File size: 154,122 Bytes
f3582b5 33cebf6 f3582b5 33cebf6 f3582b5 33cebf6 f3582b5 33cebf6 f3582b5 33cebf6 f3582b5 33cebf6 f3582b5 85e9df2 f3582b5 0ac62de f3582b5 85e9df2 f3582b5 33cebf6 f3582b5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 |
"""
Standalone utilities and lightweight Hugging Face integrations for running
Provence reranker checkpoints.
`OpenProvenceModel` provides a self-contained wrapper that can be copied next
to a checkpoint and executed without installing the full ``open_provence``
package. In addition, this module now exposes `OpenProvenceConfig`,
`OpenProvenceForSequenceClassification`, and
`OpenProvenceForTokenClassification` so that checkpoints can be loaded via
``transformers.AutoModel`` without shipping extra modeling files.
Keep this module self-contained—avoid intra-package imports—so exported
checkpoints remain portable.
"""
from __future__ import annotations
import contextlib
import logging
import math
import os
import platform
import re
import warnings
from collections import OrderedDict, defaultdict
from collections.abc import Callable, Iterable, Mapping, Sequence
from copy import deepcopy
from dataclasses import dataclass
from pathlib import Path
from time import perf_counter
from typing import Any, TypeAlias, cast
import numpy as np
import torch
import transformers.utils.logging as hf_logging
from torch import FloatTensor, Tensor, nn
from torch.utils.data import DataLoader, Dataset
from transformers import AutoConfig, AutoModelForSequenceClassification, AutoTokenizer
from transformers.configuration_utils import PretrainedConfig
from transformers.modeling_outputs import SequenceClassifierOutput, TokenClassifierOutput
from transformers.modeling_utils import PreTrainedModel
from transformers.utils.generic import ModelOutput
try:
import nltk
from nltk.tokenize import PunktSentenceTokenizer
except ImportError as exc: # pragma: no cover - mandatory dependency
raise ImportError(
"modeling_open_provence_standalone.py requires `nltk`. Install via `uv add nltk`."
) from exc
LOGGER = logging.getLogger(__name__)
DEFAULT_SPLITTER_LANGUAGE = "auto" # Updated during export; keep marker for tooling
DEFAULT_PROCESS_THRESHOLD = 0.1 # Default pruning threshold when config does not specify one
_PROGRESS_BAR_ENABLED = True
def enable_progress_bar() -> None:
"""Enable progress output for preprocessing and inference helpers."""
global _PROGRESS_BAR_ENABLED
_PROGRESS_BAR_ENABLED = True
def disable_progress_bar() -> None:
"""Disable progress output for preprocessing and inference helpers."""
global _PROGRESS_BAR_ENABLED
_PROGRESS_BAR_ENABLED = False
def is_progress_bar_enabled() -> bool:
"""Return True when progress output should be shown."""
return _PROGRESS_BAR_ENABLED
def _default_preprocess_workers() -> int:
"""Infer a reasonable default number of preprocessing workers."""
cpu_total: int | None = None
try: # pragma: no cover - optional dependency
import psutil
cpu_total = psutil.cpu_count(logical=False) or psutil.cpu_count(logical=True)
except Exception:
cpu_total = os.cpu_count()
if cpu_total is None:
return 0
return max(0, int(cpu_total) - 1)
_ENGLISH_SENTENCE_TOKENIZER: PunktSentenceTokenizer | None = None
DEFAULT_ENGLISH_SENTENCE_MAX_CHARS = 1200
_ENGLISH_LANGUAGE_ALIASES = {
"en",
"english",
"en-us",
"en_gb",
"en-gb",
"en_us",
}
_BULLET_PREFIX_RE = re.compile(
r"""^\s*(?:[\-\*\u2022•]+|\d{1,4}[:.)]|[A-Za-z]{1}[:.)])\s+""",
re.UNICODE,
)
_WORD_TOKEN_RE = re.compile(r"[A-Za-z0-9']+")
_TABLE_ROW_RE = re.compile(r"^\s*\|")
_NUMERIC_HEADING_RE = re.compile(r"^\s*\d{3,}[:\-]")
SUPPORTED_SPLITTER_LANGUAGES = {"ja", "en", "auto"}
def _is_kana_letter_cp(cp: int) -> bool:
"""Return True when code point corresponds to a kana letter."""
if 0x3041 <= cp <= 0x3096: # Hiragana letters (ぁ-ゖ)
return True
if 0x30A1 <= cp <= 0x30FA: # Katakana letters (ァ-ヺ)
return True
if 0x31F0 <= cp <= 0x31FF: # Katakana phonetic extensions (ㇰ-ㇿ)
return True
if 0xFF71 <= cp <= 0xFF9D: # Half-width katakana letters (ア-ン)
return True
return False
def is_japanese_fast(text: str, window: int = 500, min_kana_per_window: int = 1) -> bool:
"""Heuristic that quickly classifies text as Japanese when kana density is high."""
if not text:
return False
if text.isascii():
return False
required = math.ceil(len(text) / window) * min_kana_per_window
if required <= 0:
return False
count = 0
for ch in text:
cp = ord(ch)
if cp > 0x7F and _is_kana_letter_cp(cp):
count += 1
if count >= required:
return True
return False
warnings.filterwarnings("ignore", message="Flash Attention 2 only supports")
os.environ.setdefault("TRANSFORMERS_NO_ADVISORY_WARNINGS", "1")
os.environ.setdefault("TOKENIZERS_PARALLELISM", "false")
_transformers_logger = logging.getLogger("transformers.modeling_utils")
_dynamic_module_logger = logging.getLogger("transformers.dynamic_module_utils")
class _SuppressTransformersWarnings(logging.Filter):
def filter(self, record: logging.LogRecord) -> bool: # pragma: no cover - log hygiene
message = record.getMessage()
if "Flash Attention 2 only supports" in message:
return False
if "`torch_dtype` is deprecated" in message:
return False
return True
_transformers_logger.addFilter(_SuppressTransformersWarnings())
class _SuppressDynamicModuleWarnings(logging.Filter):
def filter(self, record: logging.LogRecord) -> bool: # pragma: no cover - log hygiene
message = record.getMessage()
if "The module name" in message and "is not a valid Python identifier" in message:
return False
if "The module name" in message and "is a reserved keyword" in message:
return False
return True
_dynamic_module_logger.addFilter(_SuppressDynamicModuleWarnings())
_LOGGING_CONFIGURED = False
def _ensure_transformers_logging_configured() -> None:
"""Configure transformers logging once to suppress noisy warnings in standalone mode."""
