio_encoder.encoder.layers.11.feed_forward.intermediate_dense.bias": "model-00001-of-00003.safetensors",
|
| 65 |
+
"model.audio_encoder.encoder.layers.11.feed_forward.intermediate_dense.weight": "model-00001-of-00003.safetensors",
|
| 66 |
+
"model.audio_encoder.encoder.layers.11.feed_forward.output_dense.bias": "model-00001-of-00003.safetensors",
|
| 67 |
+
"model.audio_encoder.encoder.layers.11.feed_forward.output_dense.weight": "model-00001-of-00003.safetensors",
|
| 68 |
+
"model.audio_encoder.encoder.layers.11.final_layer_norm.bias": "model-00001-of-00003.safetensors",
|
| 69 |
+
"model.audio_encoder.encoder.layers.11.final_layer_norm.weight": "model-00001-of-00003.safetensors",
|
| 70 |
+
"model.audio_encoder.encoder.layers.11.layer_norm.bias": "model-00001-of-00003.safetensors",
|
| 71 |
+
"model.audio_encoder.encoder.layers.11.layer_norm.weight": "model-00001-of-00003.safetensors",
|
| 72 |
+
"model.audio_encoder.encoder.layers.12.attention.k_proj.bias": "model-00001-of-00003.safetensors",
|
| 73 |
+
"model.audio_encoder.encoder.layers.12.attention.k_proj.weight": "model-00001-of-00003.safetensors",
|
| 74 |
+
"model.audio_encoder.encoder.layers.12.attention.out_proj.bias": "model-00001-of-00003.safetensors",
|
| 75 |
+
"model.audio_encoder.encoder.layers.12.attention.out_proj.weight": "model-00001-of-00003.safetensors",
|
| 76 |
+
"model.audio_encoder.encoder.layers.12.attention.q_proj.bias": "model-00001-of-00003.safetensors",
|
| 77 |
+
"model.audio_encoder.encoder.layers.12.attention.q_proj.weight": "model-00001-of-00003.safetensors",
|
| 78 |
+
"model.audio_encoder.encoder.layers.12.attention.v_proj.bias": "model-00001-of-00003.safetensors",
|
| 79 |
+
"model.audio_encoder.encoder.layers.12.attention.v_proj.weight": "model-00001-of-00003.safetensors",
|
| 80 |
+
"model.audio_encoder.encoder.layers.12.feed_forward.intermediate_dense.bias": "model-00001-of-00003.safetensors",
|
| 81 |
+
"model.audio_encoder.encoder.layers.12.feed_forward.intermediate_dense.weight": "model-00001-of-00003.safetensors",
|
| 82 |
+
"model.audio_encoder.encoder.layers.12.feed_forward.output_dense.bias": "model-00001-of-00003.safetensors",
|
| 83 |
+
"model.audio_encoder.encoder.layers.12.feed_forward.output_dense.weight": "model-00001-of-00003.safetensors",
|
| 84 |
+
"model.audio_encoder.encoder.layers.12.final_layer_norm.bias": "model-00001-of-00003.safetensors",
|
| 85 |
+
"model.audio_encoder.encoder.layers.12.final_layer_norm.weight": "model-00001-of-00003.safetensors",
|
| 86 |
+
"model.audio_encoder.encoder.layers.12.layer_norm.bias": "model-00001-of-00003.safetensors",
|
| 87 |
+
"model.audio_encoder.encoder.layers.12.layer_norm.weight": "model-00001-of-00003.safetensors",
|
| 88 |
+
"model.audio_encoder.encoder.layers.13.attention.k_proj.bias": "model-00001-of-00003.safetensors",
|
| 89 |
+
"model.audio_encoder.encoder.layers.13.attention.k_proj.weight": "model-00001-of-00003.safetensors",
|
| 90 |
+
"model.audio_encoder.encoder.layers.13.attention.out_proj.bias": "model-00001-of-00003.safetensors",
|
| 91 |
+
"model.audio_encoder.encoder.layers.13.attention.out_proj.weight": "model-00001-of-00003.safetensors",
|
| 92 |
+
"model.audio_encoder.encoder.layers.13.attention.q_proj.bias": "model-00001-of-00003.safetensors",
|
| 93 |
+
"model.audio_encoder.encoder.layers.13.attention.q_proj.weight": "model-00001-of-00003.safetensors",
|
| 94 |
+
"model.audio_encoder.encoder.layers.13.attention.v_proj.bias": "model-00001-of-00003.safetensors",
|
| 95 |
+
"model.audio_encoder.encoder.layers.13.attention.v_proj.weight": "model-00001-of-00003.safetensors",
|
| 96 |
+
"model.audio_encoder.encoder.layers.13.feed_forward.intermediate_dense.bias": "model-00001-of-00003.safetensors",
|
| 97 |
+
"model.audio_encoder.encoder.layers.13.feed_forward.intermediate_dense.weight": "model-00001-of-00003.safetensors",
|
| 98 |
+
"model.audio_encoder.encoder.layers.13.feed_forward.output_dense.bias": "model-00001-of-00003.safetensors",
|
| 99 |
+
"model.audio_encoder.encoder.layers.13.feed_forward.output_dense.weight": "model-00001-of-00003.safetensors",
|
| 100 |
+
"model.audio_encoder.encoder.layers.13.final_layer_norm.bias": "model-00001-of-00003.safetensors",
|
| 101 |
+
"model.audio_encoder.encoder.layers.13.final_layer_norm.weight": "model-00001-of-00003.safetensors",
|
| 102 |
+
"model.audio_encoder.encoder.layers.13.layer_norm.bias": "model-00001-of-00003.safetensors",
|
| 103 |
+
"model.audio_encoder.encoder.layers.13.layer_norm.weight": "model-00001-of-00003.safetensors",
|
| 104 |
+
"model.audio_encoder.encoder.layers.14.attention.k_proj.bias": "model-00001-of-00003.safetensors",
|
| 105 |
+
"model.audio_encoder.encoder.layers.14.attention.k_proj.weight": "model-00001-of-00003.safetensors",
|
| 106 |
+
"model.audio_encoder.encoder.layers.14.attention.out_proj.bias": "model-00001-of-00003.safetensors",
|
| 107 |
+
"model.audio_encoder.encoder.layers.14.attention.out_proj.weight": "model-00001-of-00003.safetensors",
|
| 108 |
+
"model.audio_encoder.encoder.layers.14.attention.q_proj.bias": "model-00001-of-00003.safetensors",
|
| 109 |
+
"model.audio_encoder.encoder.layers.14.attention.q_proj.weight": "model-00001-of-00003.safetensors",
|
| 110 |
+
"model.audio_encoder.encoder.layers.14.attention.v_proj.bias": "model-00001-of-00003.safetensors",
|
| 111 |
+
"model.audio_encoder.encoder.layers.14.attention.v_proj.weight": "model-00001-of-00003.safetensors",
|
| 112 |
+
"model.audio_encoder.encoder.layers.14.feed_forward.intermediate_dense.bias": "model-00001-of-00003.safetensors",
|
| 113 |
+
"model.audio_encoder.encoder.layers.14.feed_forward.intermediate_dense.weight": "model-00001-of-00003.safetensors",
|
| 114 |
+
"model.audio_encoder.encoder.layers.14.feed_forward.output_dense.bias": "model-00001-of-00003.safetensors",
|
| 115 |
+
"model.audio_encoder.encoder.layers.14.feed_forward.output_dense.weight": "model-00001-of-00003.safetensors",
|
| 116 |
+
"model.audio_encoder.encoder.layers.14.final_layer_norm.bias": "model-00001-of-00003.safetensors",
|
| 117 |
+
"model.audio_encoder.encoder.layers.14.final_layer_norm.weight": "model-00001-of-00003.safetensors",
|
| 118 |
+
"model.audio_encoder.encoder.layers.14.layer_norm.bias": "model-00001-of-00003.safetensors",
|
| 119 |
+
"model.audio_encoder.encoder.layers.14.layer_norm.weight": "model-00001-of-00003.safetensors",
|
| 120 |
+
"model.audio_encoder.encoder.layers.15.attention.k_proj.bias": "model-00001-of-00003.safetensors",
|
| 121 |
+
"model.audio_encoder.encoder.layers.15.attention.k_proj.weight": "model-00001-of-00003.safetensors",
|
| 122 |
+
"model.audio_encoder.encoder.layers.15.attention.out_proj.bias": "model-00001-of-00003.safetensors",
|
| 123 |
+
"model.audio_encoder.encoder.layers.15.attention.out_proj.weight": "model-00001-of-00003.safetensors",
|
| 124 |
+
"model.audio_encoder.encoder.layers.15.attention.q_proj.bias": "model-00001-of-00003.safetensors",
|
| 125 |
+
"model.audio_encoder.encoder.layers.15.attention.q_proj.weight": "model-00001-of-00003.safetensors",
|
| 126 |
+
"model.audio_encoder.encoder.layers.15.attention.v_proj.bias": "model-00001-of-00003.safetensors",
|
| 127 |
+
"model.audio_encoder.encoder.layers.15.attention.v_proj.weight": "model-00001-of-00003.safetensors",
|
| 128 |
+
"model.audio_encoder.encoder.layers.15.feed_forward.intermediate_dense.bias": "model-00001-of-00003.safetensors",
|
| 129 |
+
"model.audio_encoder.encoder.layers.15.feed_forward.intermediate_dense.weight": "model-00001-of-00003.safetensors",
|
| 130 |
+
"model.audio_encoder.encoder.layers.15.feed_forward.output_dense.bias": "model-00001-of-00003.safetensors",
|
| 131 |
+
"model.audio_encoder.encoder.layers.15.feed_forward.output_dense.weight": "model-00001-of-00003.safetensors",
|
| 132 |
+
"model.audio_encoder.encoder.layers.15.final_layer_norm.bias": "model-00001-of-00003.safetensors",
|
| 133 |
+
"model.audio_encoder.encoder.layers.15.final_layer_norm.weight": "model-00001-of-00003.safetensors",
|
| 134 |
+
"model.audio_encoder.encoder.layers.15.layer_norm.bias": "model-00001-of-00003.safetensors",
|
| 135 |
+
"model.audio_encoder.encoder.layers.15.layer_norm.weight": "model-00001-of-00003.safetensors",
|
| 136 |
+
"model.audio_encoder.encoder.layers.16.attention.k_proj.bias": "model-00001-of-00003.safetensors",
|
| 137 |
+
"model.audio_encoder.encoder.layers.16.attention.k_proj.weight": "model-00001-of-00003.safetensors",
|
| 138 |
+
"model.audio_encoder.encoder.layers.16.attention.out_proj.bias": "model-00001-of-00003.safetensors",
|
| 139 |
+
"model.audio_encoder.encoder.layers.16.attention.out_proj.weight": "model-00001-of-00003.safetensors",
|
| 140 |
+
"model.audio_encoder.encoder.layers.16.attention.q_proj.bias": "model-00001-of-00003.safetensors",
|
| 141 |
+
"model.audio_encoder.encoder.layers.16.attention.q_proj.weight": "model-00001-of-00003.safetensors",
|
| 142 |
+
"model.audio_encoder.encoder.layers.16.attention.v_proj.bias": "model-00001-of-00003.safetensors",
|
| 143 |
+
"model.audio_encoder.encoder.layers.16.attention.v_proj.weight": "model-00001-of-00003.safetensors",
|
| 144 |
+
"model.audio_encoder.encoder.layers.16.feed_forward.intermediate_dense.bias": "model-00001-of-00003.safetensors",
|
| 145 |
+
"model.audio_encoder.encoder.layers.16.feed_forward.intermediate_dense.weight": "model-00001-of-00003.safetensors",
|
| 146 |
+
"model.audio_encoder.encoder.layers.16.feed_forward.output_dense.bias": "model-00001-of-00003.safetensors",
|
| 147 |
+
"model.audio_encoder.encoder.layers.16.feed_forward.output_dense.weight": "model-00001-of-00003.safetensors",
|
| 148 |
+
"model.audio_encoder.encoder.layers.16.final_layer_norm.bias": "model-00001-of-00003.safetensors",
|
| 149 |
+
"model.audio_encoder.encoder.layers.16.final_layer_norm.weight": "model-00001-of-00003.safetensors",
|
| 150 |
+
"model.audio_encoder.encoder.layers.16.layer_norm.bias": "model-00001-of-00003.safetensors",
|
| 151 |
+
"model.audio_encoder.encoder.layers.16.layer_norm.weight": "model-00001-of-00003.safetensors",
|
| 152 |
+
"model.audio_encoder.encoder.layers.17.attention.k_proj.bias": "model-00001-of-00003.safetensors",
|
| 153 |
+
"model.audio_encoder.encoder.layers.17.attention.k_proj.weight": "model-00001-of-00003.safetensors",
|
| 154 |
+
"model.audio_encoder.encoder.layers.17.attention.out_proj.bias": "model-00001-of-00003.safetensors",
|
| 155 |
+
"model.audio_encoder.encoder.layers.17.attention.out_proj.weight": "model-00001-of-00003.safetensors",
|
| 156 |
+
"model.audio_encoder.encoder.layers.17.attention.q_proj.bias": "model-00001-of-00003.safetensors",
|
| 157 |
+
"model.audio_encoder.encoder.layers.17.attention.q_proj.weight": "model-00001-of-00003.safetensors",
|
| 158 |
+
"model.audio_encoder.encoder.layers.17.attention.v_proj.bias": "model-00001-of-00003.safetensors",
|
| 159 |
+
"model.audio_encoder.encoder.layers.17.attention.v_proj.weight": "model-00001-of-00003.safetensors",
|
| 160 |
+
"model.audio_encoder.encoder.layers.17.feed_forward.intermediate_dense.bias": "model-00001-of-00003.safetensors",
|
| 161 |
+
"model.audio_encoder.encoder.layers.17.feed_forward.intermediate_dense.weight": "model-00001-of-00003.safetensors",
|
| 162 |
+
"model.audio_encoder.encoder.layers.17.feed_forward.output_dense.bias": "model-00001-of-00003.safetensors",
|
| 163 |
+
"model.audio_encoder.encoder.layers.17.feed_forward.output_dense.weight": "model-00001-of-00003.safetensors",
|
| 164 |
+
"model.audio_encoder.encoder.layers.17.final_layer_norm.bias": "model-00001-of-00003.safetensors",
|
| 165 |
+
"model.audio_encoder.encoder.layers.17.final_layer_norm.weight": "model-00001-of-00003.safetensors",
|
| 166 |
+
"model.audio_encoder.encoder.layers.17.layer_norm.bias": "model-00001-of-00003.safetensors",
|
| 167 |
+
"model.audio_encoder.encoder.layers.17.layer_norm.weight": "model-00001-of-00003.safetensors",
|
| 168 |
+
"model.audio_encoder.encoder.layers.18.attention.k_proj.bias": "model-00001-of-00003.safetensors",
|
| 169 |
+
"model.audio_encoder.encoder.layers.18.attention.k_proj.weight": "model-00001-of-00003.safetensors",
|
| 170 |
+
"model.audio_encoder.encoder.layers.18.attention.out_proj.bias": "model-00001-of-00003.safetensors",
|
| 171 |
+
"model.audio_encoder.encoder.layers.18.attention.out_proj.weight": "model-00001-of-00003.safetensors",
|
| 172 |
+
"model.audio_encoder.encoder.layers.18.attention.q_proj.bias": "model-00001-of-00003.safetensors",
|
| 173 |
+
"model.audio_encoder.encoder.layers.18.attention.q_proj.weight": "model-00001-of-00003.safetensors",
|
| 174 |
+
"model.audio_encoder.encoder.layers.18.attention.v_proj.bias": "model-00001-of-00003.safetensors",
|
| 175 |
+
"model.audio_encoder.encoder.layers.18.attention.v_proj.weight": "model-00001-of-00003.safetensors",
|
| 176 |
+
"model.audio_encoder.encoder.layers.18.feed_forward.intermediate_dense.bias": "model-00001-of-00003.safetensors",
|
| 177 |
+
"model.audio_encoder.encoder.layers.18.feed_forward.intermediate_dense.weight": "model-00001-of-00003.safetensors",
|
| 178 |
+
"model.audio_encoder.encoder.layers.18.feed_forward.output_dense.bias": "model-00001-of-00003.safetensors",
|
| 179 |
+
"model.audio_encoder.encoder.layers.18.feed_forward.output_dense.weight": "model-00001-of-00003.safetensors",
|
| 180 |
+
"model.audio_encoder.encoder.layers.18.final_layer_norm.bias": "model-00001-of-00003.safetensors",
|
| 181 |
+
"model.audio_encoder.encoder.layers.18.final_layer_norm.weight": "model-00001-of-00003.safetensors",
|
| 182 |
+
"model.audio_encoder.encoder.layers.18.layer_norm.bias": "model-00001-of-00003.safetensors",
|
| 183 |
+
"model.audio_encoder.encoder.layers.18.layer_norm.weight": "model-00001-of-00003.safetensors",
|
| 184 |
+
"model.audio_encoder.encoder.layers.19.attention.k_proj.bias": "model-00001-of-00003.safetensors",
|
| 185 |
+
"model.audio_encoder.encoder.layers.19.attention.k_proj.weight": "model-00001-of-00003.safetensors",
|
| 186 |
+
"model.audio_encoder.encoder.layers.19.attention.out_proj.bias": "model-00001-of-00003.safetensors",
|
| 187 |
+
"model.audio_encoder.encoder.layers.19.attention.out_proj.weight": "model-00001-of-00003.safetensors",
|
| 188 |
+
"model.audio_encoder.encoder.layers.19.attention.q_proj.bias": "model-00001-of-00003.safetensors",
|
| 189 |
+
"model.audio_encoder.encoder.layers.19.attention.q_proj.weight": "model-00001-of-00003.safetensors",
|
| 190 |
+
"model.audio_encoder.encoder.layers.19.attention.v_proj.bias": "model-00001-of-00003.safetensors",
|
| 191 |
+
"model.audio_encoder.encoder.layers.19.attention.v_proj.weight": "model-00001-of-00003.safetensors",
|
| 192 |
+
"model.audio_encoder.encoder.layers.19.feed_forward.intermediate_dense.bias": "model-00001-of-00003.safetensors",
|
| 193 |
+
"model.audio_encoder.encoder.layers.19.feed_forward.intermediate_dense.weight": "model-00001-of-00003.safetensors",
|
| 194 |
+
"model.audio_encoder.encoder.layers.19.feed_forward.output_dense.bias": "model-00001-of-00003.safetensors",
|
| 195 |
+
"model.audio_encoder.encoder.layers.19.feed_forward.output_dense.weight": "model-00001-of-00003.safetensors",
|
| 196 |
+
"model.audio_encoder.encoder.layers.19.final_layer_norm.bias": "model-00001-of-00003.safetensors",
|
| 197 |
+
"model.audio_encoder.encoder.layers.19.final_layer_norm.weight": "model-00001-of-00003.safetensors",
|
| 198 |
+
"model.audio_encoder.encoder.layers.19.layer_norm.bias": "model-00001-of-00003.safetensors",
|
| 199 |
+
"model.audio_encoder.encoder.layers.19.layer_norm.weight": "model-00001-of-00003.safetensors",
|
| 200 |
+
"model.audio_encoder.encoder.layers.2.attention.k_proj.bias": "model-00001-of-00003.safetensors",
|
| 201 |
+
"model.audio_encoder.encoder.layers.2.attention.k_proj.weight": "model-00001-of-00003.safetensors",
|
| 202 |
+
"model.audio_encoder.encoder.layers.2.attention.out_proj.bias": "model-00001-of-00003.safetensors",
|
| 203 |
+
"model.audio_encoder.encoder.layers.2.attention.out_proj.weight": "model-00001-of-00003.safetensors",
|
| 204 |
+
"model.audio_encoder.encoder.layers.2.attention.q_proj.bias": "model-00001-of-00003.safetensors",
|
| 205 |
+
"model.audio_encoder.encoder.layers.2.attention.q_proj.weight": "model-00001-of-00003.safetensors",
|
| 206 |
+
"model.audio_encoder.encoder.layers.2.attention.v_proj.bias": "model-00001-of-00003.safetensors",
|
| 207 |
+
"model.audio_encoder.encoder.layers.2.attention.v_proj.weight": "model-00001-of-00003.safetensors",
|
| 208 |
+
"model.audio_encoder.encoder.layers.2.feed_forward.intermediate_dense.bias": "model-00001-of-00003.safetensors",
|
| 209 |
+
"model.audio_encoder.encoder.layers.2.feed_forward.intermediate_dense.weight": "model-00001-of-00003.safetensors",
|
| 210 |
+
"model.audio_encoder.encoder.layers.2.feed_forward.output_dense.bias": "model-00001-of-00003.safetensors",
|
| 211 |
+
"model.audio_encoder.encoder.layers.2.feed_forward.output_dense.weight": "model-00001-of-00003.safetensors",
|
| 212 |
+
"model.audio_encoder.encoder.layers.2.final_layer_norm.bias": "model-00001-of-00003.safetensors",
|
| 213 |
+
"model.audio_encoder.encoder.layers.2.final_layer_norm.weight": "model-00001-of-00003.safetensors",
|
| 214 |
+
"model.audio_encoder.encoder.layers.2.layer_norm.bias": "model-00001-of-00003.safetensors",
|
| 215 |
+
"model.audio_encoder.encoder.layers.2.layer_norm.weight": "model-00001-of-00003.safetensors",
|
| 216 |
+
"model.audio_encoder.encoder.layers.20.attention.k_proj.bias": "model-00001-of-00003.safetensors",
|
| 217 |
+
"model.audio_encoder.encoder.layers.20.attention.k_proj.weight": "model-00001-of-00003.safetensors",
|
| 218 |
+
"model.audio_encoder.encoder.layers.20.attention.out_proj.bias": "model-00001-of-00003.safetensors",
|
| 219 |
+
"model.audio_encoder.encoder.layers.20.attention.out_proj.weight": "model-00001-of-00003.safetensors",
|
| 220 |
+
"model.audio_encoder.encoder.layers.20.attention.q_proj.bias": "model-00001-of-00003.safetensors",
|
| 221 |
+
"model.audio_encoder.encoder.layers.20.attention.q_proj.weight": "model-00001-of-00003.safetensors",
|
| 222 |
+
"model.audio_encoder.encoder.layers.20.attention.v_proj.bias": "model-00001-of-00003.safetensors",
|
| 223 |
+
"model.audio_encoder.encoder.layers.20.attention.v_proj.weight": "model-00001-of-00003.safetensors",
|
| 224 |
+
"model.audio_encoder.encoder.layers.20.feed_forward.intermediate_dense.bias": "model-00001-of-00003.safetensors",
|
| 225 |
+
"model.audio_encoder.encoder.layers.20.feed_forward.intermediate_dense.weight": "model-00001-of-00003.safetensors",
|
| 226 |
+
"model.audio_encoder.encoder.layers.20.feed_forward.output_dense.bias": "model-00001-of-00003.safetensors",
|
| 227 |
+
"model.audio_encoder.encoder.layers.20.feed_forward.output_dense.weight": "model-00001-of-00003.safetensors",
|
| 228 |
+
"model.audio_encoder.encoder.layers.20.final_layer_norm.bias": "model-00001-of-00003.safetensors",
|
| 229 |
+
"model.audio_encoder.encoder.layers.20.final_layer_norm.weight": "model-00001-of-00003.safetensors",
|
| 230 |
+
"model.audio_encoder.encoder.layers.20.layer_norm.bias": "model-00001-of-00003.safetensors",
|
| 231 |
+
"model.audio_encoder.encoder.layers.20.layer_norm.weight": "model-00001-of-00003.safetensors",
|
| 232 |
+
"model.audio_encoder.encoder.layers.21.attention.k_proj.bias": "model-00001-of-00003.safetensors",
|
| 233 |
+
"model.audio_encoder.encoder.layers.21.attention.k_proj.weight": "model-00001-of-00003.safetensors",
|
| 234 |
+
"model.audio_encoder.encoder.layers.21.attention.out_proj.bias": "model-00001-of-00003.safetensors",
|
| 235 |
+
"model.audio_encoder.encoder.layers.21.attention.out_proj.weight": "model-00001-of-00003.safetensors",
|
| 236 |
+
"model.audio_encoder.encoder.layers.21.attention.q_proj.bias": "model-00001-of-00003.safetensors",
|
| 237 |
+
"model.audio_encoder.encoder.layers.21.attention.q_proj.weight": "model-00001-of-00003.safetensors",
|
| 238 |
+
"model.audio_encoder.encoder.layers.21.attention.v_proj.bias": "model-00001-of-00003.safetensors",
|
| 239 |
+
"model.audio_encoder.encoder.layers.21.attention.v_proj.weight": "model-00001-of-00003.safetensors",
|
| 240 |
+
"model.audio_encoder.encoder.layers.21.feed_forward.intermediate_dense.bias": "model-00001-of-00003.safetensors",
|
| 241 |
+
"model.audio_encoder.encoder.layers.21.feed_forward.intermediate_dense.weight": "model-00001-of-00003.safetensors",
|
| 242 |
+
"model.audio_encoder.encoder.layers.21.feed_forward.output_dense.bias": "model-00001-of-00003.safetensors",
|
| 243 |
+
"model.audio_encoder.encoder.layers.21.feed_forward.output_dense.weight": "model-00001-of-00003.safetensors",
|
| 244 |
+
"model.audio_encoder.encoder.layers.21.final_layer_norm.bias": "model-00001-of-00003.safetensors",
|
| 245 |
+
"model.audio_encoder.encoder.layers.21.final_layer_norm.weight": "model-00001-of-00003.safetensors",
|
| 246 |
+
"model.audio_encoder.encoder.layers.21.layer_norm.bias": "model-00001-of-00003.safetensors",
|
| 247 |
+
"model.audio_encoder.encoder.layers.21.layer_norm.weight": "model-00001-of-00003.safetensors",
|
| 248 |
+
"model.audio_encoder.encoder.layers.22.attention.k_proj.bias": "model-00001-of-00003.safetensors",
|
| 249 |
+
"model.audio_encoder.encoder.layers.22.attention.k_proj.weight": "model-00001-of-00003.safetensors",
|
| 250 |
+
"model.audio_encoder.encoder.layers.22.attention.out_proj.bias": "model-00001-of-00003.safetensors",
|
| 251 |
+
"model.audio_encoder.encoder.layers.22.attention.out_proj.weight": "model-00001-of-00003.safetensors",
|
| 252 |
+
"model.audio_encoder.encoder.layers.22.attention.q_proj.bias": "model-00001-of-00003.safetensors",
|
| 253 |
+
"model.audio_encoder.encoder.layers.22.attention.q_proj.weight": "model-00001-of-00003.safetensors",
|
| 254 |
+
"model.audio_encoder.encoder.layers.22.attention.v_proj.bias": "model-00001-of-00003.safetensors",
|
| 255 |
+
"model.audio_encoder.encoder.layers.22.attention.v_proj.weight": "model-00001-of-00003.safetensors",
|
| 256 |
+
"model.audio_encoder.encoder.layers.22.feed_forward.intermediate_dense.bias": "model-00001-of-00003.safetensors",
|
| 257 |
+
"model.audio_encoder.encoder.layers.22.feed_forward.intermediate_dense.weight": "model-00001-of-00003.safetensors",
|
| 258 |
+
"model.audio_encoder.encoder.layers.22.feed_forward.output_dense.bias": "model-00001-of-00003.safetensors",
|
| 259 |
+
"model.audio_encoder.encoder.layers.22.feed_forward.output_dense.weight": "model-00001-of-00003.safetensors",
|
| 260 |
+
"model.audio_encoder.encoder.layers.22.final_layer_norm.bias": "model-00001-of-00003.safetensors",
|
| 261 |
+
"model.audio_encoder.encoder.layers.22.final_layer_norm.weight": "model-00001-of-00003.safetensors",
|
| 262 |
+
"model.audio_encoder.encoder.layers.22.layer_norm.bias": "model-00001-of-00003.safetensors",
|
| 263 |
+
"model.audio_encoder.encoder.layers.22.layer_norm.weight": "model-00001-of-00003.safetensors",
|
| 264 |
+
"model.audio_encoder.encoder.layers.23.attention.k_proj.bias": "model-00001-of-00003.safetensors",
|
| 265 |
+
"model.audio_encoder.encoder.layers.23.attention.k_proj.weight": "model-00001-of-00003.safetensors",
|
| 266 |
+
"model.audio_encoder.encoder.layers.23.attention.out_proj.bias": "model-00001-of-00003.safetensors",
|
| 267 |
+
"model.audio_encoder.encoder.layers.23.attention.out_proj.weight": "model-00001-of-00003.safetensors",
|
| 268 |
+
"model.audio_encoder.encoder.layers.23.attention.q_proj.bias": "model-00001-of-00003.safetensors",
|
| 269 |
+
"model.audio_encoder.encoder.layers.23.attention.q_proj.weight": "model-00001-of-00003.safetensors",
|
| 270 |
+
"model.audio_encoder.encoder.layers.23.attention.v_proj.bias": "model-00001-of-00003.safetensors",
|
| 271 |
+
"model.audio_encoder.encoder.layers.23.attention.v_proj.weight": "model-00001-of-00003.safetensors",
|
| 272 |
+
"model.audio_encoder.encoder.layers.23.feed_forward.intermediate_dense.bias": "model-00001-of-00003.safetensors",
|
| 273 |
+
"model.audio_encoder.encoder.layers.23.feed_forward.intermediate_dense.weight": "model-00001-of-00003.safetensors",
|
| 274 |
+
"model.audio_encoder.encoder.layers.23.feed_forward.output_dense.bias": "model-00001-of-00003.safetensors",
|
| 275 |
+
"model.audio_encoder.encoder.layers.23.feed_forward.output_dense.weight": "model-00001-of-00003.safetensors",
|
| 276 |
+
"model.audio_encoder.encoder.layers.23.final_layer_norm.bias": "model-00001-of-00003.safetensors",
|
| 277 |
+
"model.audio_encoder.encoder.layers.23.final_layer_norm.weight": "model-00001-of-00003.safetensors",
|
| 278 |
+
