--- language: en license: apache-2.0 datasets: daily_dialog pipeline_tag: text-generation library_name: transformers tags: - gpt2 - conversational - chatbot - nlp base_model: gpt2 --- # GPT-2 Personal Assistant **Model repo:** `hmnshudhmn24/gpt2-personal-assistant` A lightweight conversational assistant based on **GPT-2**, fine-tuned on the **DailyDialog** dataset for chat and casual Q&A. ## Model details - **Base model:** gpt2 - **Task:** Conversational text generation / Chatbot - **Dataset used for demo:** daily_dialog (small subset used in training script for quick demo) - **Language:** English - **License:** Apache-2.0 ## How to use (inference) ```python from transformers import pipeline generator = pipeline("text-generation", model="hmnshudhmn24/gpt2-personal-assistant") prompt = "User: Hello\nAssistant: Hi! How can I help you?\nUser: What's the weather like today?\nAssistant:" print(generator(prompt, max_length=100, num_return_sequences=1)[0]["generated_text"]) ``` ## Train locally (quick demo) Run: ```bash python train_chatbot.py ``` This script fine-tunes `gpt2` on a subset of the DailyDialog dataset and saves the model to `./gpt2-personal-assistant` folder. ## Files in this repo - `config.json`, `tokenizer_config.json`, `special_tokens_map.json` — model/tokenizer configs - `train_chatbot.py` — training script (demo) - `inference.py` — simple inference example - `utils.py` — helper to build conversation prompts - `example_conversations.txt` — small sample dialogues - `requirements.txt` — Python dependencies ## Notes & limitations - GPT-2 is a general-purpose LM; it can generate incorrect or unsafe outputs. Do not rely on it for critical advice. - For production, use larger datasets, more epochs, and safety filtering. - If uploading to Hugging Face, include `pytorch_model.bin` (weights) after training. ## License Apache-2.0