global _LOGGING_CONFIGURED
if _LOGGING_CONFIGURED:
return
hf_logging.set_verbosity_error()
_LOGGING_CONFIGURED = True
def _supports_flash_attention() -> bool:
"""Return True when CUDA is available and we optimistically enable FlashAttention v2."""
if not torch.cuda.is_available():
return False
try:
pass # type: ignore[import-not-found]
except Exception:
return False
return True
def _select_default_torch_dtype(device: str | None) -> torch.dtype | str | None:
"""Select a sensible default dtype based on the target device."""
if not device:
return None
normalized = str(device).lower()
if normalized == "cuda" and torch.cuda.is_available():
supports_bf16 = getattr(torch.cuda, "is_bf16_supported", None)
try:
if callable(supports_bf16) and supports_bf16():
return torch.bfloat16
except Exception:
pass
return torch.float16
if normalized == "mps":
return "auto"
if normalized == "cpu":
system = platform.system()
machine = platform.machine().lower()
if system == "Darwin" and machine in {"arm64", "aarch64"}:
return "auto"
return None
def _coerce_dtype_for_torch_to(value: torch.dtype | str | None) -> torch.dtype | None:
"""Convert user/config provided dtype hints into torch.dtype for Module.to."""
if value is None or isinstance(value, torch.dtype):
return value
normalized = str(value).strip().lower()
if normalized == "auto":
return None
# Accept common dtype aliases used by Transformers configs/CLI flags.
alias_map: dict[str, torch.dtype] = {
"float32": torch.float32,
"fp32": torch.float32,
"32": torch.float32,
"float16": torch.float16,
"fp16": torch.float16,
"half": torch.float16,
"bfloat16": torch.bfloat16,
"bf16": torch.bfloat16,
}
resolved = alias_map.get(normalized)
if resolved is None:
raise TypeError(f"Unsupported dtype value for torch.to(): {value!r}")
return resolved
def _mps_is_available() -> bool:
backend = getattr(torch, "backends", None)
if backend is None:
return False
mps = getattr(backend, "mps", None)
if mps is None:
return False
try:
return bool(mps.is_available())
except Exception:
return False
def auto_detect_device() -> torch.device:
system = platform.system()
machine = platform.machine().lower()
if system == "Darwin" and machine in {"arm64", "aarch64"} and _mps_is_available():
return torch.device("mps")
if torch.cuda.is_available():
return torch.device("cuda")
if _mps_is_available():
return torch.device("mps")
return torch.device("cpu")
def _validate_device(candidate: torch.device) -> None:
if candidate.type == "cuda":
if not torch.cuda.is_available():
raise ValueError("CUDA device requested but CUDA is not available.")
if candidate.index is not None:
total = torch.cuda.device_count()
if candidate.index < 0 or candidate.index >= total:
raise ValueError(
f"CUDA device index {candidate.index} out of range (count={total})."
)
elif candidate.type == "mps":
if not _mps_is_available():
raise ValueError("MPS device requested but MPS backend is not available.")
def resolve_inference_device(device: str | torch.device | None) -> torch.device:
if isinstance(device, torch.device):
candidate = device
elif device is None:
return auto_detect_device()
else:
normalized = str(device).strip().lower()
if not normalized or normalized == "auto":
return auto_detect_device()
if normalized == "cpu":
candidate = torch.device("cpu")
elif normalized.startswith("cuda"):
candidate = torch.device(normalized)
elif normalized.startswith("mps"):
candidate = torch.device("mps")
else:
raise ValueError(f"Unsupported device specification: {device!r}")
_validate_device(candidate)
return candidate
try:
from fast_bunkai import FastBunkai
except ImportError: # pragma: no cover - optional dependency
FastBunkai = None
_FAST_BUNKAI = None
if FastBunkai is not None: # pragma: no branch
try:
_FAST_BUNKAI = FastBunkai()
except Exception as exc: # pragma: no cover - runtime safety
raise RuntimeError("Failed to initialize FastBunkai sentence splitter") from exc
@dataclass
class OpenProvenceHeadConfig:
"""Lightweight configuration for the pruning head."""
hidden_size: int = 768
num_labels: int = 2
classifier_dropout: float = 0.1
sentence_pooling: str = "mean"
use_weighted_pooling: bool = False
def __init__(self, **kwargs: Any) -> None:
self.hidden_size = int(kwargs.pop("hidden_size", 768))
self.num_labels = int(kwargs.pop("num_labels", 2))
self.classifier_dropout = float(kwargs.pop("classifier_dropout", 0.1))
self.sentence_pooling = kwargs.pop("sentence_pooling", "mean")
self.use_weighted_pooling = bool(kwargs.pop("use_weighted_pooling", False))
# Store any additional fields for completeness
for key, value in kwargs.items():
setattr(self, key, value)
@dataclass(frozen=True)
class ProcessPerformanceTrace:
"""Structured runtime telemetry for `OpenProvenceModel.process` calls."""
preprocess_seconds: float = 0.0
assembly_seconds: float = 0.0
inference_seconds: float = 0.0
postprocess_seconds: float = 0.0
total_seconds: float = 0.0
sentence_collect_seconds: float = 0.0
sentence_normalize_seconds: float = 0.0
tokenize_seconds: float = 0.0
fragment_split_seconds: float = 0.0
fragment_decode_seconds: float = 0.0
def as_dict(self) -> dict[str, float]:
return {
"preprocess_seconds": float(self.preprocess_seconds),
"assembly_seconds": float(self.assembly_seconds),
"inference_seconds": float(self.inference_seconds),
"postprocess_seconds": float(self.postprocess_seconds),
"total_seconds": float(self.total_seconds),
"sentence_collect_seconds": float(self.sentence_collect_seconds),
"sentence_normalize_seconds": float(self.sentence_normalize_seconds),
"tokenize_seconds": float(self.tokenize_seconds),
"fragment_split_seconds": float(self.fragment_split_seconds),
"fragment_decode_seconds": float(self.fragment_decode_seconds),
}
class OpenProvenceHead(nn.Module):
"""Minimal pruning head used by Provence pruning checkpoints."""
def __init__(self, config: OpenProvenceHeadConfig):
super().__init__()
self.config = config
self.num_labels = getattr(config, "num_labels", 2)
self.sentence_pooling = getattr(config, "sentence_pooling", "mean")
self.use_weighted_pooling = getattr(config, "use_weighted_pooling", False)
dropout_prob = float(getattr(config, "classifier_dropout", 0.1))
self.dropout = nn.Dropout(dropout_prob)
hidden_size = int(getattr(config, "hidden_size", 768))
self.classifier = nn.Linear(hidden_size, self.num_labels)
if self.use_weighted_pooling:
self.pooling_weights = nn.Linear(hidden_size, 1)
self._init_weights()
def _init_weights(self) -> None:
nn.init.xavier_uniform_(self.classifier.weight)
nn.init.zeros_(self.classifier.bias)
if hasattr(self, "pooling_weights"):
nn.init.xavier_uniform_(self.pooling_weights.weight)
nn.init.zeros_(self.pooling_weights.bias)
def forward(
self,
*,
hidden_states: torch.Tensor,
attention_mask: torch.Tensor | None = None,
sentence_boundaries: torch.Tensor | None = None,
) -> dict[str, torch.Tensor]:
"""Produce token-level pruning logits."""