"model.audio_encoder.encoder.layers.23.layer_norm.bias": "model-00001-of-00003.safetensors",
|
| 279 |
+
"model.audio_encoder.encoder.layers.23.layer_norm.weight": "model-00001-of-00003.safetensors",
|
| 280 |
+
"model.audio_encoder.encoder.layers.3.attention.k_proj.bias": "model-00001-of-00003.safetensors",
|
| 281 |
+
"model.audio_encoder.encoder.layers.3.attention.k_proj.weight": "model-00001-of-00003.safetensors",
|
| 282 |
+
"model.audio_encoder.encoder.layers.3.attention.out_proj.bias": "model-00001-of-00003.safetensors",
|
| 283 |
+
"model.audio_encoder.encoder.layers.3.attention.out_proj.weight": "model-00001-of-00003.safetensors",
|
| 284 |
+
"model.audio_encoder.encoder.layers.3.attention.q_proj.bias": "model-00001-of-00003.safetensors",
|
| 285 |
+
"model.audio_encoder.encoder.layers.3.attention.q_proj.weight": "model-00001-of-00003.safetensors",
|
| 286 |
+
"model.audio_encoder.encoder.layers.3.attention.v_proj.bias": "model-00001-of-00003.safetensors",
|
| 287 |
+
"model.audio_encoder.encoder.layers.3.attention.v_proj.weight": "model-00001-of-00003.safetensors",
|
| 288 |
+
"model.audio_encoder.encoder.layers.3.feed_forward.intermediate_dense.bias": "model-00001-of-00003.safetensors",
|
| 289 |
+
"model.audio_encoder.encoder.layers.3.feed_forward.intermediate_dense.weight": "model-00001-of-00003.safetensors",
|
| 290 |
+
"model.audio_encoder.encoder.layers.3.feed_forward.output_dense.bias": "model-00001-of-00003.safetensors",
|
| 291 |
+
"model.audio_encoder.encoder.layers.3.feed_forward.output_dense.weight": "model-00001-of-00003.safetensors",
|
| 292 |
+
"model.audio_encoder.encoder.layers.3.final_layer_norm.bias": "model-00001-of-00003.safetensors",
|
| 293 |
+
"model.audio_encoder.encoder.layers.3.final_layer_norm.weight": "model-00001-of-00003.safetensors",
|
| 294 |
+
"model.audio_encoder.encoder.layers.3.layer_norm.bias": "model-00001-of-00003.safetensors",
|
| 295 |
+
"model.audio_encoder.encoder.layers.3.layer_norm.weight": "model-00001-of-00003.safetensors",
|
| 296 |
+
"model.audio_encoder.encoder.layers.4.attention.k_proj.bias": "model-00001-of-00003.safetensors",
|
| 297 |
+
"model.audio_encoder.encoder.layers.4.attention.k_proj.weight": "model-00001-of-00003.safetensors",
|
| 298 |
+
"model.audio_encoder.encoder.layers.4.attention.out_proj.bias": "model-00001-of-00003.safetensors",
|
| 299 |
+
"model.audio_encoder.encoder.layers.4.attention.out_proj.weight": "model-00001-of-00003.safetensors",
|
| 300 |
+
"model.audio_encoder.encoder.layers.4.attention.q_proj.bias": "model-00001-of-00003.safetensors",
|
| 301 |
+
"model.audio_encoder.encoder.layers.4.attention.q_proj.weight": "model-00001-of-00003.safetensors",
|
| 302 |
+
"model.audio_encoder.encoder.layers.4.attention.v_proj.bias": "model-00001-of-00003.safetensors",
|
| 303 |
+
"model.audio_encoder.encoder.layers.4.attention.v_proj.weight": "model-00001-of-00003.safetensors",
|
| 304 |
+
"model.audio_encoder.encoder.layers.4.feed_forward.intermediate_dense.bias": "model-00001-of-00003.safetensors",
|
| 305 |
+
"model.audio_encoder.encoder.layers.4.feed_forward.intermediate_dense.weight": "model-00001-of-00003.safetensors",
|
| 306 |
+
"model.audio_encoder.encoder.layers.4.feed_forward.output_dense.bias": "model-00001-of-00003.safetensors",
|
| 307 |
+
"model.audio_encoder.encoder.layers.4.feed_forward.output_dense.weight": "model-00001-of-00003.safetensors",
|
| 308 |
+
"model.audio_encoder.encoder.layers.4.final_layer_norm.bias": "model-00001-of-00003.safetensors",
|
| 309 |
+
"model.audio_encoder.encoder.layers.4.final_layer_norm.weight": "model-00001-of-00003.safetensors",
|
| 310 |
+
"model.audio_encoder.encoder.layers.4.layer_norm.bias": "model-00001-of-00003.safetensors",
|
| 311 |
+
"model.audio_encoder.encoder.layers.4.layer_norm.weight": "model-00001-of-00003.safetensors",
|
| 312 |
+
"model.audio_encoder.encoder.layers.5.attention.k_proj.bias": "model-00001-of-00003.safetensors",
|
| 313 |
+
"model.audio_encoder.encoder.layers.5.attention.k_proj.weight": "model-00001-of-00003.safetensors",
|
| 314 |
+
"model.audio_encoder.encoder.layers.5.attention.out_proj.bias": "model-00001-of-00003.safetensors",
|
| 315 |
+
"model.audio_encoder.encoder.layers.5.attention.out_proj.weight": "model-00001-of-00003.safetensors",
|
| 316 |
+
"model.audio_encoder.encoder.layers.5.attention.q_proj.bias": "model-00001-of-00003.safetensors",
|
| 317 |
+
"model.audio_encoder.encoder.layers.5.attention.q_proj.weight": "model-00001-of-00003.safetensors",
|
| 318 |
+
"model.audio_encoder.encoder.layers.5.attention.v_proj.bias": "model-00001-of-00003.safetensors",
|
| 319 |
+
"model.audio_encoder.encoder.layers.5.attention.v_proj.weight": "model-00001-of-00003.safetensors",
|
| 320 |
+
"model.audio_encoder.encoder.layers.5.feed_forward.intermediate_dense.bias": "model-00001-of-00003.safetensors",
|
| 321 |
+
"model.audio_encoder.encoder.layers.5.feed_forward.intermediate_dense.weight": "model-00001-of-00003.safetensors",
|
| 322 |
+
"model.audio_encoder.encoder.layers.5.feed_forward.output_dense.bias": "model-00001-of-00003.safetensors",
|
| 323 |
+
"model.audio_encoder.encoder.layers.5.feed_forward.output_dense.weight": "model-00001-of-00003.safetensors",
|
| 324 |
+
"model.audio_encoder.encoder.layers.5.final_layer_norm.bias": "model-00001-of-00003.safetensors",
|
| 325 |
+
"model.audio_encoder.encoder.layers.5.final_layer_norm.weight": "model-00001-of-00003.safetensors",
|
| 326 |
+
"model.audio_encoder.encoder.layers.5.layer_norm.bias": "model-00001-of-00003.safetensors",
|
| 327 |
+
"model.audio_encoder.encoder.layers.5.layer_norm.weight": "model-00001-of-00003.safetensors",
|
| 328 |
+
"model.audio_encoder.encoder.layers.6.attention.k_proj.bias": "model-00001-of-00003.safetensors",
|
| 329 |
+
"model.audio_encoder.encoder.layers.6.attention.k_proj.weight": "model-00001-of-00003.safetensors",
|
| 330 |
+
"model.audio_encoder.encoder.layers.6.attention.out_proj.bias": "model-00001-of-00003.safetensors",
|
| 331 |
+
"model.audio_encoder.encoder.layers.6.attention.out_proj.weight": "model-00001-of-00003.safetensors",
|
| 332 |
+
"model.audio_encoder.encoder.layers.6.attention.q_proj.bias": "model-00001-of-00003.safetensors",
|
| 333 |
+
"model.audio_encoder.encoder.layers.6.attention.q_proj.weight": "model-00001-of-00003.safetensors",
|
| 334 |
+
"model.audio_encoder.encoder.layers.6.attention.v_proj.bias": "model-00001-of-00003.safetensors",
|
| 335 |
+
"model.audio_encoder.encoder.layers.6.attention.v_proj.weight": "model-00001-of-00003.safetensors",
|
| 336 |
+
"model.audio_encoder.encoder.layers.6.feed_forward.intermediate_dense.bias": "model-00001-of-00003.safetensors",
|
| 337 |
+
"model.audio_encoder.encoder.layers.6.feed_forward.intermediate_dense.weight": "model-00001-of-00003.safetensors",
|
| 338 |
+
"model.audio_encoder.encoder.layers.6.feed_forward.output_dense.bias": "model-00001-of-00003.safetensors",
|
| 339 |
+
"model.audio_encoder.encoder.layers.6.feed_forward.output_dense.weight": "model-00001-of-00003.safetensors",
|
| 340 |
+
"model.audio_encoder.encoder.layers.6.final_layer_norm.bias": "model-00001-of-00003.safetensors",
|
| 341 |
+
"model.audio_encoder.encoder.layers.6.final_layer_norm.weight": "model-00001-of-00003.safetensors",
|
| 342 |
+
"model.audio_encoder.encoder.layers.6.layer_norm.bias": "model-00001-of-00003.safetensors",
|
| 343 |
+
"model.audio_encoder.encoder.layers.6.layer_norm.weight": "model-00001-of-00003.safetensors",
|
| 344 |
+
"model.audio_encoder.encoder.layers.7.attention.k_proj.bias": "model-00001-of-00003.safetensors",
|
| 345 |
+
"model.audio_encoder.encoder.layers.7.attention.k_proj.weight": "model-00001-of-00003.safetensors",
|
| 346 |
+
"model.audio_encoder.encoder.layers.7.attention.out_proj.bias": "model-00001-of-00003.safetensors",
|
| 347 |
+
"model.audio_encoder.encoder.layers.7.attention.out_proj.weight": "model-00001-of-00003.safetensors",
|
| 348 |
+
"model.audio_encoder.encoder.layers.7.attention.q_proj.bias": "model-00001-of-00003.safetensors",
|
| 349 |
+
"model.audio_encoder.encoder.layers.7.attention.q_proj.weight": "model-00001-of-00003.safetensors",
|
| 350 |
+
"model.audio_encoder.encoder.layers.7.attention.v_proj.bias": "model-00001-of-00003.safetensors",
|
| 351 |
+
"model.audio_encoder.encoder.layers.7.attention.v_proj.weight": "model-00001-of-00003.safetensors",
|
| 352 |
+
"model.audio_encoder.encoder.layers.7.feed_forward.intermediate_dense.bias": "model-00001-of-00003.safetensors",
|
| 353 |
+
"model.audio_encoder.encoder.layers.7.feed_forward.intermediate_dense.weight": "model-00001-of-00003.safetensors",
|
| 354 |
+
"model.audio_encoder.encoder.layers.7.feed_forward.output_dense.bias": "model-00001-of-00003.safetensors",
|
| 355 |
+
"model.audio_encoder.encoder.layers.7.feed_forward.output_dense.weight": "model-00001-of-00003.safetensors",
|
| 356 |
+
"model.audio_encoder.encoder.layers.7.final_layer_norm.bias": "model-00001-of-00003.safetensors",
|
| 357 |
+
"model.audio_encoder.encoder.layers.7.final_layer_norm.weight": "model-00001-of-00003.safetensors",
|
| 358 |
+
"model.audio_encoder.encoder.layers.7.layer_norm.bias": "model-00001-of-00003.safetensors",
|
| 359 |
+
"model.audio_encoder.encoder.layers.7.layer_norm.weight": "model-00001-of-00003.safetensors",
|
| 360 |
+
"model.audio_encoder.encoder.layers.8.attention.k_proj.bias": "model-00001-of-00003.safetensors",
|
| 361 |
+
"model.audio_encoder.encoder.layers.8.attention.k_proj.weight": "model-00001-of-00003.safetensors",
|
| 362 |
+
"model.audio_encoder.encoder.layers.8.attention.out_proj.bias": "model-00001-of-00003.safetensors",
|
| 363 |
+
"model.audio_encoder.encoder.layers.8.attention.out_proj.weight": "model-00001-of-00003.safetensors",
|
| 364 |
+
"model.audio_encoder.encoder.layers.8.attention.q_proj.bias": "model-00001-of-00003.safetensors",
|
| 365 |
+
"model.audio_encoder.encoder.layers.8.attention.q_proj.weight": "model-00001-of-00003.safetensors",
|
| 366 |
+
"model.audio_encoder.encoder.layers.8.attention.v_proj.bias": "model-00001-of-00003.safetensors",
|
| 367 |
+
"model.audio_encoder.encoder.layers.8.attention.v_proj.weight": "model-00001-of-00003.safetensors",
|
| 368 |
+
"model.audio_encoder.encoder.layers.8.feed_forward.intermediate_dense.bias": "model-00001-of-00003.safetensors",
|
| 369 |
+
"model.audio_encoder.encoder.layers.8.feed_forward.intermediate_dense.weight": "model-00001-of-00003.safetensors",
|
| 370 |
+
"model.audio_encoder.encoder.layers.8.feed_forward.output_dense.bias": "model-00001-of-00003.safetensors",
|
| 371 |
+
"model.audio_encoder.encoder.layers.8.feed_forward.output_dense.weight": "model-00001-of-00003.safetensors",
|
| 372 |
+
"model.audio_encoder.encoder.layers.8.final_layer_norm.bias": "model-00001-of-00003.safetensors",
|
| 373 |
+
"model.audio_encoder.encoder.layers.8.final_layer_norm.weight": "model-00001-of-00003.safetensors",
|
| 374 |
+
"model.audio_encoder.encoder.layers.8.layer_norm.bias": "model-00001-of-00003.safetensors",
|
| 375 |
+
"model.audio_encoder.encoder.layers.8.layer_norm.weight": "model-00001-of-00003.safetensors",
|
| 376 |
+
"model.audio_encoder.encoder.layers.9.attention.k_proj.bias": "model-00001-of-00003.safetensors",
|
| 377 |
+
"model.audio_encoder.encoder.layers.9.attention.k_proj.weight": "model-00001-of-00003.safetensors",
|
| 378 |
+
"model.audio_encoder.encoder.layers.9.attention.out_proj.bias": "model-00001-of-00003.safetensors",
|
| 379 |
+
"model.audio_encoder.encoder.layers.9.attention.out_proj.weight": "model-00001-of-00003.safetensors",
|
| 380 |
+
"model.audio_encoder.encoder.layers.9.attention.q_proj.bias": "model-00001-of-00003.safetensors",
|
| 381 |
+
"model.audio_encoder.encoder.layers.9.attention.q_proj.weight": "model-00001-of-00003.safetensors",
|
| 382 |
+
"model.audio_encoder.encoder.layers.9.attention.v_proj.bias": "model-00001-of-00003.safetensors",
|
| 383 |
+
"model.audio_encoder.encoder.layers.9.attention.v_proj.weight": "model-00001-of-00003.safetensors",
|
| 384 |
+
"model.audio_encoder.encoder.layers.9.feed_forward.intermediate_dense.bias": "model-00001-of-00003.safetensors",
|
| 385 |
+
"model.audio_encoder.encoder.layers.9.feed_forward.intermediate_dense.weight": "model-00001-of-00003.safetensors",
|
| 386 |
+
"model.audio_encoder.encoder.layers.9.feed_forward.output_dense.bias": "model-00001-of-00003.safetensors",
|
| 387 |
+
"model.audio_encoder.encoder.layers.9.feed_forward.output_dense.weight": "model-00001-of-00003.safetensors",
|
| 388 |
+
"model.audio_encoder.encoder.layers.9.final_layer_norm.bias": "model-00001-of-00003.safetensors",
|
| 389 |
+
"model.audio_encoder.encoder.layers.9.final_layer_norm.weight": "model-00001-of-00003.safetensors",
|
| 390 |
+
"model.audio_encoder.encoder.layers.9.layer_norm.bias": "model-00001-of-00003.safetensors",
|
| 391 |
+
"model.audio_encoder.encoder.layers.9.layer_norm.weight": "model-00001-of-00003.safetensors",
|
| 392 |
+
"model.audio_encoder.encoder.pos_conv_embed.conv.bias": "model-00001-of-00003.safetensors",
|
| 393 |
+
"model.audio_encoder.encoder.pos_conv_embed.conv.parametrizations.weight.original0": "model-00001-of-00003.safetensors",
|
| 394 |
+
"model.audio_encoder.encoder.pos_conv_embed.conv.parametrizations.weight.original1": "model-00001-of-00003.safetensors",
|
| 395 |
+
"model.audio_encoder.feature_extractor.conv_layers.0.conv.weight": "model-00001-of-00003.safetensors",
|
| 396 |
+
"model.audio_encoder.feature_extractor.conv_layers.0.layer_norm.bias": "model-00001-of-00003.safetensors",
|
| 397 |
+
"model.audio_encoder.feature_extractor.conv_layers.0.layer_norm.weight": "model-00001-of-00003.safetensors",
|
| 398 |
+
"model.audio_encoder.feature_extractor.conv_layers.1.conv.weight": "model-00001-of-00003.safetensors",
|
| 399 |
+
"model.audio_encoder.feature_extractor.conv_layers.2.conv.weight": "model-00001-of-00003.safetensors",
|
| 400 |
+
"model.audio_encoder.feature_extractor.conv_layers.3.conv.weight": "model-00001-of-00003.safetensors",
|
| 401 |
+
"model.audio_encoder.feature_extractor.conv_layers.4.conv.weight": "model-00001-of-00003.safetensors",
|
| 402 |
+
"model.audio_encoder.feature_extractor.conv_layers.5.conv.weight": "model-00001-of-00003.safetensors",
|
| 403 |
+
"model.audio_encoder.feature_extractor.conv_layers.6.conv.weight": "model-00001-of-00003.safetensors",
|
| 404 |
+
"model.audio_encoder.feature_projection.layer_norm.bias": "model-00001-of-00003.safetensors",
|
| 405 |
+
"model.audio_encoder.feature_projection.layer_norm.weight": "model-00001-of-00003.safetensors",
|
| 406 |
+
"model.audio_encoder.feature_projection.projection.bias": "model-00001-of-00003.safetensors",
|
| 407 |
+
"model.audio_encoder.feature_projection.projection.weight": "model-00001-of-00003.safetensors",
|
| 408 |
+
"model.audio_encoder.masked_spec_embed": "model-00001-of-00003.safetensors",
|
| 409 |
+
"model.llama_model.lm_head.weight": "model-00003-of-00003.safetensors",
|
| 410 |
+
"model.llama_model.model.embed_tokens.weight": "model-00001-of-00003.safetensors",
|
| 411 |
+
"model.llama_model.model.layers.0.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 412 |
+
"model.llama_model.model.layers.0.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
| 413 |
+
"model.llama_model.model.layers.0.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
| 414 |
+
"model.llama_model.model.layers.0.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
| 415 |
+
"model.llama_model.model.layers.0.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 416 |
+
"model.llama_model.model.layers.0.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
| 417 |
+
"model.llama_model.model.layers.0.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
| 418 |
+
"model.llama_model.model.layers.0.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
| 419 |
+
"model.llama_model.model.layers.0.self_attn.rotary_emb.inv_freq": "model-00001-of-00003.safetensors",
|
| 420 |
+
"model.llama_model.model.layers.0.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
| 421 |
+
"model.llama_model.model.layers.1.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 422 |
+
"model.llama_model.model.layers.1.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
| 423 |
+
"model.llama_model.model.layers.1.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
| 424 |
+
"model.llama_model.model.layers.1.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
| 425 |
+
"model.llama_model.model.layers.1.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 426 |
+
"model.llama_model.model.layers.1.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
| 427 |
+
"model.llama_model.model.layers.1.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
| 428 |
+
"model.llama_model.model.layers.1.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
| 429 |
+
"model.llama_model.model.layers.1.self_attn.rotary_emb.inv_freq": "model-00001-of-00003.safetensors",
|
| 430 |
+
"model.llama_model.model.layers.1.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
| 431 |
+
"model.llama_model.model.layers.10.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 432 |
+
"model.llama_model.model.layers.10.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
| 433 |
+
"model.llama_model.model.layers.10.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
| 434 |
+
"model.llama_model.model.layers.10.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
| 435 |
+
"model.llama_model.model.layers.10.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 436 |
+
"model.llama_model.model.layers.10.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
| 437 |
+
"model.llama_model.model.layers.10.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
| 438 |
+
"model.llama_model.model.layers.10.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
| 439 |
+
"model.llama_model.model.layers.10.self_attn.rotary_emb.inv_freq": "model-00002-of-00003.safetensors",
|
| 440 |
+
"model.llama_model.model.layers.10.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
| 441 |
+
"model.llama_model.model.layers.11.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 442 |
+
"model.llama_model.model.layers.11.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
| 443 |
+
"model.llama_model.model.layers.11.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
| 444 |
+
"model.llama_model.model.layers.11.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
| 445 |
+
"model.llama_model.model.layers.11.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 446 |
+
"model.llama_model.model.layers.11.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
| 447 |
+
"model.llama_model.model.layers.11.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
| 448 |
+
"model.llama_model.model.layers.11.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
| 449 |
+
"model.llama_model.model.layers.11.self_attn.rotary_emb.inv_freq": "model-00002-of-00003.safetensors",
|
| 450 |
+
"model.llama_model.model.layers.11.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
| 451 |
+
"model.llama_model.model.layers.12.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 452 |
+
"model.llama_model.model.layers.12.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
| 453 |
+
"model.llama_model.model.layers.12.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
| 454 |
+
"model.llama_model.model.layers.12.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
| 455 |
+
"model.llama_model.model.layers.12.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 456 |
+
"model.llama_model.model.layers.12.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
| 457 |
+
"model.llama_model.model.layers.12.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
| 458 |
+
"model.llama_model.model.layers.12.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
| 459 |
+
"model.llama_model.model.layers.12.self_attn.rotary_emb.inv_freq": "model-00002-of-00003.safetensors",
|
| 460 |
+
"model.llama_model.model.layers.12.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
| 461 |
+
"model.llama_model.model.layers.13.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 462 |
+
"model.llama_model.model.layers.13.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
| 463 |
+
"model.llama_model.model.layers.13.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
| 464 |
+
"model.llama_model.model.layers.13.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
| 465 |
+
"model.llama_model.model.layers.13.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 466 |
+
"model.llama_model.model.layers.13.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
| 467 |
+
"model.llama_model.model.layers.13.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
| 468 |
+
"model.llama_model.model.layers.13.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
| 469 |
+
"model.llama_model.model.layers.13.self_attn.rotary_emb.inv_freq": "model-00002-of-00003.safetensors",
|
| 470 |
+
"model.llama_model.model.layers.13.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
| 471 |
+
"model.llama_model.model.layers.14.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 472 |
+
"model.llama_model.model.layers.14.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
| 473 |
+
"model.llama_model.model.layers.14.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
| 474 |
+
"model.llama_model.model.layers.14.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
| 475 |
+
"model.llama_model.model.layers.14.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 476 |
+
"model.llama_model.model.layers.14.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
| 477 |
+
"model.llama_model.model.layers.14.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
| 478 |
+
"model.llama_model.model.layers.14.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
| 479 |
+
"model.llama_model.model.layers.14.self_attn.rotary_emb.inv_freq": "model-00002-of-00003.safetensors",
|
| 480 |
+
"model.llama_model.model.layers.14.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
| 481 |
+
"model.llama_model.model.layers.15.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 482 |
+
"model.llama_model.model.layers.15.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
| 483 |
+
"model.llama_model.model.layers.15.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
| 484 |
+
"model.llama_model.model.layers.15.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
| 485 |
+
"model.llama_model.model.layers.15.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 486 |
+
"model.llama_model.model.layers.15.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
| 487 |
+
"model.llama_model.model.layers.15.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
| 488 |
+
"model.llama_model.model.layers.15.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
| 489 |
+
"model.llama_model.model.layers.15.self_attn.rotary_emb.inv_freq": "model-00002-of-00003.safetensors",
|
| 490 |
+
"model.llama_model.model.layers.15.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
| 491 |
+
"model.llama_model.model.layers.16.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 492 |
+
"model.llama_model.model.layers.16.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
| 493 |
+
"model.llama_model.model.layers.16.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
| 494 |
+
"model.llama_model.model.layers.16.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
| 495 |
+
"model.llama_model.model.layers.16.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 496 |
+
"model.llama_model.model.layers.16.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
| 497 |
+
"model.llama_model.model.layers.16.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
| 498 |
+
"model.llama_model.model.layers.16.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
| 499 |
+
"model.llama_model.model.layers.16.self_attn.rotary_emb.inv_freq": "model-00002-of-00003.safetensors",
|
| 500 |
+
"model.llama_model.model.layers.16.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
| 501 |
+
"model.llama_model.model.layers.17.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 502 |
+
"model.llama_model.model.layers.17.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
| 503 |
+
"model.llama_model.model.layers.17.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
| 504 |
+
"model.llama_model.model.layers.17.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
| 505 |
+
"model.llama_model.model.layers.17.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 506 |
+
"model.llama_model.model.layers.17.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
| 507 |
+
"model.llama_model.model.layers.17.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
| 508 |
+
"model.llama_model.model.layers.17.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
| 509 |
+
"model.llama_model.model.layers.17.self_attn.rotary_emb.inv_freq": "model-00002-of-00003.safetensors",
|
| 510 |
+
"model.llama_model.model.layers.17.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
| 511 |
+
"model.llama_model.model.layers.18.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 512 |
+
"model.llama_model.model.layers.18.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
| 513 |
+
"model.llama_model.model.layers.18.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
| 514 |
+
"model.llama_model.model.layers.18.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
| 515 |
+
"model.llama_model.model.layers.18.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 516 |
+
"model.llama_model.model.layers.18.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
| 517 |
+
"model.llama_model.model.layers.18.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
| 518 |
+
"model.llama_model.model.layers.18.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
| 519 |
+
"model.llama_model.model.layers.18.self_attn.rotary_emb.inv_freq": "model-00002-of-00003.safetensors",
|
| 520 |
+
"model.llama_model.model.layers.18.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
| 521 |
+
"model.llama_model.model.layers.19.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 522 |
+
"model.llama_model.model.layers.19.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
| 523 |
+
"model.llama_model.model.layers.19.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
| 524 |
+
"model.llama_model.model.layers.19.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
| 525 |
+
"model.llama_model.model.layers.19.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 526 |
+
"model.llama_model.model.layers.19.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
| 527 |
+
"model.llama_model.model.layers.19.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
| 528 |
+
"model.llama_model.model.layers.19.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
| 529 |
+
"model.llama_model.model.layers.19.self_attn.rotary_emb.inv_freq": "model-00002-of-00003.safetensors",
|
| 530 |
+
"model.llama_model.model.layers.19.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
| 531 |
+
"model.llama_model.model.layers.2.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 532 |
+
"model.llama_model.model.layers.2.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
| 533 |
+
"model.llama_model.model.layers.2.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
| 534 |
+
"model.llama_model.model.layers.2.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
| 535 |
+
"model.llama_model.model.layers.2.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 536 |
+
"model.llama_model.model.layers.2.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
| 537 |
+
"model.llama_model.model.layers.2.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
| 538 |
+
"model.llama_model.model.layers.2.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
| 539 |
+
"model.llama_model.model.layers.2.self_attn.rotary_emb.inv_freq": "model-00001-of-00003.safetensors",
|
| 540 |
+
"model.llama_model.model.layers.2.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
| 541 |
+
"model.llama_model.model.layers.20.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
| 542 |
+
"model.llama_model.model.layers.20.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
| 543 |
+
"model.llama_model.model.layers.20.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
| 544 |
+
"model.llama_model.model.layers.20.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
| 545 |
+
"model.llama_model.model.layers.20.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
| 546 |
+
"model.llama_model.model.layers.20.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
| 547 |
+
"model.llama_model.model.layers.20.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
| 548 |
+
"model.llama_model.model.layers.20.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
| 549 |
+
"model.llama_model.model.layers.20.self_attn.rotary_emb.inv_freq": "model-00002-of-00003.safetensors",
|
| 550 |
+
"model.llama_model.model.layers.20.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
| 551 |
+
"model.llama_model.model.layers.21.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
| 552 |
+
"model.llama_model.model.layers.21.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
| 553 |
+
"model.llama_model.model.layers.21.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
| 554 |
+
"model.llama_model.model.layers.21.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
| 555 |
+
"model.llama_model.model.layers.21.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
| 556 |
+
"model.llama_model.model.layers.21.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
| 557 |
+
"model.llama_model.model.layers.21.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
| 558 |
+
"model.llama_model.model.layers.21.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
| 559 |
+
"model.llama_model.model.layers.21.self_attn.rotary_emb.inv_freq": "model-00003-of-00003.safetensors",
|
| 560 |
+
"model.llama_model.model.layers.21.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
| 561 |
+
"model.llama_model.model.layers.22.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
| 562 |
+
"model.llama_model.model.layers.22.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
| 563 |
+
"model.llama_model.model.layers.22.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
| 564 |
+
"model.llama_model.model.layers.22.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
| 565 |
+
"model.llama_model.model.layers.22.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
| 566 |
+
"model.llama_model.model.layers.22.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
| 567 |
+
"model.llama_model.model.layers.22.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
| 568 |
+
"model.llama_model.model.layers.22.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
| 569 |
+
"model.llama_model.model.layers.22.self_attn.rotary_emb.inv_freq": "model-00003-of-00003.safetensors",
|
| 570 |
+
"model.llama_model.model.layers.22.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
| 571 |
+
"model.llama_model.model.layers.23.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
| 572 |
+
"model.llama_model.model.layers.23.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
| 573 |
+
"model.llama_model.model.layers.23.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
| 574 |
+
"model.llama_model.model.layers.23.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
| 575 |
+
"model.llama_model.model.layers.23.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
| 576 |
+
"model.llama_model.model.layers.23.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
| 577 |
+
"model.llama_model.model.layers.23.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
| 578 |
+
"model.llama_model.model.layers.23.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
| 579 |
+
"model.llama_model.model.layers.23.self_attn.rotary_emb.inv_freq": "model-00003-of-00003.safetensors",
|
| 580 |
+
"model.llama_model.model.layers.23.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
| 581 |
+
"model.llama_model.model.layers.24.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
| 582 |
+
"model.llama_model.model.layers.24.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
| 583 |
+
"model.llama_model.model.layers.24.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
| 584 |
+
"model.llama_model.model.layers.24.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
| 585 |
+
"model.llama_model.model.layers.24.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
| 586 |
+
"model.llama_model.model.layers.24.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
| 587 |
+
"model.llama_model.model.layers.24.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
| 588 |
+
"model.llama_model.model.layers.24.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
| 589 |
+
"model.llama_model.model.layers.24.self_attn.rotary_emb.inv_freq": "model-00003-of-00003.safetensors",
|
| 590 |
+
"model.llama_model.model.layers.24.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
| 591 |
+
"model.llama_model.model.layers.25.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
| 592 |
+
"model.llama_model.model.layers.25.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
| 593 |
+
"model.llama_model.model.layers.25.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
| 594 |
+
"model.llama_model.model.layers.25.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
| 595 |
+
"model.llama_model.model.layers.25.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
| 596 |
+
"model.llama_model.model.layers.25.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
| 597 |
+
"model.llama_model.model.layers.25.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
| 598 |
+
"model.llama_model.model.layers.25.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
| 599 |
+
"model.llama_model.model.layers.25.self_attn.rotary_emb.inv_freq": "model-00003-of-00003.safetensors",
|
| 600 |
+
"model.llama_model.model.layers.25.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
| 601 |
+
"model.llama_model.model.layers.26.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
| 602 |
+
"model.llama_model.model.layers.26.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
| 603 |
+
"model.llama_model.model.layers.26.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
| 604 |
+
"model.llama_model.model.layers.26.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
| 605 |
+
"model.llama_model.model.layers.26.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
| 606 |
+
"model.llama_model.model.layers.26.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
| 607 |
+
"model.llama_model.model.layers.26.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
| 608 |
+
"model.llama_model.model.layers.26.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
| 609 |
+
"model.llama_model.model.layers.26.self_attn.rotary_emb.inv_freq": "model-00003-of-00003.safetensors",
|
| 610 |
+
"model.llama_model.model.layers.26.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
| 611 |
+
"model.llama_model.model.layers.27.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
| 612 |
+
"model.llama_model.model.layers.27.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
| 613 |
+
"model.llama_model.model.layers.27.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
| 614 |
+
"model.llama_model.model.layers.27.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
| 615 |
+
"model.llama_model.model.layers.27.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
| 616 |
+
"model.llama_model.model.layers.27.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
| 617 |
+
"model.llama_model.model.layers.27.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
| 618 |
+
"model.llama_model.model.layers.27.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
| 619 |
+
"model.llama_model.model.layers.27.self_attn.rotary_emb.inv_freq": "model-00003-of-00003.safetensors",
|
| 620 |
+
"model.llama_model.model.layers.27.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
| 621 |
+
"model.llama_model.model.layers.28.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
| 622 |
+
"model.llama_model.model.layers.28.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
| 623 |
+
"model.llama_model.model.layers.28.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
| 624 |
+
"model.llama_model.model.layers.28.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
| 625 |
+
"model.llama_model.model.layers.28.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
| 626 |
+
"model.llama_model.model.layers.28.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
| 627 |
+
"model.llama_model.model.layers.28.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
| 628 |
+
"model.llama_model.model.layers.28.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
| 629 |
+
"model.llama_model.model.layers.28.self_attn.rotary_emb.inv_freq": "model-00003-of-00003.safetensors",
|
| 630 |
+
"model.llama_model.model.layers.28.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
| 631 |
+
"model.llama_model.model.layers.29.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
| 632 |
+
"model.llama_model.model.layers.29.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
| 633 |
+
"model.llama_model.model.layers.29.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
| 634 |
+
"model.llama_model.model.layers.29.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
| 635 |
+
"model.llama_model.model.layers.29.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
| 636 |
+
"model.llama_model.model.layers.29.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
| 637 |
+
"model.llama_model.model.layers.29.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
| 638 |
+
"model.llama_model.model.layers.29.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
| 639 |
+
"model.llama_model.model.layers.29.self_attn.rotary_emb.inv_freq": "model-00003-of-00003.safetensors",
|
| 640 |
+
"model.llama_model.model.layers.29.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
| 641 |
+
"model.llama_model.model.layers.3.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 642 |
+
"model.llama_model.model.layers.3.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
| 643 |
+
"model.llama_model.model.layers.3.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
| 644 |
+
"model.llama_model.model.layers.3.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
| 645 |
+
"model.llama_model.model.layers.3.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 646 |
+
"model.llama_model.model.layers.3.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
| 647 |
+
"model.llama_model.model.layers.3.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
| 648 |
+
"model.llama_model.model.layers.3.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
| 649 |
+
"model.llama_model.model.layers.3.self_attn.rotary_emb.inv_freq": "model-00001-of-00003.safetensors",
|
| 650 |
+
"model.llama_model.model.layers.3.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
| 651 |
+
"model.llama_model.model.layers.30.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
| 652 |
+
"model.llama_model.model.layers.30.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
| 653 |
+
"model.llama_model.model.layers.30.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
| 654 |
+
"model.llama_model.model.layers.30.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
| 655 |
+
"model.llama_model.model.layers.30.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
| 656 |
+
"model.llama_model.model.layers.30.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
| 657 |
+
"model.llama_model.model.layers.30.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
| 658 |
+
"model.llama_model.model.layers.30.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
| 659 |
+
"model.llama_model.model.layers.30.self_attn.rotary_emb.inv_freq": "model-00003-of-00003.safetensors",
|
| 660 |
+
"model.llama_model.model.layers.30.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
| 661 |
+
"model.llama_model.model.layers.31.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
| 662 |
+
"model.llama_model.model.layers.31.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
| 663 |
+
"model.llama_model.model.layers.31.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
| 664 |
+
"model.llama_model.model.layers.31.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
| 665 |
+
"model.llama_model.model.layers.31.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
| 666 |
+
"model.llama_model.model.layers.31.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
| 667 |
+
"model.llama_model.model.layers.31.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
| 668 |
+
"model.llama_model.model.layers.31.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
| 669 |
+
"model.llama_model.model.layers.31.self_attn.rotary_emb.inv_freq": "model-00003-of-00003.safetensors",
|
| 670 |
+
"model.llama_model.model.layers.31.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
| 671 |
+
"model.llama_model.model.layers.4.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 672 |
+
"model.llama_model.model.layers.4.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
| 673 |
+
"model.llama_model.model.layers.4.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
| 674 |
+
"model.llama_model.model.layers.4.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
| 675 |
+
"model.llama_model.model.layers.4.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 676 |
+
"model.llama_model.model.layers.4.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
| 677 |
+
"model.llama_model.model.layers.4.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
| 678 |
+
"model.llama_model.model.layers.4.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
| 679 |
+
"model.llama_model.model.layers.4.self_attn.rotary_emb.inv_freq": "model-00001-of-00003.safetensors",
|
| 680 |
+
"model.llama_model.model.layers.4.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
| 681 |
+
"model.llama_model.model.layers.5.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 682 |
+
"model.llama_model.model.layers.5.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
| 683 |
+
"model.llama_model.model.layers.5.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
| 684 |
+
"model.llama_model.model.layers.5.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
| 685 |
+
"model.llama_model.model.layers.5.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 686 |
+
"model.llama_model.model.layers.5.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
| 687 |
+
"model.llama_model.model.layers.5.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
| 688 |
+
"model.llama_model.model.layers.5.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
| 689 |
+
"model.llama_model.model.layers.5.self_attn.rotary_emb.inv_freq": "model-00001-of-00003.safetensors",
|
| 690 |
+
"model.llama_model.model.layers.5.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
| 691 |
+
"model.llama_model.model.layers.6.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 692 |
+
"model.llama_model.model.layers.6.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
| 693 |
+
"model.llama_model.model.layers.6.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
| 694 |
+
"model.llama_model.model.layers.6.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
| 695 |
+
"model.llama_model.model.layers.6.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 696 |
+
"model.llama_model.model.layers.6.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
| 697 |
+
"model.llama_model.model.layers.6.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
| 698 |
+
"model.llama_model.model.layers.6.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
| 699 |
+
"model.llama_model.model.layers.6.self_attn.rotary_emb.inv_freq": "model-00001-of-00003.safetensors",
|
| 700 |
+
"model.llama_model.model.layers.6.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
| 701 |
+
"model.llama_model.model.layers.7.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 702 |
+
"model.llama_model.model.layers.7.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
| 703 |
+
"model.llama_model.model.layers.7.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
| 704 |
+
"model.llama_model.model.layers.7.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
| 705 |
+
"model.llama_model.model.layers.7.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 706 |
+
"model.llama_model.model.layers.7.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
| 707 |
+
"model.llama_model.model.layers.7.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
| 708 |
+
"model.llama_model.model.layers.7.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
| 709 |
+
"model.llama_model.model.layers.7.self_attn.rotary_emb.inv_freq": "model-00001-of-00003.safetensors",
|
| 710 |
+
"model.llama_model.model.layers.7.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
| 711 |
+
"model.llama_model.model.layers.8.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 712 |
+
"model.llama_model.model.layers.8.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
| 713 |
+
"model.llama_model.model.layers.8.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
| 714 |
+
"model.llama_model.model.layers.8.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
| 715 |
+
"model.llama_model.model.layers.8.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 716 |
+
"model.llama_model.model.layers.8.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
| 717 |
+
"model.llama_model.model.layers.8.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
| 718 |
+
"model.llama_model.model.layers.8.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
| 719 |
+
"model.llama_model.model.layers.8.self_attn.rotary_emb.inv_freq": "model-00001-of-00003.safetensors",
|
| 720 |
+
"model.llama_model.model.layers.8.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
| 721 |
+
"model.llama_model.model.layers.9.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 722 |
+
"model.llama_model.model.layers.9.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
| 723 |
+
"model.llama_model.model.layers.9.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
| 724 |
+
"model.llama_model.model.layers.9.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
| 725 |
+
"model.llama_model.model.layers.9.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 726 |
+
"model.llama_model.model.layers.9.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
| 727 |
+
"model.llama_model.model.layers.9.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
| 728 |
+
"model.llama_model.model.layers.9.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
| 729 |
+
"model.llama_model.model.layers.9.self_attn.rotary_emb.inv_freq": "model-00002-of-00003.safetensors",
|
| 730 |
+
"model.llama_model.model.layers.9.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
| 731 |
+
"model.llama_model.model.norm.weight": "model-00003-of-00003.safetensors",
|
| 732 |
+
"model.llama_proj.bias": "model-00003-of-00003.safetensors",
|
| 733 |
+
"model.llama_proj.weight": "model-00003-of-00003.safetensors"
|
| 734 |
+
}
|
| 735 |
+
}
|
modelling_musilingo.py
ADDED
|
@@ -0,0 +1,2275 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import logging
|
| 2 |
+
import os
|
| 3 |
+
import random
|
| 4 |
+
import math
|
| 5 |
+
import re
|
| 6 |
+
import shutil
|
| 7 |
+
import warnings
|
| 8 |
+
import datetime
|
| 9 |
+
import time
|
| 10 |
+
from collections import defaultdict, deque
|
| 11 |
+
from typing import List, Optional, Tuple, Union
|
| 12 |
+
|
| 13 |
+
from torch.cuda.amp import autocast as autocast
|
| 14 |
+
import torch
|
| 15 |
+
import torch.distributed as dist
|
| 16 |
+
import torch.nn as nn
|
| 17 |
+
import torch.utils.checkpoint
|
| 18 |
+
from torch.nn import CrossEntropyLoss
|
| 19 |
+
from transformers import Wav2Vec2FeatureExtractor
|
| 20 |
+
from omegaconf import OmegaConf
|
| 21 |
+
|
| 22 |
+
from .configuration_musilingo import MusiLingoConfig, PATH
|
| 23 |
+
import timm.models.hub as timm_hub
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
from transformers import LlamaTokenizer, Wav2Vec2FeatureExtractor, AutoModel
|
| 27 |
+
from transformers.activations import ACT2FN
|
| 28 |
+
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
|
| 29 |
+
from transformers.modeling_utils import PreTrainedModel
|
| 30 |
+
from transformers.utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings
|
| 31 |
+
from transformers.models.llama.configuration_llama import LlamaConfig
|
| 32 |
+
from transformers import PreTrainedModel
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
def download_url(
|
| 37 |
+
url: str, root: str, filename: Optional[str] = None, md5: Optional[str] = None, max_redirect_hops: int = 3
|
| 38 |
+
) -> None:
|
| 39 |
+
"""Download a file from a url and place it in root.