_ = attention_mask # not required for current inference path
_ = sentence_boundaries
hidden_states = self.dropout(hidden_states)
logits = self.classifier(hidden_states)
return {"logits": logits}
@dataclass
class OpenProvenceRawPrediction:
"""Container for raw pruning outputs."""
query: str
contexts: list[str]
ranking_score: float | None
pruning_probs: np.ndarray
context_ranges: list[tuple[int, int]]
# Type alias for sentence splitter functions
SentenceSplitter = Callable[[str], list[str]]
def _get_english_sentence_tokenizer() -> PunktSentenceTokenizer:
global _ENGLISH_SENTENCE_TOKENIZER
if _ENGLISH_SENTENCE_TOKENIZER is None:
try:
tokenizer = nltk.data.load("tokenizers/punkt/english.pickle")
except LookupError as exc: # pragma: no cover - requires punkt download
raise LookupError(
"Missing NLTK punkt tokenizer data. Run `python -m nltk.downloader punkt`."
) from exc
if not isinstance(tokenizer, PunktSentenceTokenizer):
raise TypeError(f"Expected PunktSentenceTokenizer, got {type(tokenizer).__name__}.")
_ENGLISH_SENTENCE_TOKENIZER = tokenizer
return _ENGLISH_SENTENCE_TOKENIZER
def _looks_like_bullet_line(line: str) -> bool:
return bool(_BULLET_PREFIX_RE.match(line))
def _iter_english_blocks(text: str) -> Iterable[tuple[str, int, int]]:
"""Yield text blocks with their span indices for English sentence segmentation."""
if not text:
return
total_len = len(text)
lines = text.splitlines(keepends=True)
if not lines:
block = text
if block:
yield block, 0, total_len
return
accumulated = 0
current_parts: list[str] = []
current_start = 0
for line in lines:
line_start = accumulated
accumulated += len(line)
plain_line = line.rstrip("\r\n")
if _looks_like_bullet_line(plain_line) and current_parts:
block_text = "".join(current_parts)
if block_text:
block_end = current_start + len(block_text)
yield block_text, current_start, block_end
current_parts = [line]
current_start = line_start
else:
if not current_parts:
current_start = line_start
current_parts.append(line)
if current_parts:
block_text = "".join(current_parts)
if block_text:
block_end = current_start + len(block_text)
yield block_text, current_start, block_end
if accumulated < total_len:
remainder = text[accumulated:]
if remainder:
yield remainder, accumulated, total_len
def _split_overlong_sentence(
sentence: str,
max_chars: int = DEFAULT_ENGLISH_SENTENCE_MAX_CHARS,
*,
preserve_whitespace: bool = False,
) -> list[str]:
if preserve_whitespace:
working = sentence
else:
working = sentence.strip()
if not working:
return []
if len(working) <= max_chars:
return [working if preserve_whitespace else working.strip()]
chunks: list[str] = []
start = 0
length = len(working)
punctuation = ".?!;:\n"
while start < length:
target = min(start + max_chars, length)
# Prefer a newline boundary when available within the window to keep list items concise.
newline_idx = working.rfind("\n", start + 1, target)
boundary = None
if newline_idx != -1 and newline_idx >= start + 1:
boundary = newline_idx + 1
if boundary is None or boundary <= start:
for idx in range(target, start, -1):
if working[idx - 1] in punctuation:
boundary = idx
break
if boundary is None or boundary <= start:
boundary = target
chunk = working[start:boundary]
if not preserve_whitespace:
chunk = chunk.strip()
if chunk:
chunks.append(chunk)
start = boundary
return chunks or ([working] if preserve_whitespace else [working.strip()])
def _split_multiline_sentence(text: str, strip_sentences: bool) -> list[str]:
if "\n" not in text:
return [text.strip() if strip_sentences else text]
segments = text.splitlines(keepends=not strip_sentences)
meaningful = [segment for segment in segments if segment.strip()]
if len(meaningful) <= 1:
return [text.strip() if strip_sentences else text]
# Skip splitting when the sentence already contains clear punctuation across lines.
punctuation_count = sum(1 for ch in text if ch in ".?!")
if punctuation_count >= len(meaningful):
return [text.strip() if strip_sentences else text]
# Avoid splitting when any line is excessively long (likely already handled elsewhere).
if any(len(seg.strip()) > DEFAULT_ENGLISH_SENTENCE_MAX_CHARS for seg in meaningful):
return [text.strip() if strip_sentences else text]
processed: list[str] = []
for segment in meaningful:
if strip_sentences:
value = segment.strip()
if value:
processed.append(value)
else:
processed.append(segment)
if processed:
return processed
return [text.strip() if strip_sentences else text]
def _collect_candidate_sentences(
example: Mapping[str, Any], splitter: SentenceSplitter
) -> list[str]:
"""Collect sentences from prefixes, manual overrides, or by splitting the context text."""
prefix_sentences = example.get("prefix_sentences") or []
manual_sentences = example.get("manual_sentences")
context_text = str(example.get("context_text", ""))
sentences: list[str] = [str(s) for s in prefix_sentences if s is not None]
if manual_sentences is not None:
sentences.extend(str(s) for s in manual_sentences if s is not None)
else:
sentences.extend(str(s) for s in splitter(context_text) if s is not None)
return sentences
def _fallback_sentence(context_text: str, strip_sentences: bool) -> str:
if not strip_sentences:
return context_text
stripped = context_text.strip()
return stripped or context_text
def _normalize_sentences(
raw_sentences: Sequence[str], context_text: str, strip_sentences: bool
) -> list[str]:
sentences: list[str] = []
for entry in raw_sentences:
text = str(entry)
if not text:
continue
segmented = _split_multiline_sentence(text, strip_sentences)
for segment in segmented:
if strip_sentences:
if segment:
sentences.append(segment)
else:
if segment:
sentences.append(segment)
if sentences:
return sentences
return [_fallback_sentence(context_text, strip_sentences)]
def _tokenize_sentences(tokenizer: Any, sentences: Sequence[str]) -> list[list[int]]:
if not sentences:
return []
tokenized = tokenizer(
list(sentences),
add_special_tokens=False,
return_attention_mask=False,
)
return tokenized.get("input_ids", []) if isinstance(tokenized, Mapping) else []
def _tokenize_sentences_with_context(
tokenizer: Any,
sentences: Sequence[str],
prefix_count: int,
context_text: str,
*,
strip_sentences: bool,
) -> list[list[int]]:
return _tokenize_sentences(tokenizer, sentences)
def _split_token_lists(
token_lists: Sequence[Sequence[int]],
max_fragment_tokens: int,
*,
keep_sentence_boundaries: bool = False,
) -> list[tuple[list[int], int, int, int]]:
fragments: list[tuple[list[int], int, int, int]] = []
global_index = 0
step = max(1, int(max_fragment_tokens))
for sentence_index, token_ids in enumerate(token_lists):
tokens = list(token_ids)
if not tokens:
continue
if keep_sentence_boundaries and len(tokens) <= max_fragment_tokens:
fragments.append((tokens, int(sentence_index), 0, global_index))
global_index += 1
continue
for fragment_index, start in enumerate(range(0, len(tokens), step)):
fragment_tokens = tokens[start : start + step]
if not fragment_tokens:
continue
fragments.append(
(fragment_tokens, int(sentence_index), int(fragment_index), global_index)
)
global_index += 1
return fragments
def _collect_sentences_for_job(
example: Mapping[str, Any],
splitter: SentenceSplitter,
strip_sentences: bool,
) -> tuple[list[str], float, float]:
context_text = str(example.get("context_text", ""))
cached_sentences = example.get("cached_sentences")
if cached_sentences is not None:
sentences = [str(sentence) for sentence in cached_sentences]
return sentences, 0.0, 0.0
start = perf_counter()
raw_sentences = _collect_candidate_sentences(example, splitter)
sentence_collect_time = perf_counter() - start
start = perf_counter()
sentences = _normalize_sentences(raw_sentences, context_text, strip_sentences)
sentence_normalize_time = perf_counter() - start
return sentences, sentence_collect_time, sentence_normalize_time
def _tokenize_sentences_for_examples(
tokenizer: Any,
sentences_nested: Sequence[Sequence[str]],
cached_token_lists: Sequence[Any] | None,
) -> tuple[list[list[list[int]]], list[float]]:
result_token_ids: list[list[list[int]] | None] = []
timings: list[float | None] = []
sentences_to_tokenize: list[str] = []
mapping: list[tuple[int, int]] = []
total_examples = len(sentences_nested)
cached_token_lists = cached_token_lists or [None] * total_examples
for example_index, (sentences, cached_tokens) in enumerate(
zip(sentences_nested, cached_token_lists)
):
if cached_tokens is not None:
token_lists = [[int(token) for token in tokens] for tokens in cached_tokens]
result_token_ids.append(token_lists)
timings.append(0.0)
continue
if sentences:
mapping.append((example_index, len(sentences)))
sentences_to_tokenize.extend(sentences)
result_token_ids.append(None)
timings.append(None)
if sentences_to_tokenize:
start = perf_counter()
tokenized = tokenizer(
sentences_to_tokenize,
add_special_tokens=False,
return_attention_mask=False,
)
tokenize_time = perf_counter() - start
input_ids = tokenized.get("input_ids", [])
pointer = 0
total_sentences = len(sentences_to_tokenize)
time_per_sentence = tokenize_time / total_sentences if total_sentences else 0.0
for example_index, sentence_count in mapping:
slice_ids = input_ids[pointer : pointer + sentence_count]
pointer += sentence_count
result_token_ids[example_index] = [
[int(token) for token in tokens] for tokens in slice_ids
]
timings[example_index] = time_per_sentence * sentence_count
finalized_token_ids: list[list[list[int]]] = []
finalized_timings: list[float] = []
for tokens, timing in zip(result_token_ids, timings):
finalized_token_ids.append(tokens or [])
finalized_timings.append(float(timing or 0.0))
return finalized_token_ids, finalized_timings
def _build_fragment_payload(
tokenizer: Any,
sentences: Sequence[str],
token_lists: Sequence[Sequence[int]],
context_text: str,
max_fragment_tokens: int,
strip_sentences: bool,
respect_sentence_boundaries: bool,
) -> tuple[dict[str, Any], float, float]:
normalized_tokens = [[int(token) for token in tokens] for tokens in token_lists]
start = perf_counter()
fragments = _split_token_lists(
normalized_tokens,
max_fragment_tokens,
keep_sentence_boundaries=respect_sentence_boundaries,
)
fragment_split_time = perf_counter() - start
if not fragments:
fallback_source = _fallback_sentence(context_text, strip_sentences)
fallback_tokens = tokenizer.encode(fallback_source, add_special_tokens=False)
fragments = [(list(fallback_tokens), 0, 0, 0)]
start = perf_counter()
fragment_payload = _decode_and_filter_fragments(
tokenizer,
fragments,
strip_sentences=strip_sentences,
)
fragment_decode_time = perf_counter() - start
if not fragment_payload["fragment_token_ids"]:
tokens, sentence_idx, fragment_idx, global_idx = fragments[0]
decoded_text = tokenizer.decode(
tokens,
skip_special_tokens=True,
clean_up_tokenization_spaces=False,
)
processed_text = decoded_text.strip() if strip_sentences else decoded_text
fragment_payload = {
"fragment_texts": [processed_text],
"fragment_token_ids": [list(tokens)],
"fragment_sentence_index": [sentence_idx],
"fragment_fragment_index": [fragment_idx],
"fragment_global_index": [global_idx],
}
return fragment_payload, fragment_split_time, fragment_decode_time
def _decode_and_filter_fragments(
tokenizer: Any,
fragments: Sequence[tuple[list[int], int, int, int]],
*,
strip_sentences: bool,
) -> dict[str, list[Any]]:
if not fragments:
return {
"fragment_texts": [],
"fragment_token_ids": [],
"fragment_sentence_index": [],
"fragment_fragment_index": [],
"fragment_global_index": [],
}
token_sequences = [tokens for tokens, _, _, _ in fragments]
fragment_texts = tokenizer.batch_decode(
token_sequences,
skip_special_tokens=True,
clean_up_tokenization_spaces=False,
)
filtered_tokens: list[list[int]] = []
filtered_texts: list[str] = []
sentence_indices: list[int] = []
fragment_indices: list[int] = []
global_indices: list[int] = []
for text, (tokens, sentence_idx, fragment_idx, global_idx) in zip(fragment_texts, fragments):
processed_text = text.strip() if strip_sentences else text
if strip_sentences:
if not processed_text:
continue
else:
if not text:
continue
filtered_tokens.append(list(tokens))
filtered_texts.append(processed_text)
sentence_indices.append(sentence_idx)
fragment_indices.append(fragment_idx)
global_indices.append(global_idx)
return {
"fragment_texts": filtered_texts,
"fragment_token_ids": filtered_tokens,
"fragment_sentence_index": sentence_indices,
"fragment_fragment_index": fragment_indices,
"fragment_global_index": global_indices,
}
def _fragmentize_single_job(
tokenizer: Any,
job: dict[str, Any],
*,
max_fragment_tokens: int,
splitter: SentenceSplitter,
strip_sentences: bool,
respect_sentence_boundaries: bool,
) -> dict[str, Any]:
sentences, collect_time, normalize_time = _collect_sentences_for_job(
job,
splitter,
strip_sentences,
)
token_ids_nested, tokenize_timings = _tokenize_sentences_for_examples(
tokenizer,
[sentences],
[job.get("cached_token_lists")],
)
token_lists = token_ids_nested[0]
if not token_lists:
cached_lists = job.get("cached_token_lists")
token_lists = (
[[int(token) for token in tokens] for tokens in cached_lists] if cached_lists else []
)
fragment_payload, fragment_split_time, fragment_decode_time = _build_fragment_payload(
tokenizer=tokenizer,
sentences=sentences,
token_lists=token_lists,
context_text=str(job.get("context_text", "")),
max_fragment_tokens=max_fragment_tokens,
strip_sentences=strip_sentences,
respect_sentence_boundaries=respect_sentence_boundaries,
)
entry = {
"sentences": sentences,
"timing_sentence_collect": collect_time,
"timing_sentence_normalize": normalize_time,
"timing_tokenize": tokenize_timings[0],
"timing_fragment_split": fragment_split_time,
"timing_fragment_decode": fragment_decode_time,
}
entry.update(fragment_payload)
return entry
def _preprocess_collate_fn(
batch: Sequence[tuple[dict[str, Any], dict[str, Any]]],
) -> tuple[list[dict[str, Any]], list[dict[str, Any]]]:
if not batch:
return [], []
jobs, entries = zip(*batch)
return list(jobs), list(entries)
class _PreprocessDataset(Dataset):
"""Map-style dataset that fragmentizes preprocessing jobs."""
def __init__(
self,
jobs: Sequence[dict[str, Any]],
tokenizer: Any,
splitter: SentenceSplitter,
max_fragment_tokens: int,
strip_sentences: bool,
respect_sentence_boundaries: bool,
) -> None:
self._jobs = list(jobs)
self._tokenizer = tokenizer
self._splitter = splitter
self._max_fragment_tokens = max_fragment_tokens
self._strip_sentences = strip_sentences
self._respect_sentence_boundaries = respect_sentence_boundaries
def __len__(self) -> int:
return len(self._jobs)
def __getitem__(self, index: int) -> tuple[dict[str, Any], dict[str, Any]]:
job = self._jobs[index]
entry = _fragmentize_single_job(
self._tokenizer,
job,
max_fragment_tokens=self._max_fragment_tokens,
splitter=self._splitter,
strip_sentences=self._strip_sentences,
respect_sentence_boundaries=self._respect_sentence_boundaries,
)
return job, entry
@dataclass
class _FragmentRecord:
"""Metadata for a context fragment produced during long-context splitting."""
text: str
sentence_index: int
fragment_index: int
global_index: int
token_length: int
token_ids: list[int]
def fast_bunkai_sentence_splitter(text: str) -> list[str]:
"""Split sentences with fast-bunkai. Raises if the library is unavailable."""
if _FAST_BUNKAI is None:
raise RuntimeError(
"fast-bunkai is not installed. Install `fast-bunkai` or provide a custom sentence_splitter "
"(e.g. `simple_sentence_splitter`)."
)
sentences = [sentence for sentence in _FAST_BUNKAI(text) if sentence]
if sentences:
return sentences
return [text] if text else []
def simple_sentence_splitter(text: str) -> list[str]:
"""Lightweight regex-based sentence splitter for Japanese text."""
if not text:
return []
pattern = re.compile(r".+?(?:。|!|?|!|\?|\n|$)", re.S)
sentences = [match for match in pattern.findall(text) if match]
if sentences:
return sentences
return [text] if text else []
def create_english_sentence_splitter(
max_chars: int = DEFAULT_ENGLISH_SENTENCE_MAX_CHARS,
) -> SentenceSplitter:
"""Factory for English sentence splitters that preserve whitespace and newlines.
Processing pipeline (executed for every call of the returned splitter):
1. `_iter_english_blocks` walks the source text line-by-line, grouping adjacent
lines while respecting bullet-style headings. This yields blocks together with
their start/end byte offsets so we always know where we are in the original
string.
2. Each block is tokenised with NLTK's Punkt model (`span_tokenize`). The spans
are mapped back to absolute offsets (`global_start`/`global_end`). We stretch
the end offset across trailing whitespace so that paragraph boundaries keep
their newline markers.
3. Every raw segment is routed through `_split_overlong_sentence`, which trims
*nothing* but ensures no fragment exceeds ``max_chars``. When Punkt does not
emit any spans (e.g., extremely long strings without punctuation), the whole
block is handed directly to this fallback splitter so we still return
manageable chunks.
4. Empty segments and whitespace-only fragments are skipped. If the whole text
reduces to whitespace we fall back to returning the stripped source.
This design guarantees that:
* sentence boundaries preserve the original whitespace/newline layout,
* sections and lists stay intact because block slicing mirrors the input, and
* even pathological long sentences are clipped deterministically at
``max_chars`` before downstream tokenisation.
"""
if max_chars <= 0:
raise ValueError("max_chars must be positive")
def _split_text(text: str) -> list[str]:
if not text:
return []
tokenizer = _get_english_sentence_tokenizer()
sentences: list[str] = []
for block_text, block_start, block_end in _iter_english_blocks(text):
if not block_text:
continue
try:
spans = list(tokenizer.span_tokenize(block_text))
except LookupError as exc: # pragma: no cover - requires punkt download
raise LookupError(
"Missing NLTK punkt tokenizer. Run `python -m nltk.downloader punkt`."