|
| 40 |
+
|
| 41 |
+
Args:
|
| 42 |
+
url (str): URL to download file from
|
| 43 |
+
root (str): Directory to place downloaded file in
|
| 44 |
+
filename (str, optional): Name to save the file under. If None, use the basename of the URL
|
| 45 |
+
md5 (str, optional): MD5 checksum of the download. If None, do not check
|
| 46 |
+
max_redirect_hops (int, optional): Maximum number of redirect hops allowed
|
| 47 |
+
"""
|
| 48 |
+
root = os.path.expanduser(root)
|
| 49 |
+
if not filename:
|
| 50 |
+
filename = os.path.basename(url)
|
| 51 |
+
fpath = os.path.join(root, filename)
|
| 52 |
+
|
| 53 |
+
os.makedirs(root, exist_ok=True)
|
| 54 |
+
|
| 55 |
+
# check if file is already present locally
|
| 56 |
+
if check_integrity(fpath, md5):
|
| 57 |
+
print("Using downloaded and verified file: " + fpath)
|
| 58 |
+
return
|
| 59 |
+
|
| 60 |
+
if _is_remote_location_available():
|
| 61 |
+
_download_file_from_remote_location(fpath, url)
|
| 62 |
+
else:
|
| 63 |
+
# expand redirect chain if needed
|
| 64 |
+
url = _get_redirect_url(url, max_hops=max_redirect_hops)
|
| 65 |
+
|
| 66 |
+
# check if file is located on Google Drive
|
| 67 |
+
file_id = _get_google_drive_file_id(url)
|
| 68 |
+
if file_id is not None:
|
| 69 |
+
return download_file_from_google_drive(file_id, root, filename, md5)
|
| 70 |
+
|
| 71 |
+
# download the file
|
| 72 |
+
try:
|
| 73 |
+
print("Downloading " + url + " to " + fpath)
|
| 74 |
+
_urlretrieve(url, fpath)
|
| 75 |
+
except (urllib.error.URLError, OSError) as e: # type: ignore[attr-defined]
|
| 76 |
+
if url[:5] == "https":
|
| 77 |
+
url = url.replace("https:", "http:")
|
| 78 |
+
print("Failed download. Trying https -> http instead. Downloading " + url + " to " + fpath)
|
| 79 |
+
_urlretrieve(url, fpath)
|
| 80 |
+
else:
|
| 81 |
+
raise e
|
| 82 |
+
|
| 83 |
+
# check integrity of downloaded file
|
| 84 |
+
if not check_integrity(fpath, md5):
|
| 85 |
+
raise RuntimeError("File not found or corrupted.")
|
| 86 |
+
|
| 87 |
+
|
| 88 |
+
|
| 89 |
+
def load_dataset_config(cfg_path):
|
| 90 |
+
cfg = OmegaConf.load(cfg_path).datasets
|
| 91 |
+
cfg = cfg[list(cfg.keys())[0]]
|
| 92 |
+
|
| 93 |
+
return cfg
|
| 94 |
+
|
| 95 |
+
class SmoothedValue(object):
|
| 96 |
+
"""Track a series of values and provide access to smoothed values over a
|
| 97 |
+
window or the global series average.
|
| 98 |
+
"""
|
| 99 |
+
|
| 100 |
+
def __init__(self, window_size=20, fmt=None):
|
| 101 |
+
if fmt is None:
|
| 102 |
+
fmt = "{median:.4f} ({global_avg:.4f})"
|
| 103 |
+
self.deque = deque(maxlen=window_size)
|
| 104 |
+
self.total = 0.0
|
| 105 |
+
self.count = 0
|
| 106 |
+
self.fmt = fmt
|
| 107 |
+
|
| 108 |
+
def update(self, value, n=1):
|
| 109 |
+
self.deque.append(value)
|
| 110 |
+
self.count += n
|
| 111 |
+
self.total += value * n
|
| 112 |
+
|
| 113 |
+
def synchronize_between_processes(self):
|
| 114 |
+
"""
|
| 115 |
+
Warning: does not synchronize the deque!
|
| 116 |
+
"""
|
| 117 |
+
if not is_dist_avail_and_initialized():
|
| 118 |
+
return
|
| 119 |
+
t = torch.tensor([self.count, self.total], dtype=torch.float64, device="cuda")
|
| 120 |
+
dist.barrier()
|
| 121 |
+
dist.all_reduce(t)
|
| 122 |
+
t = t.tolist()
|
| 123 |
+
self.count = int(t[0])
|
| 124 |
+
self.total = t[1]
|
| 125 |
+
|
| 126 |
+
@property
|
| 127 |
+
def median(self):
|
| 128 |
+
d = torch.tensor(list(self.deque))
|
| 129 |
+
return d.median().item()
|
| 130 |
+
|
| 131 |
+
@property
|
| 132 |
+
def avg(self):
|
| 133 |
+
d = torch.tensor(list(self.deque), dtype=torch.float32)
|
| 134 |
+
return d.mean().item()
|
| 135 |
+
|
| 136 |
+
@property
|
| 137 |
+
def global_avg(self):
|
| 138 |
+
return self.total / self.count
|
| 139 |
+
|
| 140 |
+
@property
|
| 141 |
+
def max(self):
|
| 142 |
+
return max(self.deque)
|
| 143 |
+
|
| 144 |
+
@property
|
| 145 |
+
def value(self):
|
| 146 |
+
return self.deque[-1]
|
| 147 |
+
|
| 148 |
+
def __str__(self):
|
| 149 |
+
return self.fmt.format(
|
| 150 |
+
median=self.median,
|
| 151 |
+
avg=self.avg,
|
| 152 |
+
global_avg=self.global_avg,
|
| 153 |
+
max=self.max,
|
| 154 |
+
value=self.value,
|
| 155 |
+
)
|
| 156 |
+
|
| 157 |
+
|
| 158 |
+
class MetricLogger(object):
|
| 159 |
+
def __init__(self, delimiter="\t"):
|
| 160 |
+
self.meters = defaultdict(SmoothedValue)
|
| 161 |
+
self.delimiter = delimiter
|
| 162 |
+
|
| 163 |
+
def update(self, **kwargs):
|
| 164 |
+
for k, v in kwargs.items():
|
| 165 |
+
if isinstance(v, torch.Tensor):
|
| 166 |
+
v = v.item()
|
| 167 |
+
assert isinstance(v, (float, int))
|
| 168 |
+
self.meters[k].update(v)
|
| 169 |
+
|
| 170 |
+
def __getattr__(self, attr):
|
| 171 |
+
if attr in self.meters:
|
| 172 |
+
return self.meters[attr]
|
| 173 |
+
if attr in self.__dict__:
|
| 174 |
+
return self.__dict__[attr]
|
| 175 |
+
raise AttributeError(
|
| 176 |
+
"'{}' object has no attribute '{}'".format(type(self).__name__, attr)
|
| 177 |
+
)
|
| 178 |
+
|
| 179 |
+
def __str__(self):
|
| 180 |
+
loss_str = []
|
| 181 |
+
for name, meter in self.meters.items():
|
| 182 |
+
loss_str.append("{}: {}".format(name, str(meter)))
|
| 183 |
+
return self.delimiter.join(loss_str)
|
| 184 |
+
|
| 185 |
+
def global_avg(self):
|
| 186 |
+
loss_str = []
|
| 187 |
+
for name, meter in self.meters.items():
|
| 188 |
+
loss_str.append("{}: {:.4f}".format(name, meter.global_avg))
|
| 189 |
+
return self.delimiter.join(loss_str)
|
| 190 |
+
|
| 191 |
+
def synchronize_between_processes(self):
|
| 192 |
+
for meter in self.meters.values():
|
| 193 |
+
meter.synchronize_between_processes()
|
| 194 |
+
|
| 195 |
+
def add_meter(self, name, meter):
|
| 196 |
+
self.meters[name] = meter
|
| 197 |
+
|
| 198 |
+
def log_every(self, iterable, print_freq, header=None):
|
| 199 |
+
i = 0
|
| 200 |
+
if not header:
|
| 201 |
+
header = ""
|
| 202 |
+
start_time = time.time()
|
| 203 |
+
end = time.time()
|
| 204 |
+
iter_time = SmoothedValue(fmt="{avg:.4f}")
|
| 205 |
+
data_time = SmoothedValue(fmt="{avg:.4f}")
|
| 206 |
+
space_fmt = ":" + str(len(str(len(iterable)))) + "d"
|
| 207 |
+
log_msg = [
|
| 208 |
+
header,
|
| 209 |
+
"[{0" + space_fmt + "}/{1}]",
|
| 210 |
+
"eta: {eta}",
|
| 211 |
+
"{meters}",
|
| 212 |
+
"time: {time}",
|
| 213 |
+
"data: {data}",
|
| 214 |
+
]
|
| 215 |
+
if torch.cuda.is_available():
|
| 216 |
+
log_msg.append("max mem: {memory:.0f}")
|
| 217 |
+
log_msg = self.delimiter.join(log_msg)
|
| 218 |
+
MB = 1024.0 * 1024.0
|
| 219 |
+
for obj in iterable:
|
| 220 |
+
data_time.update(time.time() - end)
|
| 221 |
+
yield obj
|
| 222 |
+
iter_time.update(time.time() - end)
|
| 223 |
+
if i % print_freq == 0 or i == len(iterable) - 1:
|
| 224 |
+
eta_seconds = iter_time.global_avg * (len(iterable) - i)
|
| 225 |
+
eta_string = str(datetime.timedelta(seconds=int(eta_seconds)))
|
| 226 |
+
if torch.cuda.is_available():
|
| 227 |
+
print(
|
| 228 |
+
log_msg.format(
|
| 229 |
+
i,
|
| 230 |
+
len(iterable),
|
| 231 |
+
eta=eta_string,
|
| 232 |
+
meters=str(self),
|
| 233 |
+
time=str(iter_time),
|
| 234 |
+
data=str(data_time),
|
| 235 |
+
memory=torch.cuda.max_memory_allocated() / MB,
|
| 236 |
+
)
|
| 237 |
+
)
|
| 238 |
+
else:
|
| 239 |
+
print(
|
| 240 |
+
log_msg.format(
|
| 241 |
+
i,
|
| 242 |
+
len(iterable),
|
| 243 |
+
eta=eta_string,
|
| 244 |
+
meters=str(self),
|
| 245 |
+
time=str(iter_time),
|
| 246 |
+
data=str(data_time),
|
| 247 |
+
)
|
| 248 |
+
)
|
| 249 |
+
i += 1
|
| 250 |
+
end = time.time()
|
| 251 |
+
total_time = time.time() - start_time
|
| 252 |
+
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
|
| 253 |
+
print(
|
| 254 |
+
"{} Total time: {} ({:.4f} s / it)".format(
|
| 255 |
+
header, total_time_str, total_time / len(iterable)
|
| 256 |
+
)
|
| 257 |
+
)
|
| 258 |
+
|
| 259 |
+
|
| 260 |
+
def move_to_cuda(sample):
|
| 261 |
+
def _move_to_cuda(tensor):
|
| 262 |
+
return tensor.cuda()
|
| 263 |
+
|
| 264 |
+
return apply_to_sample(_move_to_cuda, sample)
|
| 265 |
+
|
| 266 |
+
def apply_to_sample(f, sample):
|
| 267 |
+
if len(sample) == 0:
|
| 268 |
+
return {}
|
| 269 |
+
|
| 270 |
+
def _apply(x):
|
| 271 |
+
if torch.is_tensor(x):
|
| 272 |
+
return f(x)
|
| 273 |
+
elif isinstance(x, dict):
|
| 274 |
+
return {key: _apply(value) for key, value in x.items()}
|
| 275 |
+
elif isinstance(x, list):
|
| 276 |
+
return [_apply(x) for x in x]
|
| 277 |
+
else:
|
| 278 |
+
return x
|
| 279 |
+
|
| 280 |
+
return _apply(sample)
|
| 281 |
+
|
| 282 |
+
def prepare_sample(samples, cuda_enabled=True):
|
| 283 |
+
if cuda_enabled:
|
| 284 |
+
samples = move_to_cuda(samples)
|
| 285 |
+
|
| 286 |
+
# TODO fp16 support
|
| 287 |
+
|
| 288 |
+
return samples
|
| 289 |
+
|
| 290 |
+
def get_world_size():
|
| 291 |
+
if not is_dist_avail_and_initialized():
|
| 292 |
+
return 1
|
| 293 |
+
return dist.get_world_size()
|
| 294 |
+
|
| 295 |
+
class BaseTask:
|
| 296 |
+
def __init__(self, **kwargs):
|
| 297 |
+
super().__init__()
|
| 298 |
+
|
| 299 |
+
self.inst_id_key = "instance_id"
|
| 300 |
+
|
| 301 |
+
@classmethod
|
| 302 |
+
def setup_task(cls, **kwargs):
|
| 303 |
+
return cls()
|
| 304 |
+
|
| 305 |
+
def build_model(self, cfg):
|
| 306 |
+
model_config = cfg.model_cfg
|
| 307 |
+
|
| 308 |
+
model_cls = registry.get_model_class(model_config.arch)
|
| 309 |
+
return model_cls.from_config(model_config)
|
| 310 |
+
|
| 311 |
+
def build_datasets(self, cfg):
|
| 312 |
+
"""
|
| 313 |
+
Build a dictionary of datasets, keyed by split 'train', 'valid', 'test'.
|
| 314 |
+
Download dataset and annotations automatically if not exist.
|
| 315 |
+
|
| 316 |
+
Args:
|
| 317 |
+
cfg (common.config.Config): _description_
|
| 318 |
+
|
| 319 |
+
Returns:
|
| 320 |
+
dict: Dictionary of torch.utils.data.Dataset objects by split.
|
| 321 |
+
"""
|
| 322 |
+
|
| 323 |
+
datasets = dict()
|
| 324 |
+
|
| 325 |
+
datasets_config = cfg.datasets_cfg
|
| 326 |
+
|
| 327 |
+
assert len(datasets_config) > 0, "At least one dataset has to be specified."
|
| 328 |
+
|
| 329 |
+
for name in datasets_config:
|
| 330 |
+
dataset_config = datasets_config[name]
|
| 331 |
+
|
| 332 |
+
builder = registry.get_builder_class(name)(dataset_config)
|
| 333 |
+
dataset = builder.build_datasets()
|
| 334 |
+
|
| 335 |
+
dataset['train'].name = name
|
| 336 |
+
if 'sample_ratio' in dataset_config:
|
| 337 |
+
dataset['train'].sample_ratio = dataset_config.sample_ratio
|
| 338 |
+
|
| 339 |
+
datasets[name] = dataset
|
| 340 |
+
|
| 341 |
+
return datasets
|
| 342 |
+
|
| 343 |
+
def train_step(self, model, samples):
|
| 344 |
+
loss = model(samples)["loss"]
|
| 345 |
+
return loss
|
| 346 |
+
|
| 347 |
+
def valid_step(self, model, samples):
|
| 348 |
+
raise NotImplementedError
|
| 349 |
+
|
| 350 |
+
def before_evaluation(self, model, dataset, **kwargs):
|
| 351 |
+
model.before_evaluation(dataset=dataset, task_type=type(self))
|
| 352 |
+
|
| 353 |
+
def after_evaluation(self, **kwargs):
|
| 354 |
+
pass
|
| 355 |
+
|
| 356 |
+
def inference_step(self):
|
| 357 |
+
raise NotImplementedError
|
| 358 |
+
|
| 359 |
+
def evaluation(self, model, data_loader, cuda_enabled=True):
|
| 360 |
+
metric_logger = MetricLogger(delimiter=" ")
|
| 361 |
+
header = "Evaluation"
|
| 362 |
+
# TODO make it configurable
|
| 363 |
+
print_freq = 10
|
| 364 |
+
|
| 365 |
+
results = []
|
| 366 |
+
|
| 367 |
+
for samples in metric_logger.log_every(data_loader, print_freq, header):
|
| 368 |
+
samples = prepare_sample(samples, cuda_enabled=cuda_enabled)
|
| 369 |
+
|
| 370 |
+
eval_output = self.valid_step(model=model, samples=samples)
|
| 371 |
+
results.extend(eval_output)
|
| 372 |
+
|
| 373 |
+
if is_dist_avail_and_initialized():
|
| 374 |
+
dist.barrier()
|
| 375 |
+
|
| 376 |
+
return results
|
| 377 |
+
|
| 378 |
+
def train_epoch(
|
| 379 |
+
self,
|
| 380 |
+
epoch,
|
| 381 |
+
model,
|
| 382 |
+
data_loader,
|
| 383 |
+
optimizer,
|
| 384 |
+
lr_scheduler,
|
| 385 |
+
scaler=None,
|
| 386 |
+
cuda_enabled=False,
|
| 387 |
+
log_freq=50,
|
| 388 |
+
accum_grad_iters=1,
|
| 389 |
+
):
|
| 390 |
+
return self._train_inner_loop(
|
| 391 |
+
epoch=epoch,
|
| 392 |
+
iters_per_epoch=lr_scheduler.iters_per_epoch,
|
| 393 |
+
model=model,
|
| 394 |
+
data_loader=data_loader,
|
| 395 |
+
optimizer=optimizer,
|
| 396 |
+
scaler=scaler,
|
| 397 |
+
lr_scheduler=lr_scheduler,
|
| 398 |
+
log_freq=log_freq,
|
| 399 |
+
cuda_enabled=cuda_enabled,
|
| 400 |
+
accum_grad_iters=accum_grad_iters,
|
| 401 |
+
)
|
| 402 |
+
|
| 403 |
+
def train_iters(
|
| 404 |
+
self,
|
| 405 |
+
epoch,
|
| 406 |
+
start_iters,
|
| 407 |
+
iters_per_inner_epoch,
|
| 408 |
+
model,
|
| 409 |
+
data_loader,
|
| 410 |
+
optimizer,
|
| 411 |
+
lr_scheduler,
|
| 412 |
+
scaler=None,
|
| 413 |
+
cuda_enabled=False,
|
| 414 |
+
log_freq=50,
|
| 415 |
+
accum_grad_iters=1,
|
| 416 |
+
):
|
| 417 |
+
return self._train_inner_loop(
|
| 418 |
+
epoch=epoch,
|
| 419 |
+
start_iters=start_iters,
|
| 420 |
+
iters_per_epoch=iters_per_inner_epoch,
|
| 421 |
+
model=model,
|
| 422 |
+
data_loader=data_loader,
|
| 423 |
+
optimizer=optimizer,
|
| 424 |
+
scaler=scaler,
|
| 425 |
+
lr_scheduler=lr_scheduler,
|
| 426 |
+
log_freq=log_freq,
|
| 427 |
+
cuda_enabled=cuda_enabled,
|
| 428 |
+
accum_grad_iters=accum_grad_iters,
|
| 429 |
+
)
|
| 430 |
+
|
| 431 |
+
def _train_inner_loop(
|
| 432 |
+
self,
|
| 433 |
+
epoch,
|
| 434 |
+
iters_per_epoch,
|
| 435 |
+
model,
|
| 436 |
+
data_loader,
|
| 437 |
+
optimizer,
|
| 438 |
+
lr_scheduler,
|
| 439 |
+
scaler=None,
|
| 440 |
+
start_iters=None,
|
| 441 |
+
log_freq=50,
|
| 442 |
+
cuda_enabled=False,
|
| 443 |
+
accum_grad_iters=1,
|
| 444 |
+
):
|
| 445 |
+
"""
|
| 446 |
+
An inner training loop compatible with both epoch-based and iter-based training.
|
| 447 |
+
|
| 448 |
+
When using epoch-based, training stops after one epoch; when using iter-based,
|
| 449 |
+
training stops after #iters_per_epoch iterations.
|
| 450 |
+
"""
|
| 451 |
+
use_amp = scaler is not None
|
| 452 |
+
|
| 453 |
+
if not hasattr(data_loader, "__next__"):
|
| 454 |
+
# convert to iterator if not already
|
| 455 |
+
data_loader = iter(data_loader)
|
| 456 |
+
|
| 457 |
+
metric_logger = MetricLogger(delimiter=" ")
|
| 458 |
+
metric_logger.add_meter("lr", SmoothedValue(window_size=1, fmt="{value:.6f}"))
|
| 459 |
+
metric_logger.add_meter("loss", SmoothedValue(window_size=1, fmt="{value:.4f}"))
|
| 460 |
+
|
| 461 |
+
# if iter-based runner, schedule lr based on inner epoch.
|
| 462 |
+
logging.info(
|
| 463 |
+
"Start training epoch {}, {} iters per inner epoch.".format(
|
| 464 |
+
epoch, iters_per_epoch
|
| 465 |
+
)
|
| 466 |
+
)
|
| 467 |
+
header = "Train: data epoch: [{}]".format(epoch)
|
| 468 |
+
if start_iters is None:
|
| 469 |
+
# epoch-based runner
|
| 470 |
+
inner_epoch = epoch
|
| 471 |
+
else:
|
| 472 |
+
# In iter-based runner, we schedule the learning rate based on iterations.
|
| 473 |
+
inner_epoch = start_iters // iters_per_epoch
|
| 474 |
+
header = header + "; inner epoch [{}]".format(inner_epoch)
|
| 475 |
+
|
| 476 |
+
for i in metric_logger.log_every(range(iters_per_epoch), log_freq, header):
|
| 477 |
+
# if using iter-based runner, we stop after iters_per_epoch iterations.
|
| 478 |
+
if i >= iters_per_epoch:
|
| 479 |
+
break
|
| 480 |
+
|
| 481 |
+
samples = next(data_loader)
|
| 482 |
+
|
| 483 |
+
samples = prepare_sample(samples, cuda_enabled=cuda_enabled)
|
| 484 |
+
samples.update(
|
| 485 |
+
{
|
| 486 |
+
"epoch": inner_epoch,
|
| 487 |
+
"num_iters_per_epoch": iters_per_epoch,
|
| 488 |
+
"iters": i,
|
| 489 |
+
}
|
| 490 |
+
)
|
| 491 |
+
|
| 492 |
+
lr_scheduler.step(cur_epoch=inner_epoch, cur_step=i)
|
| 493 |
+
|
| 494 |
+
with torch.cuda.amp.autocast(enabled=use_amp):
|
| 495 |
+
loss = self.train_step(model=model, samples=samples)
|
| 496 |
+
|
| 497 |
+
# after_train_step()
|
| 498 |
+
if use_amp:
|
| 499 |
+
scaler.scale(loss).backward()
|
| 500 |
+
else:
|
| 501 |
+
loss.backward()
|
| 502 |
+
|
| 503 |
+
# update gradients every accum_grad_iters iterations
|
| 504 |
+
if (i + 1) % accum_grad_iters == 0:
|
| 505 |
+
if use_amp:
|
| 506 |
+
scaler.step(optimizer)
|
| 507 |
+
scaler.update()
|
| 508 |
+
else:
|
| 509 |
+
optimizer.step()
|
| 510 |
+
optimizer.zero_grad()
|
| 511 |
+
|
| 512 |
+
metric_logger.update(loss=loss.item())
|
| 513 |
+
metric_logger.update(lr=optimizer.param_groups[0]["lr"])
|
| 514 |
+
|
| 515 |
+
# after train_epoch()
|
| 516 |
+
# gather the stats from all processes
|
| 517 |
+
metric_logger.synchronize_between_processes()
|
| 518 |
+
logging.info("Averaged stats: " + str(metric_logger.global_avg()))
|
| 519 |
+
return {
|
| 520 |
+
k: "{:.3f}".format(meter.global_avg)
|
| 521 |
+
for k, meter in metric_logger.meters.items()
|
| 522 |
+
}
|
| 523 |
+
|
| 524 |
+
@staticmethod
|
| 525 |
+
def save_result(result, result_dir, filename, remove_duplicate=""):
|
| 526 |
+
import json
|
| 527 |
+
|
| 528 |
+
result_file = os.path.join(
|
| 529 |
+
result_dir, "%s_rank%d.json" % (filename, get_rank())
|
| 530 |
+
)
|
| 531 |
+
final_result_file = os.path.join(result_dir, "%s.json" % filename)
|
| 532 |
+
|
| 533 |
+
json.dump(result, open(result_file, "w"))
|
| 534 |
+
|
| 535 |
+
if is_dist_avail_and_initialized():
|
| 536 |
+
dist.barrier()
|
| 537 |
+
|
| 538 |
+
if is_main_process():
|
| 539 |
+
logging.warning("rank %d starts merging results." % get_rank())
|
| 540 |
+
# combine results from all processes
|
| 541 |
+
result = []
|
| 542 |
+
|
| 543 |
+
for rank in range(get_world_size()):
|
| 544 |
+
result_file = os.path.join(
|
| 545 |
+
result_dir, "%s_rank%d.json" % (filename, rank)
|
| 546 |
+
)
|
| 547 |
+
res = json.load(open(result_file, "r"))
|
| 548 |
+
result += res
|
| 549 |
+
|
| 550 |
+
if remove_duplicate:
|
| 551 |
+
result_new = []
|
| 552 |
+
id_list = []
|
| 553 |
+
for res in result:
|
| 554 |
+
if res[remove_duplicate] not in id_list:
|
| 555 |
+
id_list.append(res[remove_duplicate])
|
| 556 |
+
result_new.append(res)
|
| 557 |
+
result = result_new
|
| 558 |
+
|
| 559 |
+
json.dump(result, open(final_result_file, "w"))
|
| 560 |
+
print("result file saved to %s" % final_result_file)
|
| 561 |
+
|
| 562 |
+
return final_result_file
|
| 563 |
+
|
| 564 |
+
|
| 565 |
+
class BaseProcessor:
|
| 566 |
+
def __init__(self):
|
| 567 |
+
self.transform = lambda x: x
|
| 568 |
+
return
|
| 569 |
+
|
| 570 |
+
def __call__(self, item):
|
| 571 |
+
return self.transform(item)
|
| 572 |
+
|
| 573 |
+
@classmethod
|
| 574 |
+
def from_config(cls, cfg=None):
|
| 575 |
+
return cls()
|
| 576 |
+
|
| 577 |
+
def build(self, **kwargs):
|
| 578 |
+
cfg = OmegaConf.create(kwargs)
|
| 579 |
+
|
| 580 |
+
return self.from_config(cfg)
|
| 581 |
+
|
| 582 |
+
def get_cache_path(rel_path):
|
| 583 |
+
return os.path.expanduser(os.path.join(registry.get_path("cache_root"), rel_path))
|
| 584 |
+
|
| 585 |
+
|
| 586 |
+
class BaseDatasetBuilder:
|
| 587 |
+
train_dataset_cls, eval_dataset_cls = None, None
|
| 588 |
+
|
| 589 |
+
def __init__(self, cfg=None):
|
| 590 |
+
super().__init__()
|
| 591 |
+
|
| 592 |
+
if cfg is None:
|
| 593 |
+
# help to create datasets from default config.
|
| 594 |
+
self.config = load_dataset_config(self.default_config_path())
|
| 595 |
+
elif isinstance(cfg, str):
|
| 596 |
+
self.config = load_dataset_config(cfg)
|
| 597 |
+
else:
|
| 598 |
+
# when called from task.build_dataset()
|
| 599 |
+
self.config = cfg
|
| 600 |
+
|
| 601 |
+
self.data_type = self.config.data_type
|
| 602 |
+
|
| 603 |
+
self.vis_processors = {"train": BaseProcessor(), "eval": BaseProcessor()}
|
| 604 |
+
self.text_processors = {"train": BaseProcessor(), "eval": BaseProcessor()}
|
| 605 |
+
|
| 606 |
+
def build_datasets(self):
|
| 607 |
+
# download, split, etc...
|
| 608 |
+
# only called on 1 GPU/TPU in distributed
|
| 609 |
+
|
| 610 |
+
if is_main_process():
|
| 611 |
+
self._download_data()
|
| 612 |
+
|
| 613 |
+
if is_dist_avail_and_initialized():
|
| 614 |
+
dist.barrier()
|
| 615 |
+
|
| 616 |
+
# at this point, all the annotations and image/videos should be all downloaded to the specified locations.
|
| 617 |
+
logging.info("Building datasets...")
|
| 618 |
+
datasets = self.build() # dataset['train'/'val'/'test']
|
| 619 |
+
|
| 620 |
+
return datasets
|
| 621 |
+
|
| 622 |
+
def build_processors(self):
|
| 623 |
+
vis_proc_cfg = self.config.get("vis_processor")
|
| 624 |
+
txt_proc_cfg = self.config.get("text_processor")
|
| 625 |
+
|
| 626 |
+
if vis_proc_cfg is not None:
|
| 627 |
+
vis_train_cfg = vis_proc_cfg.get("train")
|
| 628 |
+
vis_eval_cfg = vis_proc_cfg.get("eval")
|
| 629 |
+
|
| 630 |
+
self.vis_processors["train"] = self._build_proc_from_cfg(vis_train_cfg)
|
| 631 |
+
self.vis_processors["eval"] = self._build_proc_from_cfg(vis_eval_cfg)
|
| 632 |
+
|
| 633 |
+
if txt_proc_cfg is not None:
|
| 634 |
+
txt_train_cfg = txt_proc_cfg.get("train")
|
| 635 |
+
txt_eval_cfg = txt_proc_cfg.get("eval")
|
| 636 |
+
|
| 637 |
+
self.text_processors["train"] = self._build_proc_from_cfg(txt_train_cfg)
|
| 638 |
+
self.text_processors["eval"] = self._build_proc_from_cfg(txt_eval_cfg)
|
| 639 |
+
|
| 640 |
+
@staticmethod
|
| 641 |
+
def _build_proc_from_cfg(cfg):
|
| 642 |
+
return (
|
| 643 |
+
registry.get_processor_class(cfg.name).from_config(cfg)
|
| 644 |
+
if cfg is not None
|
| 645 |
+
else None
|
| 646 |
+
)
|
| 647 |
+
|
| 648 |
+
@classmethod
|
| 649 |
+
def default_config_path(cls, type="default"):
|
| 650 |
+
return get_abs_path(cls.DATASET_CONFIG_DICT[type])
|
| 651 |
+
|
| 652 |
+
def _download_data(self):
|
| 653 |
+
self._download_ann()
|
| 654 |
+
self._download_vis()
|
| 655 |
+
|
| 656 |
+
def _download_ann(self):
|
| 657 |
+
"""
|
| 658 |
+
Download annotation files if necessary.
|
| 659 |
+
All the vision-language datasets should have annotations of unified format.
|
| 660 |
+
|
| 661 |
+
storage_path can be:
|
| 662 |
+
(1) relative/absolute: will be prefixed with env.cache_root to make full path if relative.
|
| 663 |
+
(2) basename/dirname: will be suffixed with base name of URL if dirname is provided.
|
| 664 |
+
|
| 665 |
+
Local annotation paths should be relative.
|
| 666 |
+
"""
|
| 667 |
+
anns = self.config.build_info.annotations
|
| 668 |
+
|
| 669 |
+
splits = anns.keys()
|
| 670 |
+
|
| 671 |
+
cache_root = registry.get_path("cache_root")
|
| 672 |
+
|
| 673 |
+
for split in splits:
|
| 674 |
+
info = anns[split]
|
| 675 |
+
|
| 676 |
+
urls, storage_paths = info.get("url", None), info.storage
|
| 677 |
+
|
| 678 |
+
if isinstance(urls, str):
|
| 679 |
+
urls = [urls]
|
| 680 |
+
if isinstance(storage_paths, str):
|
| 681 |
+
storage_paths = [storage_paths]
|
| 682 |
+
|
| 683 |
+
assert len(urls) == len(storage_paths)
|
| 684 |
+
|
| 685 |
+
for url_or_filename, storage_path in zip(urls, storage_paths):
|
| 686 |
+
# if storage_path is relative, make it full by prefixing with cache_root.
|
| 687 |
+
if not os.path.isabs(storage_path):
|
| 688 |
+
storage_path = os.path.join(cache_root, storage_path)
|
| 689 |
+
|
| 690 |
+
dirname = os.path.dirname(storage_path)
|
| 691 |
+
if not os.path.exists(dirname):
|
| 692 |
+
os.makedirs(dirname)
|
| 693 |
+
|
| 694 |
+
if os.path.isfile(url_or_filename):
|
| 695 |
+
src, dst = url_or_filename, storage_path
|
| 696 |
+
if not os.path.exists(dst):
|
| 697 |
+
shutil.copyfile(src=src, dst=dst)
|
| 698 |
+
else:
|
| 699 |
+
logging.info("Using existing file {}.".format(dst))
|
| 700 |
+
else:
|
| 701 |
+
if os.path.isdir(storage_path):
|
| 702 |
+
# if only dirname is provided, suffix with basename of URL.
|
| 703 |
+
raise ValueError(
|
| 704 |
+
"Expecting storage_path to be a file path, got directory {}".format(
|
| 705 |
+
storage_path
|
| 706 |
+
)
|
| 707 |
+
)
|
| 708 |
+
else:
|
| 709 |
+
filename = os.path.basename(storage_path)
|
| 710 |
+
|
| 711 |
+
download_url(url=url_or_filename, root=dirname, filename=filename)
|
| 712 |
+
|
| 713 |
+
def _download_vis(self):
|
| 714 |
+
|
| 715 |
+
storage_path = self.config.build_info.get(self.data_type).storage
|
| 716 |
+
storage_path = get_cache_path(storage_path)
|
| 717 |
+
|
| 718 |
+
if not os.path.exists(storage_path):
|
| 719 |
+
warnings.warn(
|
| 720 |
+
f"""
|
| 721 |
+
The specified path {storage_path} for visual inputs does not exist.
|
| 722 |
+
Please provide a correct path to the visual inputs or
|
| 723 |
+
refer to datasets/download_scripts/README.md for downloading instructions.
|
| 724 |
+
"""
|
| 725 |
+
)
|
| 726 |
+
|
| 727 |
+
def build(self):
|
| 728 |
+
"""
|
| 729 |
+
Create by split datasets inheriting torch.utils.data.Datasets.
|
| 730 |
+
|
| 731 |
+
# build() can be dataset-specific. Overwrite to customize.
|
| 732 |
+
"""
|
| 733 |
+
self.build_processors()
|
| 734 |
+
|
| 735 |
+
build_info = self.config.build_info
|
| 736 |
+
|
| 737 |
+
ann_info = build_info.annotations
|
| 738 |
+
vis_info = build_info.get(self.data_type)
|
| 739 |
+
|
| 740 |
+
datasets = dict()
|
| 741 |
+
for split in ann_info.keys():
|
| 742 |
+
if split not in ["train", "val", "test"]:
|
| 743 |
+
continue
|
| 744 |
+
|
| 745 |
+
is_train = split == "train"
|
| 746 |
+
|
| 747 |
+
# processors
|
| 748 |
+
vis_processor = (
|
| 749 |
+
self.vis_processors["train"]
|
| 750 |
+
if is_train
|
| 751 |
+
else self.vis_processors["eval"]
|
| 752 |
+
)
|
| 753 |
+
text_processor = (
|
| 754 |
+
self.text_processors["train"]
|
| 755 |
+
if is_train
|
| 756 |
+
else self.text_processors["eval"]
|
| 757 |
+
)
|
| 758 |
+
|
| 759 |
+
# annotation path
|
| 760 |
+
ann_paths = ann_info.get(split).storage
|
| 761 |
+
if isinstance(ann_paths, str):
|
| 762 |
+
ann_paths = [ann_paths]
|
| 763 |
+
|
| 764 |
+
abs_ann_paths = []
|
| 765 |
+
for ann_path in ann_paths:
|
| 766 |
+
if not os.path.isabs(ann_path):
|
| 767 |
+
ann_path = get_cache_path(ann_path)
|
| 768 |
+
abs_ann_paths.append(ann_path)
|
| 769 |
+
ann_paths = abs_ann_paths
|
| 770 |
+
|
| 771 |
+
# visual data storage path
|
| 772 |
+
vis_path = os.path.join(vis_info.storage, split)
|
| 773 |
+
|
| 774 |
+
if not os.path.isabs(vis_path):
|
| 775 |
+
# vis_path = os.path.join(utils.get_cache_path(), vis_path)
|
| 776 |
+
vis_path = get_cache_path(vis_path)
|
| 777 |
+
|
| 778 |
+
if not os.path.exists(vis_path):
|
| 779 |
+
warnings.warn("storage path {} does not exist.".format(vis_path))
|
| 780 |
+
|
| 781 |
+
# create datasets
|
| 782 |
+
dataset_cls = self.train_dataset_cls if is_train else self.eval_dataset_cls
|
| 783 |
+
datasets[split] = dataset_cls(
|
| 784 |
+
vis_processor=vis_processor,
|
| 785 |
+
text_processor=text_processor,
|
| 786 |
+
ann_paths=ann_paths,
|
| 787 |
+
vis_root=vis_path,
|
| 788 |
+
)
|
| 789 |
+
|
| 790 |
+
return datasets
|
| 791 |
+
|
| 792 |
+
|
| 793 |
+
|
| 794 |
+
|
| 795 |
+
class Registry:
|
| 796 |
+
mapping = {
|
| 797 |
+
"builder_name_mapping": {},
|
| 798 |
+
"task_name_mapping": {},
|
| 799 |
+
"processor_name_mapping": {},
|
| 800 |
+
"model_name_mapping": {},
|
| 801 |
+
"lr_scheduler_name_mapping": {},
|
| 802 |
+
"runner_name_mapping": {},
|
| 803 |
+
"state": {},
|
| 804 |
+
"paths": {},
|
| 805 |
+
}
|
| 806 |
+
|
| 807 |
+
@classmethod
|
| 808 |
+
def register_builder(cls, name):
|
| 809 |
+
r"""Register a dataset builder to registry with key 'name'
|
| 810 |
+
|
| 811 |
+
Args:
|
| 812 |
+
name: Key with which the builder will be registered.
|
| 813 |
+
|
| 814 |
+
Usage:
|
| 815 |
+
|
| 816 |
+
# from lavi.common.registry import registry
|
| 817 |
+
# from lavi.datasets.base_dataset_builder import BaseDatasetBuilder
|
| 818 |
+
"""
|
| 819 |
+
|
| 820 |
+
def wrap(builder_cls):
|
| 821 |
+
# from musilingo.datasets.builders.base_dataset_builder import BaseDatasetBuilder
|
| 822 |
+
|
| 823 |
+
assert issubclass(
|
| 824 |
+
builder_cls, BaseDatasetBuilder
|
| 825 |
+
), "All builders must inherit BaseDatasetBuilder class, found {}".format(
|
| 826 |
+
builder_cls
|
| 827 |
+
)
|
| 828 |
+
if name in cls.mapping["builder_name_mapping"]:
|
| 829 |
+
raise KeyError(
|
| 830 |
+
"Name '{}' already registered for {}.".format(
|
| 831 |
+
name, cls.mapping["builder_name_mapping"][name]
|
| 832 |
+
)
|
| 833 |
+
)
|
| 834 |
+
cls.mapping["builder_name_mapping"][name] = builder_cls
|
| 835 |
+
return builder_cls
|
| 836 |
+
|
| 837 |
+
return wrap
|
| 838 |
+
|
| 839 |
+
@classmethod
|
| 840 |
+
def register_task(cls, name):
|
| 841 |
+
r"""Register a task to registry with key 'name'
|
| 842 |
+
|
| 843 |
+
Args:
|
| 844 |
+
name: Key with which the task will be registered.
|
| 845 |
+
|
| 846 |
+
Usage:
|
| 847 |
+
|
| 848 |
+
# from lavi.common.registry import registry
|
| 849 |
+
"""
|
| 850 |
+
|
| 851 |
+
def wrap(task_cls):
|
| 852 |
+
# from musilingo.tasks.base_task import BaseTask
|
| 853 |
+
|
| 854 |
+
assert issubclass(
|
| 855 |
+
task_cls, BaseTask
|
| 856 |
+
), "All tasks must inherit BaseTask class"
|
| 857 |
+
if name in cls.mapping["task_name_mapping"]:
|
| 858 |
+
raise KeyError(
|
| 859 |
+
"Name '{}' already registered for {}.".format(
|
| 860 |
+
name, cls.mapping["task_name_mapping"][name]
|
| 861 |
+
)
|
| 862 |
+
)
|
| 863 |
+
cls.mapping["task_name_mapping"][name] = task_cls
|
| 864 |
+
return task_cls
|
| 865 |
+
|
| 866 |
+
return wrap
|
| 867 |
+
|
| 868 |
+
@classmethod
|
| 869 |
+
def register_model(cls, name):
|
| 870 |
+
r"""Register a task to registry with key 'name'
|
| 871 |
+
|
| 872 |
+
Args:
|
| 873 |
+
name: Key with which the task will be registered.
|
| 874 |
+
|
| 875 |
+
Usage:
|
| 876 |
+
|
| 877 |
+
# from lavi.common.registry import registry
|
| 878 |
+
"""
|
| 879 |
+
|
| 880 |
+
def wrap(model_cls):
|
| 881 |
+
|
| 882 |
+
assert issubclass(
|
| 883 |
+
model_cls, BaseModel
|
| 884 |
+
), "All models must inherit BaseModel class"
|
| 885 |
+
if name in cls.mapping["model_name_mapping"]:
|
| 886 |
+
raise KeyError(
|
| 887 |
+
"Name '{}' already registered for {}.".format(
|
| 888 |
+
name, cls.mapping["model_name_mapping"][name]
|
| 889 |
+
)
|
| 890 |
+
)
|
| 891 |
+
cls.mapping["model_name_mapping"][name] = model_cls
|
| 892 |
+
return model_cls
|
| 893 |
+
|
| 894 |
+
return wrap
|
| 895 |
+
|
| 896 |
+
@classmethod
|
| 897 |
+
def register_processor(cls, name):
|
| 898 |
+
r"""Register a processor to registry with key 'name'
|
| 899 |
+
|
| 900 |
+
Args:
|
| 901 |
+
name: Key with which the task will be registered.
|
| 902 |
+
|
| 903 |
+
Usage:
|
| 904 |
+
|
| 905 |
+
# from lavi.common.registry import registry
|
| 906 |
+
"""
|
| 907 |
+
|
| 908 |
+
def wrap(processor_cls):
|
| 909 |
+
# from musilingo.processors import BaseProcessor
|
| 910 |
+
|
| 911 |
+
assert issubclass(
|
| 912 |
+
processor_cls, BaseProcessor
|
| 913 |
+
), "All processors must inherit BaseProcessor class"
|
| 914 |
+
if name in cls.mapping["processor_name_mapping"]:
|
| 915 |
+
raise KeyError(
|
| 916 |
+
"Name '{}' already registered for {}.".format(
|
| 917 |
+
name, cls.mapping["processor_name_mapping"][name]
|
| 918 |
+
)
|
| 919 |
+
)
|
| 920 |
+
cls.mapping["processor_name_mapping"][name] = processor_cls
|
| 921 |
+
return processor_cls
|
| 922 |
+
|
| 923 |
+
return wrap
|
| 924 |
+
|
| 925 |
+
@classmethod
|
| 926 |
+
def register_lr_scheduler(cls, name):
|
| 927 |
+
r"""Register a model to registry with key 'name'
|
| 928 |
+
|
| 929 |
+
Args:
|
| 930 |
+
name: Key with which the task will be registered.