) from exc
if not spans:
segment = text[block_start:block_end]
if segment.strip():
sentences.extend(
_split_overlong_sentence(
segment,
max_chars=max_chars,
preserve_whitespace=True,
)
)
continue
for span_start, span_end in spans:
global_start = block_start + span_start
global_end = block_start + span_end
extended_end = global_end
while extended_end < block_end and text[extended_end].isspace():
extended_end += 1
segment = text[global_start:extended_end]
if segment and segment.strip():
sentences.extend(
_split_overlong_sentence(
segment,
max_chars=max_chars,
preserve_whitespace=True,
)
)
if sentences:
return sentences
fallback = text.strip()
return [fallback] if fallback else []
return _split_text
_DEFAULT_ENGLISH_SENTENCE_SPLITTER = create_english_sentence_splitter()
def english_sentence_splitter(text: str) -> list[str]:
"""Default English sentence splitter using the module's configured limit."""
return _DEFAULT_ENGLISH_SENTENCE_SPLITTER(text)
def create_auto_sentence_splitter(
*,
japanese_splitter: SentenceSplitter = fast_bunkai_sentence_splitter,
english_splitter: SentenceSplitter = english_sentence_splitter,
kana_window: int = 500,
min_kana_per_window: int = 1,
) -> SentenceSplitter:
"""Return a splitter that detects Japanese text via kana density before splitting."""
def _split_text(text: str) -> list[str]:
if is_japanese_fast(text, window=kana_window, min_kana_per_window=min_kana_per_window):
return japanese_splitter(text)
return english_splitter(text)
return _split_text
def _fragmentize_example( # pyright: ignore[reportUnusedFunction]
example: dict[str, Any],
tokenizer,
max_fragment_tokens: int,
splitter: SentenceSplitter,
strip_sentences: bool,
*,
respect_sentence_boundaries: bool = False,
) -> dict[str, Any]:
"""Fragmentize a single context example for parallel preprocessing."""
context_text = str(example.get("context_text", ""))
cached_sentences = example.get("cached_sentences")
cached_token_lists = example.get("cached_token_lists")
timer_start = perf_counter()
if cached_sentences is not None:
sentences = [str(sentence) for sentence in cached_sentences]
sentence_collect_time = 0.0
sentence_normalize_time = 0.0
else:
raw_sentences = _collect_candidate_sentences(example, splitter)
sentence_collect_time = perf_counter() - timer_start
timer_start = perf_counter()
sentences = _normalize_sentences(raw_sentences, context_text, strip_sentences)
sentence_normalize_time = perf_counter() - timer_start
prefix_sentences = example.get("prefix_sentences") or []
if cached_token_lists is not None:
token_lists = [[int(token) for token in tokens] for tokens in cached_token_lists]
tokenize_time = 0.0
else:
timer_start = perf_counter()
token_lists = _tokenize_sentences_with_context(
tokenizer,
sentences,
len(prefix_sentences),
context_text,
strip_sentences=strip_sentences,
)
tokenize_time = perf_counter() - timer_start
timer_start = perf_counter()
fragments = _split_token_lists(
token_lists,
max_fragment_tokens,
keep_sentence_boundaries=respect_sentence_boundaries,
)
fragment_split_time = perf_counter() - timer_start
if not fragments:
timer_start = perf_counter()
fallback_source = _fallback_sentence(context_text, strip_sentences)
fallback_tokens = tokenizer.encode(fallback_source, add_special_tokens=False)
tokenize_time += perf_counter() - timer_start
fragments = [(list(fallback_tokens), 0, 0, 0)]
sentences = [fallback_source]
timer_start = perf_counter()
fragment_payload = _decode_and_filter_fragments(
tokenizer,
fragments,
strip_sentences=strip_sentences,
)
decode_time = perf_counter() - timer_start
if not fragment_payload["fragment_token_ids"]:
tokens, sentence_idx, fragment_idx, global_idx = fragments[0]
timer_start = perf_counter()
decoded_text = tokenizer.decode(
tokens,
skip_special_tokens=True,
clean_up_tokenization_spaces=False,
)
decode_time += perf_counter() - timer_start
processed_text = decoded_text.strip() if strip_sentences else decoded_text
fragment_payload = {
"fragment_texts": [processed_text],
"fragment_token_ids": [list(tokens)],
"fragment_sentence_index": [sentence_idx],
"fragment_fragment_index": [fragment_idx],
"fragment_global_index": [global_idx],
}
return {
"sentences": sentences,
"fragment_texts": fragment_payload["fragment_texts"],
"fragment_sentence_index": fragment_payload["fragment_sentence_index"],
"fragment_fragment_index": fragment_payload["fragment_fragment_index"],
"fragment_global_index": fragment_payload["fragment_global_index"],
"fragment_token_ids": fragment_payload["fragment_token_ids"],
"timing_sentence_collect": sentence_collect_time,
"timing_sentence_normalize": sentence_normalize_time,
"timing_tokenize": tokenize_time,
"timing_fragment_split": fragment_split_time,
"timing_fragment_decode": decode_time,
}
class OpenProvenceConfig(PretrainedConfig):
"""Configuration metadata for OpenProvence checkpoints."""
model_type = "open_provence"
def __init__(
self,
mode: str = "reranking_pruning",
base_model_name_or_path: str | None = None,
base_model_config: dict[str, Any] | PretrainedConfig | None = None,
tokenizer_name_or_path: str | None = None,
pruning_config: dict | None = None,
max_length: int = 512,
num_labels: int | None = None,
num_pruning_labels: int | None = None,
encoder_architecture: str | None = None,
**kwargs: Any,
) -> None:
raw_default_threadshold = kwargs.pop("default_threadshold", None)
alt_default_threshold = kwargs.pop("default_threshold", None)
# Backwards compatibility: drop deprecated language hints from historical configs.
kwargs.pop("splitter_default_language", None)
kwargs.pop("standalone_process_default_language", None)
super().__init__(**kwargs)
self.mode = mode
if isinstance(base_model_config, PretrainedConfig):
base_model_config = base_model_config.to_dict()
self.base_model_name_or_path = base_model_name_or_path
self.base_model_config = dict(base_model_config) if base_model_config is not None else None
self.tokenizer_name_or_path = tokenizer_name_or_path
self.pruning_config = pruning_config or {}
self.max_length = max_length
self.encoder_architecture = encoder_architecture
self.num_labels = 1 if num_labels is None else num_labels
self.num_pruning_labels = 2 if num_pruning_labels is None else num_pruning_labels
self.default_threadshold = None
if raw_default_threadshold is not None:
try:
self.default_threadshold = float(raw_default_threadshold)
except (TypeError, ValueError) as exc:
raise TypeError(
"Config value 'default_threadshold' must be a numeric type convertible to float."