|
| 931 |
+
|
| 932 |
+
Usage:
|
| 933 |
+
|
| 934 |
+
# from minigpt4.common.registry import registry
|
| 935 |
+
"""
|
| 936 |
+
|
| 937 |
+
def wrap(lr_sched_cls):
|
| 938 |
+
if name in cls.mapping["lr_scheduler_name_mapping"]:
|
| 939 |
+
raise KeyError(
|
| 940 |
+
"Name '{}' already registered for {}.".format(
|
| 941 |
+
name, cls.mapping["lr_scheduler_name_mapping"][name]
|
| 942 |
+
)
|
| 943 |
+
)
|
| 944 |
+
cls.mapping["lr_scheduler_name_mapping"][name] = lr_sched_cls
|
| 945 |
+
return lr_sched_cls
|
| 946 |
+
|
| 947 |
+
return wrap
|
| 948 |
+
|
| 949 |
+
@classmethod
|
| 950 |
+
def register_runner(cls, name):
|
| 951 |
+
r"""Register a model to registry with key 'name'
|
| 952 |
+
|
| 953 |
+
Args:
|
| 954 |
+
name: Key with which the task will be registered.
|
| 955 |
+
|
| 956 |
+
Usage:
|
| 957 |
+
|
| 958 |
+
# from minigpt4.common.registry import registry
|
| 959 |
+
"""
|
| 960 |
+
|
| 961 |
+
def wrap(runner_cls):
|
| 962 |
+
if name in cls.mapping["runner_name_mapping"]:
|
| 963 |
+
raise KeyError(
|
| 964 |
+
"Name '{}' already registered for {}.".format(
|
| 965 |
+
name, cls.mapping["runner_name_mapping"][name]
|
| 966 |
+
)
|
| 967 |
+
)
|
| 968 |
+
cls.mapping["runner_name_mapping"][name] = runner_cls
|
| 969 |
+
return runner_cls
|
| 970 |
+
|
| 971 |
+
return wrap
|
| 972 |
+
|
| 973 |
+
@classmethod
|
| 974 |
+
def register_path(cls, name, path):
|
| 975 |
+
r"""Register a path to registry with key 'name'
|
| 976 |
+
|
| 977 |
+
Args:
|
| 978 |
+
name: Key with which the path will be registered.
|
| 979 |
+
|
| 980 |
+
Usage:
|
| 981 |
+
|
| 982 |
+
# from minigpt4.common.registry import registry
|
| 983 |
+
"""
|
| 984 |
+
assert isinstance(path, str), "All path must be str."
|
| 985 |
+
if name in cls.mapping["paths"]:
|
| 986 |
+
raise KeyError("Name '{}' already registered.".format(name))
|
| 987 |
+
cls.mapping["paths"][name] = path
|
| 988 |
+
|
| 989 |
+
@classmethod
|
| 990 |
+
def register(cls, name, obj):
|
| 991 |
+
r"""Register an item to registry with key 'name'
|
| 992 |
+
|
| 993 |
+
Args:
|
| 994 |
+
name: Key with which the item will be registered.
|
| 995 |
+
|
| 996 |
+
Usage::
|
| 997 |
+
|
| 998 |
+
# from minigpt4.common.registry import registry
|
| 999 |
+
|
| 1000 |
+
registry.register("config", {})
|
| 1001 |
+
"""
|
| 1002 |
+
path = name.split(".")
|
| 1003 |
+
current = cls.mapping["state"]
|
| 1004 |
+
|
| 1005 |
+
for part in path[:-1]:
|
| 1006 |
+
if part not in current:
|
| 1007 |
+
current[part] = {}
|
| 1008 |
+
current = current[part]
|
| 1009 |
+
|
| 1010 |
+
current[path[-1]] = obj
|
| 1011 |
+
|
| 1012 |
+
# @classmethod
|
| 1013 |
+
# def get_trainer_class(cls, name):
|
| 1014 |
+
# return cls.mapping["trainer_name_mapping"].get(name, None)
|
| 1015 |
+
|
| 1016 |
+
@classmethod
|
| 1017 |
+
def get_builder_class(cls, name):
|
| 1018 |
+
return cls.mapping["builder_name_mapping"].get(name, None)
|
| 1019 |
+
|
| 1020 |
+
@classmethod
|
| 1021 |
+
def get_model_class(cls, name):
|
| 1022 |
+
return cls.mapping["model_name_mapping"].get(name, None)
|
| 1023 |
+
|
| 1024 |
+
@classmethod
|
| 1025 |
+
def get_task_class(cls, name):
|
| 1026 |
+
return cls.mapping["task_name_mapping"].get(name, None)
|
| 1027 |
+
|
| 1028 |
+
@classmethod
|
| 1029 |
+
def get_processor_class(cls, name):
|
| 1030 |
+
return cls.mapping["processor_name_mapping"].get(name, None)
|
| 1031 |
+
|
| 1032 |
+
@classmethod
|
| 1033 |
+
def get_lr_scheduler_class(cls, name):
|
| 1034 |
+
return cls.mapping["lr_scheduler_name_mapping"].get(name, None)
|
| 1035 |
+
|
| 1036 |
+
@classmethod
|
| 1037 |
+
def get_runner_class(cls, name):
|
| 1038 |
+
return cls.mapping["runner_name_mapping"].get(name, None)
|
| 1039 |
+
|
| 1040 |
+
@classmethod
|
| 1041 |
+
def list_runners(cls):
|
| 1042 |
+
return sorted(cls.mapping["runner_name_mapping"].keys())
|
| 1043 |
+
|
| 1044 |
+
@classmethod
|
| 1045 |
+
def list_models(cls):
|
| 1046 |
+
return sorted(cls.mapping["model_name_mapping"].keys())
|
| 1047 |
+
|
| 1048 |
+
@classmethod
|
| 1049 |
+
def list_tasks(cls):
|
| 1050 |
+
return sorted(cls.mapping["task_name_mapping"].keys())
|
| 1051 |
+
|
| 1052 |
+
@classmethod
|
| 1053 |
+
def list_processors(cls):
|
| 1054 |
+
return sorted(cls.mapping["processor_name_mapping"].keys())
|
| 1055 |
+
|
| 1056 |
+
@classmethod
|
| 1057 |
+
def list_lr_schedulers(cls):
|
| 1058 |
+
return sorted(cls.mapping["lr_scheduler_name_mapping"].keys())
|
| 1059 |
+
|
| 1060 |
+
@classmethod
|
| 1061 |
+
def list_datasets(cls):
|
| 1062 |
+
return sorted(cls.mapping["builder_name_mapping"].keys())
|
| 1063 |
+
|
| 1064 |
+
@classmethod
|
| 1065 |
+
def get_path(cls, name):
|
| 1066 |
+
return cls.mapping["paths"].get(name, None)
|
| 1067 |
+
|
| 1068 |
+
@classmethod
|
| 1069 |
+
def get(cls, name, default=None, no_warning=False):
|
| 1070 |
+
r"""Get an item from registry with key 'name'
|
| 1071 |
+
|
| 1072 |
+
Args:
|
| 1073 |
+
name (string): Key whose value needs to be retrieved.
|
| 1074 |
+
default: If passed and key is not in registry, default value will
|
| 1075 |
+
be returned with a warning. Default: None
|
| 1076 |
+
no_warning (bool): If passed as True, warning when key doesn't exist
|
| 1077 |
+
will not be generated. Useful for MMF's
|
| 1078 |
+
internal operations. Default: False
|
| 1079 |
+
"""
|
| 1080 |
+
original_name = name
|
| 1081 |
+
name = name.split(".")
|
| 1082 |
+
value = cls.mapping["state"]
|
| 1083 |
+
for subname in name:
|
| 1084 |
+
value = value.get(subname, default)
|
| 1085 |
+
if value is default:
|
| 1086 |
+
break
|
| 1087 |
+
|
| 1088 |
+
if (
|
| 1089 |
+
"writer" in cls.mapping["state"]
|
| 1090 |
+
and value == default
|
| 1091 |
+
and no_warning is False
|
| 1092 |
+
):
|
| 1093 |
+
cls.mapping["state"]["writer"].warning(
|
| 1094 |
+
"Key {} is not present in registry, returning default value "
|
| 1095 |
+
"of {}".format(original_name, default)
|
| 1096 |
+
)
|
| 1097 |
+
return value
|
| 1098 |
+
|
| 1099 |
+
@classmethod
|
| 1100 |
+
def unregister(cls, name):
|
| 1101 |
+
r"""Remove an item from registry with key 'name'
|
| 1102 |
+
|
| 1103 |
+
Args:
|
| 1104 |
+
name: Key which needs to be removed.
|
| 1105 |
+
Usage::
|
| 1106 |
+
|
| 1107 |
+
# from mmf.common.registry import registry
|
| 1108 |
+
|
| 1109 |
+
config = registry.unregister("config")
|
| 1110 |
+
"""
|
| 1111 |
+
return cls.mapping["state"].pop(name, None)
|
| 1112 |
+
|
| 1113 |
+
|
| 1114 |
+
registry = Registry()
|
| 1115 |
+
|
| 1116 |
+
|
| 1117 |
+
def get_abs_path(rel_path):
|
| 1118 |
+
return os.path.join(registry.get_path("library_root"), rel_path)
|
| 1119 |
+
|
| 1120 |
+
def is_url(input_url):
|
| 1121 |
+
"""
|
| 1122 |
+
Check if an input string is a url. look for http(s):// and ignoring the case
|
| 1123 |
+
"""
|
| 1124 |
+
is_url = re.match(r"^(?:http)s?://", input_url, re.IGNORECASE) is not None
|
| 1125 |
+
return is_url
|
| 1126 |
+
|
| 1127 |
+
|
| 1128 |
+
def download_cached_file(url, check_hash=True, progress=False):
|
| 1129 |
+
"""
|
| 1130 |
+
Download a file from a URL and cache it locally. If the file already exists, it is not downloaded again.
|
| 1131 |
+
If distributed, only the main process downloads the file, and the other processes wait for the file to be downloaded.
|
| 1132 |
+
"""
|
| 1133 |
+
|
| 1134 |
+
def get_cached_file_path():
|
| 1135 |
+
# a hack to sync the file path across processes
|
| 1136 |
+
parts = torch.hub.urlparse(url)
|
| 1137 |
+
filename = os.path.basename(parts.path)
|
| 1138 |
+
cached_file = os.path.join(timm_hub.get_cache_dir(), filename)
|
| 1139 |
+
|
| 1140 |
+
return cached_file
|
| 1141 |
+
|
| 1142 |
+
if is_main_process():
|
| 1143 |
+
timm_hub.download_cached_file(url, check_hash, progress)
|
| 1144 |
+
|
| 1145 |
+
if is_dist_avail_and_initialized():
|
| 1146 |
+
dist.barrier()
|
| 1147 |
+
|
| 1148 |
+
return get_cached_file_path()
|
| 1149 |
+
|
| 1150 |
+
def is_dist_avail_and_initialized():
|
| 1151 |
+
if not dist.is_available():
|
| 1152 |
+
return False
|
| 1153 |
+
if not dist.is_initialized():
|
| 1154 |
+
return False
|
| 1155 |
+
return True
|
| 1156 |
+
|
| 1157 |
+
def is_main_process():
|
| 1158 |
+
return get_rank() == 0
|
| 1159 |
+
|
| 1160 |
+
def get_rank():
|
| 1161 |
+
if not is_dist_avail_and_initialized():
|
| 1162 |
+
return 0
|
| 1163 |
+
return dist.get_rank()
|
| 1164 |
+
|
| 1165 |
+
class BaseModel(nn.Module):
|
| 1166 |
+
"""Base class for models."""
|
| 1167 |
+
|
| 1168 |
+
def __init__(self):
|
| 1169 |
+
super().__init__()
|
| 1170 |
+
|
| 1171 |
+
@property
|
| 1172 |
+
def device(self):
|
| 1173 |
+
return list(self.parameters())[0].device
|
| 1174 |
+
|
| 1175 |
+
def load_checkpoint(self, url_or_filename):
|
| 1176 |
+
"""
|
| 1177 |
+
Load from a finetuned checkpoint.
|
| 1178 |
+
|
| 1179 |
+
This should expect no mismatch in the model keys and the checkpoint keys.
|
| 1180 |
+
"""
|
| 1181 |
+
|
| 1182 |
+
if is_url(url_or_filename):
|
| 1183 |
+
cached_file = download_cached_file(
|
| 1184 |
+
url_or_filename, check_hash=False, progress=True
|
| 1185 |
+
)
|
| 1186 |
+
checkpoint = torch.load(cached_file, map_location="cpu")
|
| 1187 |
+
elif os.path.isfile(url_or_filename):
|
| 1188 |
+
checkpoint = torch.load(url_or_filename, map_location="cpu")
|
| 1189 |
+
else:
|
| 1190 |
+
raise RuntimeError("checkpoint url or path is invalid")
|
| 1191 |
+
|
| 1192 |
+
if "model" in checkpoint.keys():
|
| 1193 |
+
state_dict = checkpoint["model"]
|
| 1194 |
+
else:
|
| 1195 |
+
state_dict = checkpoint
|
| 1196 |
+
|
| 1197 |
+
msg = self.load_state_dict(state_dict, strict=False)
|
| 1198 |
+
|
| 1199 |
+
logging.info("Missing keys {}".format(msg.missing_keys))
|
| 1200 |
+
logging.info("load checkpoint from %s" % url_or_filename)
|
| 1201 |
+
|
| 1202 |
+
return msg
|
| 1203 |
+
|
| 1204 |
+
@classmethod
|
| 1205 |
+
def from_pretrained(cls, model_type):
|
| 1206 |
+
"""
|
| 1207 |
+
Build a pretrained model from default configuration file, specified by model_type.
|
| 1208 |
+
|
| 1209 |
+
Args:
|
| 1210 |
+
- model_type (str): model type, specifying architecture and checkpoints.
|
| 1211 |
+
|
| 1212 |
+
Returns:
|
| 1213 |
+
- model (nn.Module): pretrained or finetuned model, depending on the configuration.
|
| 1214 |
+
"""
|
| 1215 |
+
model_cfg = OmegaConf.load(cls.default_config_path(model_type)).model
|
| 1216 |
+
model = cls.from_config(model_cfg)
|
| 1217 |
+
|
| 1218 |
+
return model
|
| 1219 |
+
|
| 1220 |
+
@classmethod
|
| 1221 |
+
def default_config_path(cls, model_type):
|
| 1222 |
+
assert (
|
| 1223 |
+
model_type in cls.PRETRAINED_MODEL_CONFIG_DICT
|
| 1224 |
+
), "Unknown model type {}".format(model_type)
|
| 1225 |
+
return get_abs_path(cls.PRETRAINED_MODEL_CONFIG_DICT[model_type])
|
| 1226 |
+
|
| 1227 |
+
def load_checkpoint_from_config(self, cfg, **kwargs):
|
| 1228 |
+
"""
|
| 1229 |
+
Load checkpoint as specified in the config file.
|
| 1230 |
+
|
| 1231 |
+
If load_finetuned is True, load the finetuned model; otherwise, load the pretrained model.
|
| 1232 |
+
When loading the pretrained model, each task-specific architecture may define their
|
| 1233 |
+
own load_from_pretrained() method.
|
| 1234 |
+
"""
|
| 1235 |
+
load_finetuned = cfg.get("load_finetuned", True)
|
| 1236 |
+
if load_finetuned:
|
| 1237 |
+
finetune_path = cfg.get("finetuned", None)
|
| 1238 |
+
assert (
|
| 1239 |
+
finetune_path is not None
|
| 1240 |
+
), "Found load_finetuned is True, but finetune_path is None."
|
| 1241 |
+
self.load_checkpoint(url_or_filename=finetune_path)
|
| 1242 |
+
else:
|
| 1243 |
+
# load pre-trained weights
|
| 1244 |
+
pretrain_path = cfg.get("pretrained", None)
|
| 1245 |
+
assert "Found load_finetuned is False, but pretrain_path is None."
|
| 1246 |
+
self.load_from_pretrained(url_or_filename=pretrain_path, **kwargs)
|
| 1247 |
+
|
| 1248 |
+
def before_evaluation(self, **kwargs):
|
| 1249 |
+
pass
|
| 1250 |
+
|
| 1251 |
+
def show_n_params(self, return_str=True):
|
| 1252 |
+
tot = 0
|
| 1253 |
+
for p in self.parameters():
|
| 1254 |
+
w = 1
|
| 1255 |
+
for x in p.shape:
|
| 1256 |
+
w *= x
|
| 1257 |
+
tot += w
|
| 1258 |
+
if return_str:
|
| 1259 |
+
if tot >= 1e6:
|
| 1260 |
+
return "{:.1f}M".format(tot / 1e6)
|
| 1261 |
+
else:
|
| 1262 |
+
return "{:.1f}K".format(tot / 1e3)
|
| 1263 |
+
else:
|
| 1264 |
+
return tot
|
| 1265 |
+
|
| 1266 |
+
LLAMA_INPUTS_DOCSTRING = r"""
|
| 1267 |
+
Args:
|
| 1268 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
| 1269 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
| 1270 |
+
it.
|
| 1271 |
+
|
| 1272 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
| 1273 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
| 1274 |
+
|
| 1275 |
+
[What are input IDs?](../glossary#input-ids)
|
| 1276 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 1277 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
| 1278 |
+
|
| 1279 |
+
- 1 for tokens that are **not masked**,
|
| 1280 |
+
- 0 for tokens that are **masked**.
|
| 1281 |
+
|
| 1282 |
+
[What are attention masks?](../glossary#attention-mask)
|
| 1283 |
+
|
| 1284 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
| 1285 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
| 1286 |
+
|
| 1287 |
+
If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
|
| 1288 |
+
`past_key_values`).
|
| 1289 |
+
|
| 1290 |
+
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
|
| 1291 |
+
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
|
| 1292 |
+
information on the default strategy.
|
| 1293 |
+
|
| 1294 |
+
- 1 indicates the head is **not masked**,
|
| 1295 |
+
- 0 indicates the head is **masked**.
|
| 1296 |
+
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 1297 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
| 1298 |
+
config.n_positions - 1]`.
|
| 1299 |
+
|
| 1300 |
+
[What are position IDs?](../glossary#position-ids)
|
| 1301 |
+
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
|
| 1302 |
+
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
|
| 1303 |
+
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
|
| 1304 |
+
`(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
|
| 1305 |
+
|
| 1306 |
+
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
|
| 1307 |
+
blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
|
| 1308 |
+
|
| 1309 |
+
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
|
| 1310 |
+
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
|
| 1311 |
+
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
|
| 1312 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
| 1313 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
| 1314 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
| 1315 |
+
model's internal embedding lookup matrix.
|
| 1316 |
+
use_cache (`bool`, *optional*):
|
| 1317 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
| 1318 |
+
`past_key_values`).
|
| 1319 |
+
output_attentions (`bool`, *optional*):
|
| 1320 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
| 1321 |
+
tensors for more detail.
|
| 1322 |
+
output_hidden_states (`bool`, *optional*):
|
| 1323 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
| 1324 |
+
more detail.
|
| 1325 |
+
return_dict (`bool`, *optional*):
|
| 1326 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
| 1327 |
+
"""
|
| 1328 |
+
|
| 1329 |
+
|
| 1330 |
+
LLAMA_START_DOCSTRING = r"""
|
| 1331 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
| 1332 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
| 1333 |
+
etc.)
|
| 1334 |
+
|
| 1335 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
| 1336 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
| 1337 |
+
and behavior.
|
| 1338 |
+
|
| 1339 |
+
Parameters:
|
| 1340 |
+
config ([`LlamaConfig`]):
|
| 1341 |
+
Model configuration class with all the parameters of the model. Initializing with a config file does not
|
| 1342 |
+
load the weights associated with the model, only the configuration. Check out the
|
| 1343 |
+
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
| 1344 |
+
"""
|
| 1345 |
+
|
| 1346 |
+
|
| 1347 |
+
logger = logging.get_logger(__name__)
|
| 1348 |
+
|
| 1349 |
+
_CONFIG_FOR_DOC = "LlamaConfig"
|
| 1350 |
+
|
| 1351 |
+
|
| 1352 |
+
# Copied from transformers.models.bart.modeling_bart._make_causal_mask
|
| 1353 |
+
def _make_causal_mask(
|
| 1354 |
+
input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0
|
| 1355 |
+
):
|
| 1356 |
+
"""
|
| 1357 |
+
Make causal mask used for bi-directional self-attention.
|
| 1358 |
+
"""
|
| 1359 |
+
bsz, tgt_len = input_ids_shape
|
| 1360 |
+
mask = torch.full((tgt_len, tgt_len), torch.tensor(torch.finfo(dtype).min, device=device), device=device)
|
| 1361 |
+
mask_cond = torch.arange(mask.size(-1), device=device)
|
| 1362 |
+
mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
|
| 1363 |
+
mask = mask.to(dtype)
|
| 1364 |
+
|
| 1365 |
+
if past_key_values_length > 0:
|
| 1366 |
+
mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1)
|
| 1367 |
+
return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length)
|
| 1368 |
+
|
| 1369 |
+
|
| 1370 |
+
# Copied from transformers.models.bart.modeling_bart._expand_mask
|
| 1371 |
+
def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
|
| 1372 |
+
"""
|
| 1373 |
+
Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
|
| 1374 |
+
"""
|
| 1375 |
+
bsz, src_len = mask.size()
|
| 1376 |
+
tgt_len = tgt_len if tgt_len is not None else src_len
|
| 1377 |
+
|
| 1378 |
+
expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
|
| 1379 |
+
|
| 1380 |
+
inverted_mask = 1.0 - expanded_mask
|
| 1381 |
+
|
| 1382 |
+
return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min)
|
| 1383 |
+
|
| 1384 |
+
|
| 1385 |
+
class LlamaRMSNorm(nn.Module):
|
| 1386 |
+
def __init__(self, hidden_size, eps=1e-6):
|
| 1387 |
+
"""
|
| 1388 |
+
LlamaRMSNorm is equivalent to T5LayerNorm
|
| 1389 |
+
"""
|
| 1390 |
+
super().__init__()
|
| 1391 |
+
self.weight = nn.Parameter(torch.ones(hidden_size))
|
| 1392 |
+
self.variance_epsilon = eps
|
| 1393 |
+
|
| 1394 |
+
def forward(self, hidden_states):
|
| 1395 |
+
variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True)
|
| 1396 |
+
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
| 1397 |
+
|
| 1398 |
+
# convert into half-precision if necessary
|
| 1399 |
+
if self.weight.dtype in [torch.float16, torch.bfloat16]:
|
| 1400 |
+
hidden_states = hidden_states.to(self.weight.dtype)
|
| 1401 |
+
|
| 1402 |
+
return self.weight * hidden_states
|
| 1403 |
+
|
| 1404 |
+
|
| 1405 |
+
class LlamaRotaryEmbedding(torch.nn.Module):
|
| 1406 |
+
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
|
| 1407 |
+
super().__init__()
|
| 1408 |
+
inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float().to(device) / dim))
|
| 1409 |
+
self.register_buffer("inv_freq", inv_freq)
|
| 1410 |
+
|
| 1411 |
+
# Build here to make `torch.jit.trace` work.
|
| 1412 |
+
self.max_seq_len_cached = max_position_embeddings
|
| 1413 |
+
t = torch.arange(self.max_seq_len_cached, device=self.inv_freq.device, dtype=self.inv_freq.dtype)
|
| 1414 |
+
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
| 1415 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
| 1416 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
| 1417 |
+
self.register_buffer("cos_cached", emb.cos()[None, None, :, :], persistent=False)
|
| 1418 |
+
self.register_buffer("sin_cached", emb.sin()[None, None, :, :], persistent=False)
|
| 1419 |
+
|
| 1420 |
+
def forward(self, x, seq_len=None):
|
| 1421 |
+
# x: [bs, num_attention_heads, seq_len, head_size]
|
| 1422 |
+
# This `if` block is unlikely to be run after we build sin/cos in `__init__`. Keep the logic here just in case.
|
| 1423 |
+
if seq_len > self.max_seq_len_cached:
|
| 1424 |
+
self.max_seq_len_cached = seq_len
|
| 1425 |
+
t = torch.arange(self.max_seq_len_cached, device=x.device, dtype=self.inv_freq.dtype)
|
| 1426 |
+
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
| 1427 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
| 1428 |
+
emb = torch.cat((freqs, freqs), dim=-1).to(x.device)
|
| 1429 |
+
self.register_buffer("cos_cached", emb.cos()[None, None, :, :], persistent=False)
|
| 1430 |
+
self.register_buffer("sin_cached", emb.sin()[None, None, :, :], persistent=False)
|
| 1431 |
+
return (
|
| 1432 |
+
self.cos_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
|
| 1433 |
+
self.sin_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
|
| 1434 |
+
)
|
| 1435 |
+
|
| 1436 |
+
|
| 1437 |
+
def rotate_half(x):
|
| 1438 |
+
"""Rotates half the hidden dims of the input."""
|
| 1439 |
+
x1 = x[..., : x.shape[-1] // 2]
|
| 1440 |
+
x2 = x[..., x.shape[-1] // 2 :]
|
| 1441 |
+
return torch.cat((-x2, x1), dim=-1)
|
| 1442 |
+
|
| 1443 |
+
|
| 1444 |
+
def apply_rotary_pos_emb(q, k, cos, sin, position_ids):
|
| 1445 |
+
gather_indices = position_ids[:, None, :, None] # [bs, 1, seq_len, 1]
|
| 1446 |
+
gather_indices = gather_indices.repeat(1, cos.shape[1], 1, cos.shape[3])
|
| 1447 |
+
cos = torch.gather(cos.repeat(gather_indices.shape[0], 1, 1, 1), 2, gather_indices)
|
| 1448 |
+
sin = torch.gather(sin.repeat(gather_indices.shape[0], 1, 1, 1), 2, gather_indices)
|
| 1449 |
+
q_embed = (q * cos) + (rotate_half(q) * sin)
|
| 1450 |
+
k_embed = (k * cos) + (rotate_half(k) * sin)
|
| 1451 |
+
return q_embed, k_embed
|
| 1452 |
+
|
| 1453 |
+
|
| 1454 |
+
|
| 1455 |
+
|
| 1456 |
+
class LlamaMLP(nn.Module):
|
| 1457 |
+
def __init__(
|
| 1458 |
+
self,
|
| 1459 |
+
hidden_size: int,
|
| 1460 |
+
intermediate_size: int,
|
| 1461 |
+
hidden_act: str,
|
| 1462 |
+
):
|
| 1463 |
+
super().__init__()
|
| 1464 |
+
self.gate_proj = nn.Linear(hidden_size, intermediate_size, bias=False)
|
| 1465 |
+
self.down_proj = nn.Linear(intermediate_size, hidden_size, bias=False)
|
| 1466 |
+
self.up_proj = nn.Linear(hidden_size, intermediate_size, bias=False)
|
| 1467 |
+
self.act_fn = ACT2FN[hidden_act]
|
| 1468 |
+
|
| 1469 |
+
def forward(self, x):
|
| 1470 |
+
return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
|
| 1471 |
+
|
| 1472 |
+
|
| 1473 |
+
class LlamaAttention(nn.Module):
|
| 1474 |
+
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
| 1475 |
+
|
| 1476 |
+
def __init__(self, config: LlamaConfig):
|
| 1477 |
+
super().__init__()
|
| 1478 |
+
self.config = config
|
| 1479 |
+
self.hidden_size = config.hidden_size
|
| 1480 |
+
self.num_heads = config.num_attention_heads
|
| 1481 |
+
self.head_dim = self.hidden_size // self.num_heads
|
| 1482 |
+
self.max_position_embeddings = config.max_position_embeddings
|
| 1483 |
+
|
| 1484 |
+
if (self.head_dim * self.num_heads) != self.hidden_size:
|
| 1485 |
+
raise ValueError(
|
| 1486 |
+
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
|
| 1487 |
+
f" and `num_heads`: {self.num_heads})."
|
| 1488 |
+
)
|
| 1489 |
+
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
|
| 1490 |
+
self.k_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
|
| 1491 |
+
self.v_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
|
| 1492 |
+
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
|
| 1493 |
+
self.rotary_emb = LlamaRotaryEmbedding(self.head_dim, max_position_embeddings=self.max_position_embeddings)
|
| 1494 |
+
|
| 1495 |
+
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
|
| 1496 |
+
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
|
| 1497 |
+
|
| 1498 |
+
def forward(
|
| 1499 |
+
self,
|
| 1500 |
+
hidden_states: torch.Tensor,
|
| 1501 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 1502 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 1503 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
| 1504 |
+
output_attentions: bool = False,
|
| 1505 |
+
use_cache: bool = False,
|
| 1506 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
| 1507 |
+
bsz, q_len, _ = hidden_states.size()
|
| 1508 |
+
|
| 1509 |
+
query_states = self.q_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
| 1510 |
+
key_states = self.k_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
| 1511 |
+
value_states = self.v_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
| 1512 |
+
|
| 1513 |
+
kv_seq_len = key_states.shape[-2]
|
| 1514 |
+
if past_key_value is not None:
|
| 1515 |
+
kv_seq_len += past_key_value[0].shape[-2]
|
| 1516 |
+
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
| 1517 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
|
| 1518 |
+
# [bsz, nh, t, hd]
|
| 1519 |
+
|
| 1520 |
+
if past_key_value is not None:
|
| 1521 |
+
# reuse k, v, self_attention
|
| 1522 |
+
key_states = torch.cat([past_key_value[0], key_states], dim=2)
|
| 1523 |
+
value_states = torch.cat([past_key_value[1], value_states], dim=2)
|
| 1524 |
+
|
| 1525 |
+
past_key_value = (key_states, value_states) if use_cache else None
|
| 1526 |
+
|
| 1527 |
+
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
|
| 1528 |
+
|
| 1529 |
+
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
|
| 1530 |
+
raise ValueError(
|
| 1531 |
+
f"Attention weights should be of size {(bsz * self.num_heads, q_len, kv_seq_len)}, but is"
|
| 1532 |
+
f" {attn_weights.size()}"
|
| 1533 |
+
)
|
| 1534 |
+
|
| 1535 |
+
if attention_mask is not None:
|
| 1536 |
+
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
|
| 1537 |
+
raise ValueError(
|
| 1538 |
+
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
|
| 1539 |
+
)
|
| 1540 |
+
attn_weights = attn_weights + attention_mask
|
| 1541 |
+
attn_weights = torch.max(attn_weights, torch.tensor(torch.finfo(attn_weights.dtype).min))
|
| 1542 |
+
|
| 1543 |
+
# upcast attention to fp32
|
| 1544 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
|
| 1545 |
+
attn_output = torch.matmul(attn_weights, value_states)
|
| 1546 |
+
|
| 1547 |
+
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
|
| 1548 |
+
raise ValueError(
|
| 1549 |
+
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
|
| 1550 |
+
f" {attn_output.size()}"
|
| 1551 |
+
)
|
| 1552 |
+
|
| 1553 |
+
attn_output = attn_output.transpose(1, 2)
|
| 1554 |
+
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
| 1555 |
+
|
| 1556 |
+
attn_output = self.o_proj(attn_output)
|
| 1557 |
+
|
| 1558 |
+
if not output_attentions:
|
| 1559 |
+
attn_weights = None
|
| 1560 |
+
|
| 1561 |
+
return attn_output, attn_weights, past_key_value
|
| 1562 |
+
|
| 1563 |
+
|
| 1564 |
+
|
| 1565 |
+
class LlamaDecoderLayer(nn.Module):
|
| 1566 |
+
def __init__(self, config: LlamaConfig):
|
| 1567 |
+
super().__init__()
|
| 1568 |
+
self.hidden_size = config.hidden_size
|
| 1569 |
+
self.self_attn = LlamaAttention(config=config)
|
| 1570 |
+
self.mlp = LlamaMLP(
|
| 1571 |
+
hidden_size=self.hidden_size,
|
| 1572 |
+
intermediate_size=config.intermediate_size,
|
| 1573 |
+
hidden_act=config.hidden_act,
|
| 1574 |
+
)
|
| 1575 |
+
self.input_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
| 1576 |
+
self.post_attention_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
| 1577 |
+
|
| 1578 |
+
def forward(
|
| 1579 |
+
self,
|
| 1580 |
+
hidden_states: torch.Tensor,
|
| 1581 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 1582 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 1583 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
| 1584 |
+
output_attentions: Optional[bool] = False,
|
| 1585 |
+
use_cache: Optional[bool] = False,
|
| 1586 |
+
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
| 1587 |
+
"""
|
| 1588 |
+
Args:
|
| 1589 |
+
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
| 1590 |
+
attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
|
| 1591 |
+
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
|
| 1592 |
+
output_attentions (`bool`, *optional*):
|
| 1593 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
| 1594 |
+
returned tensors for more detail.
|
| 1595 |
+
use_cache (`bool`, *optional*):
|
| 1596 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
|
| 1597 |
+
(see `past_key_values`).
|
| 1598 |
+
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
|
| 1599 |
+
"""
|
| 1600 |
+
|
| 1601 |
+
residual = hidden_states
|
| 1602 |
+
|
| 1603 |
+
hidden_states = self.input_layernorm(hidden_states)
|
| 1604 |
+
|
| 1605 |
+
# Self Attention
|
| 1606 |
+
hidden_states, self_attn_weights, present_key_value = self.self_attn(
|
| 1607 |
+
hidden_states=hidden_states,
|
| 1608 |
+
attention_mask=attention_mask,
|
| 1609 |
+
position_ids=position_ids,
|
| 1610 |
+
past_key_value=past_key_value,
|
| 1611 |
+
output_attentions=output_attentions,
|
| 1612 |
+
use_cache=use_cache,
|
| 1613 |
+
)
|
| 1614 |
+
hidden_states = residual + hidden_states
|
| 1615 |
+
|
| 1616 |
+
# Fully Connected
|
| 1617 |
+
residual = hidden_states
|
| 1618 |
+
hidden_states = self.post_attention_layernorm(hidden_states)
|
| 1619 |
+
hidden_states = self.mlp(hidden_states)
|
| 1620 |
+
hidden_states = residual + hidden_states
|
| 1621 |
+
|
| 1622 |
+
outputs = (hidden_states,)
|
| 1623 |
+
|
| 1624 |
+
if output_attentions:
|
| 1625 |
+
outputs += (self_attn_weights,)
|
| 1626 |
+
|
| 1627 |
+
if use_cache:
|
| 1628 |
+
outputs += (present_key_value,)
|
| 1629 |
+
|
| 1630 |
+
return outputs
|
| 1631 |
+
|
| 1632 |
+
|
| 1633 |
+
@add_start_docstrings(
|
| 1634 |
+
"The bare LLaMA Model outputting raw hidden-states without any specific head on top.",
|
| 1635 |
+
LLAMA_START_DOCSTRING,
|
| 1636 |
+
)
|
| 1637 |
+
class LlamaPreTrainedModel(PreTrainedModel):
|
| 1638 |
+
config_class = LlamaConfig
|
| 1639 |
+
base_model_prefix = "model"
|
| 1640 |
+
supports_gradient_checkpointing = True
|
| 1641 |
+
_no_split_modules = ["LlamaDecoderLayer"]
|
| 1642 |
+
_keys_to_ignore_on_load_unexpected = [r"decoder\.version"]
|
| 1643 |
+
|
| 1644 |
+
def _init_weights(self, module):
|
| 1645 |
+
std = self.config.initializer_range
|
| 1646 |
+
if isinstance(module, nn.Linear):
|
| 1647 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
| 1648 |
+
if module.bias is not None:
|
| 1649 |
+
module.bias.data.zero_()
|
| 1650 |
+
elif isinstance(module, nn.Embedding):
|
| 1651 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
| 1652 |
+
if module.padding_idx is not None:
|
| 1653 |
+
module.weight.data[module.padding_idx].zero_()
|
| 1654 |
+
|
| 1655 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
| 1656 |
+
if isinstance(module, LlamaModel):
|
| 1657 |
+
module.gradient_checkpointing = value
|
| 1658 |
+
|
| 1659 |
+
|
| 1660 |
+
@add_start_docstrings(
|
| 1661 |
+
"The bare LLaMA Model outputting raw hidden-states without any specific head on top.",
|
| 1662 |
+
LLAMA_START_DOCSTRING,
|
| 1663 |
+
)
|
| 1664 |
+
class LlamaModel(LlamaPreTrainedModel):
|
| 1665 |
+
"""
|
| 1666 |
+
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`LlamaDecoderLayer`]
|
| 1667 |
+
|
| 1668 |
+
Args:
|
| 1669 |
+
config: LlamaConfig
|
| 1670 |
+
"""
|
| 1671 |
+
|
| 1672 |
+
def __init__(self, config: LlamaConfig):
|
| 1673 |
+
super().__init__(config)
|
| 1674 |
+
self.padding_idx = config.pad_token_id
|
| 1675 |
+
self.vocab_size = config.vocab_size
|
| 1676 |
+
|
| 1677 |
+
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
| 1678 |
+
self.layers = nn.ModuleList([LlamaDecoderLayer(config) for _ in range(config.num_hidden_layers)])
|
| 1679 |
+
self.norm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
| 1680 |
+
|
| 1681 |
+
self.gradient_checkpointing = False
|
| 1682 |
+
# Initialize weights and apply final processing
|
| 1683 |
+
self.post_init()
|
| 1684 |
+
|
| 1685 |
+
def get_input_embeddings(self):
|
| 1686 |
+
return self.embed_tokens
|
| 1687 |
+
|
| 1688 |
+
def set_input_embeddings(self, value):
|
| 1689 |
+
self.embed_tokens = value
|
| 1690 |
+
|
| 1691 |
+
# Copied from transformers.models.bart.modeling_bart.BartDecoder._prepare_decoder_attention_mask
|
| 1692 |
+
def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length):
|
| 1693 |
+
# create causal mask
|
| 1694 |
+
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
| 1695 |
+
combined_attention_mask = None
|
| 1696 |
+
if input_shape[-1] > 1:
|
| 1697 |
+
combined_attention_mask = _make_causal_mask(
|
| 1698 |
+
input_shape,
|
| 1699 |
+
inputs_embeds.dtype,
|
| 1700 |
+
device=inputs_embeds.device,
|
| 1701 |
+
past_key_values_length=past_key_values_length,
|
| 1702 |
+
)
|
| 1703 |
+
|
| 1704 |
+
if attention_mask is not None:
|
| 1705 |
+
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
| 1706 |
+
expanded_attn_mask = _expand_mask(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to(
|
| 1707 |
+
inputs_embeds.device
|
| 1708 |
+
)
|
| 1709 |
+
combined_attention_mask = (
|
| 1710 |
+
expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask
|
| 1711 |
+
)
|
| 1712 |
+
|
| 1713 |
+
return combined_attention_mask
|
| 1714 |
+
|
| 1715 |
+
@add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
|
| 1716 |
+
def forward(
|
| 1717 |
+
self,
|
| 1718 |
+
input_ids: torch.LongTensor = None,
|
| 1719 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 1720 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 1721 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
| 1722 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 1723 |
+
query_embeds: Optional[torch.FloatTensor] = None,
|
| 1724 |
+
use_cache: Optional[bool] = None,
|
| 1725 |
+
output_attentions: Optional[bool] = None,
|
| 1726 |
+
output_hidden_states: Optional[bool] = None,
|
| 1727 |
+
return_dict: Optional[bool] = None,
|
| 1728 |
+
) -> Union[Tuple, BaseModelOutputWithPast]:
|
| 1729 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 1730 |
+
output_hidden_states = (
|
| 1731 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 1732 |
+
)
|
| 1733 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
| 1734 |
+
|
| 1735 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 1736 |
+
|
| 1737 |
+
# retrieve input_ids and inputs_embeds
|
| 1738 |
+
if input_ids is not None and inputs_embeds is not None:
|
| 1739 |
+
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
|
| 1740 |
+
elif input_ids is not None:
|
| 1741 |
+
batch_size, seq_length = input_ids.shape
|
| 1742 |
+
elif inputs_embeds is not None:
|
| 1743 |
+
batch_size, seq_length, _ = inputs_embeds.shape
|
| 1744 |
+
else:
|
| 1745 |
+
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
|
| 1746 |
+
|
| 1747 |
+
if inputs_embeds is None:
|
| 1748 |
+
inputs_embeds = self.embed_tokens(input_ids)
|
| 1749 |
+
if query_embeds is not None:
|
| 1750 |
+
inputs_embeds = torch.cat([query_embeds, inputs_embeds], dim=1)
|
| 1751 |
+
batch_size, seq_length, _ = inputs_embeds.shape
|
| 1752 |
+
|
| 1753 |
+
seq_length_with_past = seq_length
|
| 1754 |
+
past_key_values_length = 0
|
| 1755 |
+
|
| 1756 |
+
if past_key_values is not None:
|
| 1757 |
+
past_key_values_length = past_key_values[0][0].shape[2]
|
| 1758 |
+
seq_length_with_past = seq_length_with_past + past_key_values_length
|
| 1759 |
+
|
| 1760 |
+
if position_ids is None:
|
| 1761 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
| 1762 |
+
position_ids = torch.arange(
|
| 1763 |
+
past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
|
| 1764 |
+
)
|
| 1765 |
+
position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
|
| 1766 |
+
else:
|
| 1767 |
+
position_ids = position_ids.view(-1, seq_length).long()
|
| 1768 |
+
|
| 1769 |
+
# embed positions
|
| 1770 |
+
if attention_mask is None:
|
| 1771 |
+
attention_mask = torch.ones(
|
| 1772 |
+
(batch_size, seq_length_with_past), dtype=torch.bool, device=inputs_embeds.device
|
| 1773 |
+
)
|
| 1774 |
+
attention_mask = self._prepare_decoder_attention_mask(
|
| 1775 |
+
attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
|
| 1776 |
+
)
|
| 1777 |
+
|
| 1778 |
+
hidden_states = inputs_embeds
|
| 1779 |
+
|
| 1780 |
+
if self.gradient_checkpointing and self.training:
|
| 1781 |
+
if use_cache:
|
| 1782 |
+
logger.warning_once(
|
| 1783 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
| 1784 |
+
)
|
| 1785 |
+
use_cache = False
|
| 1786 |
+
|
| 1787 |
+
# decoder layers
|
| 1788 |
+
all_hidden_states = () if output_hidden_states else None
|
| 1789 |
+
all_self_attns = () if output_attentions else None
|
| 1790 |
+
next_decoder_cache = () if use_cache else None
|
| 1791 |
+
|
| 1792 |
+
for idx, decoder_layer in enumerate(self.layers):
|
| 1793 |
+
if output_hidden_states:
|
| 1794 |
+
all_hidden_states += (hidden_states,)
|
| 1795 |
+
|
| 1796 |
+
past_key_value = past_key_values[idx] if past_key_values is not None else None
|
| 1797 |
+
|
| 1798 |
+
if self.gradient_checkpointing and self.training:
|
| 1799 |
+
|
| 1800 |
+
def create_custom_forward(module):
|
| 1801 |
+
def custom_forward(*inputs):
|
| 1802 |
+
# None for past_key_value
|
| 1803 |
+
return module(*inputs, output_attentions, None)
|
| 1804 |
+
|
| 1805 |
+
return custom_forward
|
| 1806 |
+
|
| 1807 |
+
layer_outputs = torch.utils.checkpoint.checkpoint(
|
| 1808 |
+
create_custom_forward(decoder_layer),
|
| 1809 |
+
hidden_states,
|
| 1810 |
+
attention_mask,
|
| 1811 |
+
position_ids,
|
| 1812 |
+
None,
|
| 1813 |
+
)
|
| 1814 |
+
else:
|
| 1815 |
+
layer_outputs = decoder_layer(
|
| 1816 |
+
hidden_states,
|
| 1817 |
+
attention_mask=attention_mask,
|
| 1818 |
+
position_ids=position_ids,
|
| 1819 |
+
past_key_value=past_key_value,
|
| 1820 |
+
output_attentions=output_attentions,
|
| 1821 |
+
use_cache=use_cache,
|
| 1822 |
+
)
|
| 1823 |
+
|
| 1824 |
+
hidden_states = layer_outputs[0]
|
| 1825 |
+
|
| 1826 |
+
if use_cache:
|
| 1827 |
+
next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
|
| 1828 |
+
|
| 1829 |
+
if output_attentions:
|
| 1830 |
+
all_self_attns += (layer_outputs[1],)
|
| 1831 |
+
|
| 1832 |
+
hidden_states = self.norm(hidden_states)
|
| 1833 |
+
|
| 1834 |
+
# add hidden states from the last decoder layer
|
| 1835 |
+
if output_hidden_states:
|
| 1836 |
+
all_hidden_states += (hidden_states,)
|
| 1837 |
+
|
| 1838 |
+
next_cache = next_decoder_cache if use_cache else None
|
| 1839 |
+
if not return_dict:
|
| 1840 |
+
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
|
| 1841 |
+
return BaseModelOutputWithPast(
|
| 1842 |
+
last_hidden_state=hidden_states,
|
| 1843 |
+
past_key_values=next_cache,
|
| 1844 |
+
hidden_states=all_hidden_states,
|
| 1845 |
+
attentions=all_self_attns,
|
| 1846 |
+
)
|
| 1847 |
+
|
| 1848 |
+
|
| 1849 |
+
|
| 1850 |
+
class LlamaForCausalLM(LlamaPreTrainedModel):
|
| 1851 |
+
def __init__(self, config):
|
| 1852 |
+
super().__init__(config)
|
| 1853 |
+
self.model = LlamaModel(config)
|
| 1854 |
+
|
| 1855 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
| 1856 |
+
|
| 1857 |
+
# Initialize weights and apply final processing
|
| 1858 |
+
self.post_init()
|
| 1859 |
+
|
| 1860 |
+
def get_input_embeddings(self):
|
| 1861 |
+
return self.model.embed_tokens
|
| 1862 |
+
|
| 1863 |
+
def set_input_embeddings(self, value):
|
| 1864 |
+
self.model.embed_tokens = value
|
| 1865 |
+
|
| 1866 |
+
def get_output_embeddings(self):
|
| 1867 |
+
return self.lm_head
|
| 1868 |
+
|
| 1869 |
+
def set_output_embeddings(self, new_embeddings):
|
| 1870 |
+
self.lm_head = new_embeddings
|
| 1871 |
+
|
| 1872 |
+
def set_decoder(self, decoder):
|
| 1873 |
+
self.model = decoder
|
| 1874 |
+
|
| 1875 |
+
def get_decoder(self):
|
| 1876 |
+
return self.model
|
| 1877 |
+
|
| 1878 |
+
@add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
|
| 1879 |
+
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
|
| 1880 |
+
def forward(
|
| 1881 |
+
self,
|
| 1882 |
+
input_ids: torch.LongTensor = None,
|
| 1883 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 1884 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 1885 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
| 1886 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 1887 |
+
query_embeds: Optional[torch.FloatTensor] = None,
|
| 1888 |
+
labels: Optional[torch.LongTensor] = None,
|
| 1889 |
+
use_cache: Optional[bool] = None,
|
| 1890 |
+
output_attentions: Optional[bool] = None,
|
| 1891 |
+
output_hidden_states: Optional[bool] = None,
|
| 1892 |
+
return_dict: Optional[bool] = None,
|
| 1893 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
| 1894 |
+
r"""
|
| 1895 |
+
Args:
|
| 1896 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 1897 |
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
| 1898 |
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
| 1899 |
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
| 1900 |
+
|
| 1901 |
+
Returns:
|
| 1902 |
+
|
| 1903 |
+
Example:
|
| 1904 |
+
|
| 1905 |
+
```python
|
| 1906 |
+
>>> from transformers import AutoTokenizer, LlamaForCausalLM
|
| 1907 |
+
|
| 1908 |
+
>>> model = LlamaForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
|
| 1909 |
+
>>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
|
| 1910 |
+
|
| 1911 |
+
>>> prompt = "Hey, are you consciours? Can you talk to me?"