) from exc
elif alt_default_threshold is not None:
warnings.warn(
"Config key 'default_threshold' detected. Did you intend 'default_threadshold'? "
"Using the provided value for backwards compatibility.",
RuntimeWarning,
stacklevel=2,
)
try:
self.default_threadshold = float(alt_default_threshold)
except (TypeError, ValueError) as exc:
raise TypeError(
"Config value 'default_threshold' must be a numeric type convertible to float."
) from exc
self.default_threshold = self.default_threadshold
class OpenProvencePreTrainedModel(PreTrainedModel):
"""Base class implementing the shared Provence reranker backbone."""
config_class = OpenProvenceConfig
base_model_prefix = "open_provence"
def __init__(
self,
config: OpenProvenceConfig,
*model_args: Any,
device: str | torch.device | None = None,
**model_kwargs: Any,
) -> None:
_ensure_transformers_logging_configured()
cleaned_kwargs = dict(model_kwargs)
cleaned_kwargs.pop("device", None)
resolved_device: torch.device | None = None
if device is not None:
try:
resolved_device = resolve_inference_device(device)
except ValueError as exc:
class_name = self.__class__.__name__
raise ValueError(
f"Invalid device specification for {class_name}: {device!r}"
) from exc
super().__init__(config, *model_args, **cleaned_kwargs)
self.max_length = config.max_length
self.num_labels = config.num_labels
self.num_pruning_labels = config.num_pruning_labels
self.default_splitter_language = DEFAULT_SPLITTER_LANGUAGE
self._runtime_device = torch.device("cpu")
self.base_model_config = self._build_base_model_config(config)
self.ranking_model = AutoModelForSequenceClassification.from_config(self.base_model_config)
self.pruning_head = OpenProvenceHead(OpenProvenceHeadConfig(**config.pruning_config))
self.tokenizer = self._init_tokenizer(config)
self._manual_special_tokens_required = False
self._manual_cls_token_id: int | None = None
self._manual_sep_token_id: int | None = None
self._update_tokenizer_runtime()
self.default_threshold = self._resolve_default_threshold(config)
self.eval()
if resolved_device is not None:
self.to(device=resolved_device)
def _build_base_model_config(self, config: OpenProvenceConfig) -> PretrainedConfig:
if config.base_model_config:
config_dict = deepcopy(config.base_model_config)
model_type = config_dict.pop("model_type", None)
if model_type is None:
raise ValueError(
"base_model_config must include 'model_type' to rebuild the backbone."
)
base_config = AutoConfig.for_model(model_type, **config_dict)
else:
base_reference = (
config.base_model_name_or_path
or config._name_or_path
or config.encoder_architecture
)
if not base_reference:
raise ValueError(
"OpenProvenceConfig must define base_model_config or base_model_name_or_path."
)
base_config = AutoConfig.from_pretrained(base_reference, trust_remote_code=True)
base_config.num_labels = config.num_labels
return base_config
def _init_tokenizer(self, config: OpenProvenceConfig):
tokenizer_reference = (
config.tokenizer_name_or_path or config._name_or_path or config.base_model_name_or_path
)
if not tokenizer_reference:
raise ValueError("Unable to determine tokenizer reference for OpenProvence model.")
try:
tokenizer = AutoTokenizer.from_pretrained(tokenizer_reference)
except Exception as exc: # pragma: no cover - surface failure to caller
raise RuntimeError(
f"Failed to initialize tokenizer from '{tokenizer_reference}'."
) from exc
return tokenizer
def _update_tokenizer_runtime(self, max_length_override: int | None = None) -> None:
if self.tokenizer is None:
return
upper_bound = max(getattr(self.tokenizer, "model_max_length", 0) or 0, 1_000_000)
if max_length_override is not None and max_length_override > 0:
upper_bound = max(upper_bound, int(max_length_override))
elif self.max_length and self.max_length > 0:
upper_bound = max(upper_bound, int(self.max_length))
self.tokenizer.model_max_length = upper_bound
def _update_runtime_defaults(self) -> None:
tokenizer = cast(Any, self.tokenizer)
special_map = cast(Mapping[str, Any], getattr(tokenizer, "special_tokens_map", {}))
self._manual_special_tokens_required = self._requires_manual_special_tokens() # type: ignore[reportCallIssue]
if self._manual_special_tokens_required:
self._manual_cls_token_id = self._resolve_special_token_id(
getattr(tokenizer, "cls_token_id", None),
special_map.get("cls_token_id"),
getattr(tokenizer, "bos_token_id", None),
special_map.get("bos_token_id"),
) # type: ignore[reportCallIssue]
self._manual_sep_token_id = self._resolve_special_token_id(
getattr(tokenizer, "sep_token_id", None),
special_map.get("sep_token_id"),
getattr(tokenizer, "eos_token_id", None),
special_map.get("eos_token_id"),
) # type: ignore[reportCallIssue]
else:
self._manual_cls_token_id = None
self._manual_sep_token_id = None
def _resolve_default_threshold(self, config: OpenProvenceConfig) -> float:
value = getattr(config, "default_threadshold", None)
if value is None:
return DEFAULT_PROCESS_THRESHOLD
try:
return float(value)
except (TypeError, ValueError) as exc: # pragma: no cover - config validation
raise TypeError(
"OpenProvenceConfig.default_threadshold must be numeric when provided."
) from exc
def to(self, *args: Any, **kwargs: Any) -> OpenProvencePreTrainedModel: # type: ignore[override]
result = super().to(*args, **kwargs)
candidate = kwargs.get("device") if kwargs else None
if candidate is None and args:
candidate = args[0]
if candidate is not None:
self._runtime_device = torch.device(candidate)
return cast("OpenProvencePreTrainedModel", result)
def get_input_embeddings(self):
return self.ranking_model.get_input_embeddings()
def set_input_embeddings(self, value):
self.ranking_model.set_input_embeddings(value)
def load_state_dict(self, state_dict: Mapping[str, torch.Tensor], strict: bool = True): # type: ignore[override]
converted = self._convert_legacy_state_dict(state_dict)
return super().load_state_dict(converted, strict=strict)
@staticmethod
def _convert_legacy_state_dict(
state_dict: Mapping[str, torch.Tensor],
) -> Mapping[str, torch.Tensor]:
if any(key.startswith("ranking_model.") for key in state_dict):
return state_dict
converted: OrderedDict[str, torch.Tensor] = OrderedDict()
for key, value in state_dict.items():
if key.startswith("pruning_head."):
converted[key] = value
else:
converted[f"ranking_model.{key}"] = value
return converted
class OpenProvenceModel(OpenProvencePreTrainedModel):
"""Lightweight wrapper around the Provence reranker checkpoint."""