|
| 1912 |
+
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
| 1913 |
+
|
| 1914 |
+
>>> # Generate
|
| 1915 |
+
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
| 1916 |
+
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
| 1917 |
+
"Hey, are you consciours? Can you talk to me?\nI'm not consciours, but I can talk to you."
|
| 1918 |
+
```"""
|
| 1919 |
+
|
| 1920 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 1921 |
+
output_hidden_states = (
|
| 1922 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 1923 |
+
)
|
| 1924 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 1925 |
+
|
| 1926 |
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
| 1927 |
+
outputs = self.model(
|
| 1928 |
+
input_ids=input_ids,
|
| 1929 |
+
attention_mask=attention_mask,
|
| 1930 |
+
position_ids=position_ids,
|
| 1931 |
+
past_key_values=past_key_values,
|
| 1932 |
+
inputs_embeds=inputs_embeds,
|
| 1933 |
+
query_embeds=query_embeds,
|
| 1934 |
+
use_cache=use_cache,
|
| 1935 |
+
output_attentions=output_attentions,
|
| 1936 |
+
output_hidden_states=output_hidden_states,
|
| 1937 |
+
return_dict=return_dict,
|
| 1938 |
+
)
|
| 1939 |
+
|
| 1940 |
+
hidden_states = outputs[0]
|
| 1941 |
+
logits = self.lm_head(hidden_states)
|
| 1942 |
+
|
| 1943 |
+
loss = None
|
| 1944 |
+
if labels is not None:
|
| 1945 |
+
# Shift so that tokens < n predict n
|
| 1946 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
| 1947 |
+
shift_labels = labels[..., 1:].contiguous()
|
| 1948 |
+
# Flatten the tokens
|
| 1949 |
+
loss_fct = CrossEntropyLoss()
|
| 1950 |
+
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
| 1951 |
+
shift_labels = shift_labels.view(-1)
|
| 1952 |
+
# Enable model parallelism
|
| 1953 |
+
shift_labels = shift_labels.to(shift_logits.device)
|
| 1954 |
+
loss = loss_fct(shift_logits, shift_labels)
|
| 1955 |
+
|
| 1956 |
+
if not return_dict:
|
| 1957 |
+
output = (logits,) + outputs[1:]
|
| 1958 |
+
return (loss,) + output if loss is not None else output
|
| 1959 |
+
|
| 1960 |
+
return CausalLMOutputWithPast(
|
| 1961 |
+
loss=loss,
|
| 1962 |
+
logits=logits,
|
| 1963 |
+
past_key_values=outputs.past_key_values,
|
| 1964 |
+
hidden_states=outputs.hidden_states,
|
| 1965 |
+
attentions=outputs.attentions,
|
| 1966 |
+
)
|
| 1967 |
+
|
| 1968 |
+
def prepare_inputs_for_generation(
|
| 1969 |
+
self, input_ids, query_embeds=None, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
|
| 1970 |
+
):
|
| 1971 |
+
if past_key_values:
|
| 1972 |
+
input_ids = input_ids[:, -1:]
|
| 1973 |
+
|
| 1974 |
+
position_ids = kwargs.get("position_ids", None)
|
| 1975 |
+
if attention_mask is not None and position_ids is None:
|
| 1976 |
+
# create position_ids on the fly for batch generation
|
| 1977 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
| 1978 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
| 1979 |
+
if past_key_values:
|
| 1980 |
+
position_ids = position_ids[:, -1].unsqueeze(-1)
|
| 1981 |
+
query_embeds = None
|
| 1982 |
+
|
| 1983 |
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
| 1984 |
+
if inputs_embeds is not None and past_key_values is None:
|
| 1985 |
+
model_inputs = {"inputs_embeds": inputs_embeds}
|
| 1986 |
+
else:
|
| 1987 |
+
model_inputs = {"input_ids": input_ids}
|
| 1988 |
+
|
| 1989 |
+
model_inputs.update(
|
| 1990 |
+
{
|
| 1991 |
+
"position_ids": position_ids,
|
| 1992 |
+
"query_embeds": query_embeds,
|
| 1993 |
+
"past_key_values": past_key_values,
|
| 1994 |
+
"use_cache": kwargs.get("use_cache"),
|
| 1995 |
+
"attention_mask": attention_mask,
|
| 1996 |
+
}
|
| 1997 |
+
)
|
| 1998 |
+
return model_inputs
|
| 1999 |
+
|
| 2000 |
+
@staticmethod
|
| 2001 |
+
def _reorder_cache(past_key_values, beam_idx):
|
| 2002 |
+
reordered_past = ()
|
| 2003 |
+
for layer_past in past_key_values:
|
| 2004 |
+
reordered_past += (tuple(past_state.index_select(0, beam_idx) for past_state in layer_past),)
|
| 2005 |
+
return reordered_past
|
| 2006 |
+
|
| 2007 |
+
|
| 2008 |
+
@registry.register_model("musilingo")
|
| 2009 |
+
class MusiLingo(BaseModel):
|
| 2010 |
+
"""
|
| 2011 |
+
MERT GPT-LLAMA model.
|
| 2012 |
+
"""
|
| 2013 |
+
|
| 2014 |
+
PRETRAINED_MODEL_CONFIG_DICT = {
|
| 2015 |
+
"pretrain_vicuna": "configs/models/musilingo.yaml",
|
| 2016 |
+
}
|
| 2017 |
+
|
| 2018 |
+
def __init__(
|
| 2019 |
+
self,
|
| 2020 |
+
mert_model,
|
| 2021 |
+
llama_model,
|
| 2022 |
+
config,
|
| 2023 |
+
prompt_path="",
|
| 2024 |
+
prompt_template="",
|
| 2025 |
+
max_txt_len=32,
|
| 2026 |
+
end_sym='\n',
|
| 2027 |
+
low_resource=False, # use 8 bit and put vit in cpu
|
| 2028 |
+
device_8bit=0, # the device of 8bit model should be set when loading and cannot be changed anymore.
|
| 2029 |
+
):
|
| 2030 |
+
super().__init__()
|
| 2031 |
+
|
| 2032 |
+
self.low_resource = low_resource
|
| 2033 |
+
|
| 2034 |
+
print('Loading Audio Encoder')
|
| 2035 |
+
self.audio_encoder = AutoModel.from_pretrained(mert_model, trust_remote_code=True)
|
| 2036 |
+
# loading the corresponding preprocessor config
|
| 2037 |
+
self.processor = Wav2Vec2FeatureExtractor.from_pretrained(mert_model, trust_remote_code=True)
|
| 2038 |
+
|
| 2039 |
+
for name, param in self.audio_encoder.named_parameters():
|
| 2040 |
+
param.requires_grad = False
|
| 2041 |
+
self.audio_encoder = self.audio_encoder.eval()
|
| 2042 |
+
|
| 2043 |
+
print('Loading Audio Encoder Done')
|
| 2044 |
+
|
| 2045 |
+
print('Loading LLAMA')
|
| 2046 |
+
self.llama_tokenizer = LlamaTokenizer.from_pretrained(llama_model, use_fast=False)
|
| 2047 |
+
self.llama_tokenizer.pad_token = self.llama_tokenizer.eos_token
|
| 2048 |
+
|
| 2049 |
+
if self.low_resource:
|
| 2050 |
+
self.llama_model = LlamaForCausalLM.from_pretrained(
|
| 2051 |
+
llama_model,
|
| 2052 |
+
torch_dtype=torch.float16,
|
| 2053 |
+
load_in_8bit=True,
|
| 2054 |
+
device_map={'': device_8bit}
|
| 2055 |
+
)
|
| 2056 |
+
else:
|
| 2057 |
+
self.llama_model = LlamaForCausalLM.from_pretrained(
|
| 2058 |
+
llama_model,
|
| 2059 |
+
torch_dtype=torch.float16,
|
| 2060 |
+
)
|
| 2061 |
+
|
| 2062 |
+
for name, param in self.llama_model.named_parameters():
|
| 2063 |
+
param.requires_grad = False
|
| 2064 |
+
print('Loading LLAMA Done')
|
| 2065 |
+
|
| 2066 |
+
self.llama_proj = nn.Linear(
|
| 2067 |
+
self.audio_encoder.config.hidden_size, self.llama_model.config.hidden_size
|
| 2068 |
+
)
|
| 2069 |
+
self.max_txt_len = max_txt_len
|
| 2070 |
+
self.end_sym = end_sym
|
| 2071 |
+
|
| 2072 |
+
self.prompt_template = prompt_template
|
| 2073 |
+
|
| 2074 |
+
if prompt_path:
|
| 2075 |
+
with open(prompt_path, 'r') as f:
|
| 2076 |
+
raw_prompts = f.read().splitlines()
|
| 2077 |
+
filted_prompts = [raw_prompt for raw_prompt in raw_prompts if "<AudioHere>" in raw_prompt]
|
| 2078 |
+
self.prompt_list = [prompt_template.format(p) for p in filted_prompts]
|
| 2079 |
+
print('Load {} training prompts'.format(len(self.prompt_list)))
|
| 2080 |
+
print('Prompt Example \n{}'.format(random.choice(self.prompt_list)))
|
| 2081 |
+
else:
|
| 2082 |
+
self.prompt_list = []
|
| 2083 |
+
|
| 2084 |
+
def audioenc_to_cpu(self):
|
| 2085 |
+
self.audio_encoder.to("cpu")
|
| 2086 |
+
self.audio_encoder.float()
|
| 2087 |
+
|
| 2088 |
+
def encode_audio(self, audio, attn=None):
|
| 2089 |
+
device = audio.device
|
| 2090 |
+
if self.low_resource:
|
| 2091 |
+
self.audioenc_to_cpu()
|
| 2092 |
+
audio = audio.to("cpu")
|
| 2093 |
+
|
| 2094 |
+
if attn is None:
|
| 2095 |
+
|
| 2096 |
+
audio_embeds = torch.stack(self.audio_encoder(input_values=audio,
|
| 2097 |
+
output_hidden_states=True).hidden_states) # [25, B, T, 1024]
|
| 2098 |
+
audio_embeds = audio_embeds.transpose(0, 1).mean(-3) #[B, T, 1024]
|
| 2099 |
+
|
| 2100 |
+
else:
|
| 2101 |
+
|
| 2102 |
+
audio_embeds = torch.stack(self.audio_encoder(input_values=audio,
|
| 2103 |
+
output_hidden_states=True,
|
| 2104 |
+
attention_mask=attn).hidden_states) # [25, B, T, 1024]
|
| 2105 |
+
audio_embeds = audio_embeds.transpose(0, 1).mean(-3) #[B, T, 1024]
|
| 2106 |
+
|
| 2107 |
+
# Average time steps:
|
| 2108 |
+
t = 325
|
| 2109 |
+
B, T, D = audio_embeds.shape
|
| 2110 |
+
avg_tmp = audio_embeds[:, :T//t*t].reshape(B, T//t, t, D).mean(2)
|
| 2111 |
+
|
| 2112 |
+
# Average the remaining steps
|
| 2113 |
+
if T % t > 0:
|
| 2114 |
+
avg_last = audio_embeds[:, T//t*t:].reshape(B, 1, T%t, D).mean(2)
|
| 2115 |
+
audio_embeds = torch.concat([avg_tmp, avg_last], dim=1)
|
| 2116 |
+
else:
|
| 2117 |
+
audio_embeds = avg_tmp
|
| 2118 |
+
audio_embeds = audio_embeds.to(device)
|
| 2119 |
+
inputs_llama = self.llama_proj(audio_embeds)
|
| 2120 |
+
atts_llama = torch.ones(inputs_llama.size()[:-1], dtype=torch.long).to(audio.device)
|
| 2121 |
+
return inputs_llama, atts_llama
|
| 2122 |
+
|
| 2123 |
+
def prompt_wrap(self, audio_embeds, atts_audio, prompt):
|
| 2124 |
+
if prompt:
|
| 2125 |
+
batch_size = audio_embeds.shape[0]
|
| 2126 |
+
p_before, p_after = prompt.split('<AudioHere>')
|
| 2127 |
+
p_before_tokens = self.llama_tokenizer(
|
| 2128 |
+
p_before, return_tensors="pt", add_special_tokens=False).to(audio_embeds.device)
|
| 2129 |
+
p_after_tokens = self.llama_tokenizer(
|
| 2130 |
+
p_after, return_tensors="pt", add_special_tokens=False).to(audio_embeds.device)
|
| 2131 |
+
p_before_embeds = self.llama_model.model.embed_tokens(p_before_tokens.input_ids).expand(batch_size, -1, -1)
|
| 2132 |
+
p_after_embeds = self.llama_model.model.embed_tokens(p_after_tokens.input_ids).expand(batch_size, -1, -1)
|
| 2133 |
+
wrapped_audio_embeds = torch.cat([p_before_embeds, audio_embeds, p_after_embeds], dim=1)
|
| 2134 |
+
wrapped_atts_audio = atts_audio[:, :1].expand(-1, wrapped_audio_embeds.shape[1])
|
| 2135 |
+
return wrapped_audio_embeds, wrapped_atts_audio
|
| 2136 |
+
else:
|
| 2137 |
+
return audio_embeds, atts_audio
|
| 2138 |
+
|
| 2139 |
+
def instruction_prompt_wrap(self, audio_embeds, atts_audio, prompt):
|
| 2140 |
+
if prompt:
|
| 2141 |
+
batch_size = audio_embeds.shape[0]
|
| 2142 |
+
p_before = []
|
| 2143 |
+
p_after = []
|
| 2144 |
+
|
| 2145 |
+
for i in range(batch_size):
|
| 2146 |
+
p_b, p_a = prompt[i].split('<AudioHere>')
|
| 2147 |
+
p_before.append(p_b)
|
| 2148 |
+
p_after.append(p_a)
|
| 2149 |
+
|
| 2150 |
+
p_before_tokens = self.llama_tokenizer(
|
| 2151 |
+
p_before, return_tensors="pt", padding='longest', add_special_tokens=False).to(audio_embeds.device)
|
| 2152 |
+
p_after_tokens = self.llama_tokenizer(
|
| 2153 |
+
p_after, return_tensors="pt", padding='longest', add_special_tokens=False).to(audio_embeds.device)
|
| 2154 |
+
p_before_embeds = self.llama_model.model.embed_tokens(p_before_tokens.input_ids)
|
| 2155 |
+
p_after_embeds = self.llama_model.model.embed_tokens(p_after_tokens.input_ids)
|
| 2156 |
+
wrapped_audio_embeds = torch.cat([p_before_embeds, audio_embeds, p_after_embeds], dim=1)
|
| 2157 |
+
wrapped_atts_audio = torch.cat([p_before_tokens.attention_mask, atts_audio, p_after_tokens.attention_mask], dim=1)
|
| 2158 |
+
return wrapped_audio_embeds, wrapped_atts_audio
|
| 2159 |
+
else:
|
| 2160 |
+
return audio_embeds, atts_audio
|
| 2161 |
+
|
| 2162 |
+
|
| 2163 |
+
def forward(self, samples):
|
| 2164 |
+
audio = samples["audio"]
|
| 2165 |
+
attn = samples["attention_mask"] if "attention_mask" in samples else None
|
| 2166 |
+
audio_embeds, atts_audio = self.encode_audio(audio, attn)
|
| 2167 |
+
|
| 2168 |
+
if 'instruction_input' in samples: # instruction tuning dataset
|
| 2169 |
+
instruction_prompt = []
|
| 2170 |
+
for instruction in samples['instruction_input']:
|
| 2171 |
+
prompt = '<Audio><AudioHere></Audio> ' + instruction
|
| 2172 |
+
instruction_prompt.append(self.prompt_template.format(prompt))
|
| 2173 |
+
audio_embeds, atts_audio = self.instruction_prompt_wrap(audio_embeds, atts_audio, instruction_prompt)
|
| 2174 |
+
|
| 2175 |
+
elif self.prompt_list:
|
| 2176 |
+
prompt = random.choice(self.prompt_list)
|
| 2177 |
+
audio_embeds, atts_audio = self.prompt_wrap(audio_embeds, atts_audio, prompt)
|
| 2178 |
+
|
| 2179 |
+
self.llama_tokenizer.padding_side = "right"
|
| 2180 |
+
|
| 2181 |
+
text = [t + self.end_sym for t in samples["text_input"]]
|
| 2182 |
+
|
| 2183 |
+
to_regress_tokens = self.llama_tokenizer(
|
| 2184 |
+
text,
|
| 2185 |
+
return_tensors="pt",
|
| 2186 |
+
padding="longest",
|
| 2187 |
+
truncation=True,
|
| 2188 |
+
max_length=self.max_txt_len,
|
| 2189 |
+
add_special_tokens=False
|
| 2190 |
+
).to(audio.device)
|
| 2191 |
+
|
| 2192 |
+
targets = to_regress_tokens.input_ids.masked_fill(
|
| 2193 |
+
to_regress_tokens.input_ids == self.llama_tokenizer.pad_token_id, -100
|
| 2194 |
+
)
|
| 2195 |
+
|
| 2196 |
+
empty_targets = (
|
| 2197 |
+
torch.ones([atts_audio.shape[0], atts_audio.shape[1]+1],
|
| 2198 |
+
dtype=torch.long).to(audio.device).fill_(-100) # plus one for bos
|
| 2199 |
+
)
|
| 2200 |
+
targets = torch.cat([empty_targets, targets], dim=1)
|
| 2201 |
+
|
| 2202 |
+
batch_size = audio_embeds.shape[0]
|
| 2203 |
+
bos = torch.ones([batch_size, 1],
|
| 2204 |
+
dtype=to_regress_tokens.input_ids.dtype,
|
| 2205 |
+
device=to_regress_tokens.input_ids.device) * self.llama_tokenizer.bos_token_id
|
| 2206 |
+
bos_embeds = self.llama_model.model.embed_tokens(bos)
|
| 2207 |
+
atts_bos = atts_audio[:, :1]
|
| 2208 |
+
|
| 2209 |
+
to_regress_embeds = self.llama_model.model.embed_tokens(to_regress_tokens.input_ids)
|
| 2210 |
+
inputs_embeds = torch.cat([bos_embeds, audio_embeds, to_regress_embeds], dim=1)
|
| 2211 |
+
attention_mask = torch.cat([atts_bos, atts_audio, to_regress_tokens.attention_mask], dim=1)
|
| 2212 |
+
|
| 2213 |
+
outputs = self.llama_model(
|
| 2214 |
+
inputs_embeds=inputs_embeds,
|
| 2215 |
+
attention_mask=attention_mask,
|
| 2216 |
+
return_dict=True,
|
| 2217 |
+
labels=targets,
|
| 2218 |
+
)
|
| 2219 |
+
loss = outputs.loss
|
| 2220 |
+
|
| 2221 |
+
return {"loss": loss}
|
| 2222 |
+
|
| 2223 |
+
@classmethod
|
| 2224 |
+
def from_config(cls, cfg):
|
| 2225 |
+
mert_model = cfg.get("mert_model", "")
|
| 2226 |
+
llama_model = cfg.get("llama_model")
|
| 2227 |
+
|
| 2228 |
+
low_resource = cfg.get("low_resource", False)
|
| 2229 |
+
device_8bit = cfg.get("device_8bit", 0)
|
| 2230 |
+
|
| 2231 |
+
prompt_path = cfg.get("prompt_path", "")
|
| 2232 |
+
prompt_template = cfg.get("prompt_template", "")
|
| 2233 |
+
max_txt_len = cfg.get("max_txt_len", 32)
|
| 2234 |
+
end_sym = cfg.get("end_sym", '\n')
|
| 2235 |
+
|
| 2236 |
+
model = cls(
|
| 2237 |
+
mert_model=mert_model,
|
| 2238 |
+
llama_model=llama_model,
|
| 2239 |
+
prompt_path=prompt_path,
|
| 2240 |
+
prompt_template=prompt_template,
|
| 2241 |
+
max_txt_len=max_txt_len,
|
| 2242 |
+
end_sym=end_sym,
|
| 2243 |
+
low_resource=low_resource,
|
| 2244 |
+
device_8bit=device_8bit,
|
| 2245 |
+
)
|
| 2246 |
+
|
| 2247 |
+
ckpt_path = cfg.get("ckpt", "") # load ckpt weights of MusiLingo
|
| 2248 |
+
if ckpt_path:
|
| 2249 |
+
print("Load MERT-LLM Checkpoint: {}".format(ckpt_path))
|
| 2250 |
+
ckpt = torch.load(ckpt_path, map_location="cpu")
|
| 2251 |
+
msg = model.load_state_dict(ckpt['model'], strict=False)
|
| 2252 |
+
|
| 2253 |
+
return model
|
| 2254 |
+
|
| 2255 |
+
|
| 2256 |
+
class MusilingoModel(PreTrainedModel):
|
| 2257 |
+
config_class = MusiLingoConfig
|
| 2258 |
+
def __init__(self, config):
|
| 2259 |
+
super().__init__(config)
|
| 2260 |
+
self.model = MusiLingo(
|
| 2261 |
+
mert_model=config.mert_model,
|
| 2262 |
+
llama_model=config.llama_model,
|
| 2263 |
+
config=config,
|
| 2264 |
+
prompt_path=config.prompt_path,
|
| 2265 |
+
prompt_template=config.prompt_template,
|
| 2266 |
+
max_txt_len=config.max_txt_len,
|
| 2267 |
+
end_sym=config.end_sym,
|
| 2268 |
+
low_resource=config.low_resource,
|
| 2269 |
+
device_8bit=config.device_8bit
|
| 2270 |
+
# self.linear_ckpt_path = config.linear_ckpt_path``
|
| 2271 |
+
)
|
| 2272 |
+
|
| 2273 |
+
|
| 2274 |
+
def forward(self, tensor):
|
| 2275 |
+
return self.model.forward(tensor)
|