def __init__(
self,
config: OpenProvenceConfig,
*model_args: Any,
device: str | torch.device | None = None,
**model_kwargs: Any,
) -> None:
super().__init__(config, *model_args, device=device, **model_kwargs)
self.default_splitter_language = DEFAULT_SPLITTER_LANGUAGE
self._update_tokenizer_runtime()
self._update_runtime_defaults()
def _resolve_process_threshold(self, threshold: float | None) -> float:
if threshold is None:
resolved = getattr(self, "default_threshold", DEFAULT_PROCESS_THRESHOLD)
if resolved is None:
resolved = DEFAULT_PROCESS_THRESHOLD
else:
resolved = threshold
try:
return float(resolved)
except (TypeError, ValueError) as exc:
raise TypeError("Resolved threshold must be numeric.") from exc
def _resolve_special_token_id(self, *candidates: int | None) -> int | None:
for candidate in candidates:
if isinstance(candidate, int):
return candidate
return None
def _requires_manual_special_tokens(self) -> bool:
"""Detect tokenizers (e.g., ModernBERT) that omit special tokens in build_inputs."""
tokenizer = cast(Any, self.tokenizer)
try:
query_tokens = tokenizer.encode("open provence query", add_special_tokens=False)
context_tokens = tokenizer.encode("open provence document", add_special_tokens=False)
except Exception: # pragma: no cover - tokenizer specific errors
return False
if not query_tokens or not context_tokens:
return False
built = tokenizer.build_inputs_with_special_tokens(query_tokens, context_tokens)
built = [int(token) for token in built]
special_map = cast(Mapping[str, Any], getattr(tokenizer, "special_tokens_map", {}))
cls_candidates = [
getattr(tokenizer, "cls_token_id", None),
special_map.get("cls_token_id"),
getattr(tokenizer, "bos_token_id", None),
special_map.get("bos_token_id"),
]
cls_candidates = [value for value in cls_candidates if isinstance(value, int)]
sep_candidates = [
getattr(tokenizer, "sep_token_id", None),
special_map.get("sep_token_id"),
getattr(tokenizer, "eos_token_id", None),
special_map.get("eos_token_id"),
]
sep_candidates = [value for value in sep_candidates if isinstance(value, int)]
missing_cls = bool(cls_candidates) and not any(token in cls_candidates for token in built)
missing_sep = bool(sep_candidates) and not any(token in sep_candidates for token in built)
return missing_cls or missing_sep
@staticmethod
def _extract_model_output(outputs: Any, key: str) -> torch.Tensor:
candidate: torch.Tensor | None = None
if isinstance(outputs, Mapping):
candidate = outputs.get(key)
if candidate is None and key == "ranking_logits":
candidate = outputs.get("logits")
if candidate is None:
candidate = getattr(outputs, key, None)
if candidate is None and key == "ranking_logits":
candidate = getattr(outputs, "logits", None)
if candidate is None:
raise KeyError(f"{key} not found in model outputs")
return candidate
@classmethod
def from_pretrained(
cls,
pretrained_model_name_or_path: str | Path,
*,
device: str | torch.device | None = None,
trust_remote_code: bool = True,
max_length: int | None = None,
torch_dtype: torch.dtype | str | None = None,
**kwargs: Any,
) -> OpenProvenceModel:
"""Load a finetuned Provence reranker with pruning head."""
_ensure_transformers_logging_configured()
try:
resolved_device = resolve_inference_device(device)
except ValueError as exc:
raise ValueError(
f"Invalid device specification for OpenProvenceModel: {device!r}"
) from exc
resolved_device_str = str(resolved_device).lower()
if "torch_dtype" in kwargs and "dtype" not in kwargs:
kwargs["dtype"] = kwargs.pop("torch_dtype")
target_dtype = kwargs.get("dtype")
if target_dtype is None and torch_dtype is not None:
target_dtype = torch_dtype
if target_dtype is None:
dtype_hint = _select_default_torch_dtype(resolved_device_str)
if dtype_hint is not None:
target_dtype = dtype_hint
attn_impl = kwargs.get("attn_implementation")
want_flash_attention = False
if resolved_device_str.startswith("cuda"):
if _supports_flash_attention():
want_flash_attention = True
if target_dtype is None:
bf16_supported = getattr(torch.cuda, "is_bf16_supported", lambda: False)()
target_dtype = torch.bfloat16 if bf16_supported else torch.float16
if attn_impl is None:
attn_impl = "flash_attention_2"
else:
if attn_impl is None:
attn_impl = "eager"
elif resolved_device_str.startswith("mps"):
if attn_impl is None:
attn_impl = "eager"
if target_dtype is not None:
kwargs["dtype"] = target_dtype
if attn_impl is not None:
kwargs["attn_implementation"] = attn_impl
def _apply_config_overrides(target: Any) -> None:
attn_impl = kwargs.get("attn_implementation")
if attn_impl is not None and hasattr(target, "config"):
setattr(target.config, "attn_implementation", attn_impl)
dtype_value = kwargs.get("dtype")
if dtype_value is not None and hasattr(target, "config"):
setattr(target.config, "torch_dtype", dtype_value)
try:
model = super().from_pretrained(
pretrained_model_name_or_path,
trust_remote_code=trust_remote_code,
**kwargs,
)
except Exception:
if not want_flash_attention:
raise
kwargs["attn_implementation"] = "eager"
kwargs["dtype"] = torch.float32
model = super().from_pretrained(
pretrained_model_name_or_path,
trust_remote_code=trust_remote_code,
**kwargs,
)
requested_dtype = kwargs.get("dtype")
_apply_config_overrides(model)
if hasattr(model, "ranking_model"):
_apply_config_overrides(getattr(model, "ranking_model"))
dtype_for_to = _coerce_dtype_for_torch_to(requested_dtype)
if dtype_for_to is not None:
model.to(device=resolved_device, dtype=dtype_for_to)
else:
model.to(resolved_device)
if max_length is not None:
model.max_length = int(max_length)
if hasattr(model.config, "max_length"):
model.config.max_length = int(max_length)
model._update_tokenizer_runtime(max_length_override=max_length)
model._update_runtime_defaults()
model.eval()
return model
def forward(
self,
input_ids: torch.Tensor | None = None,
attention_mask: torch.Tensor | None = None,
labels: torch.Tensor | None = None,
return_dict: bool | None = None,
**kwargs: Any,
) -> ModelOutput | tuple[torch.Tensor, ...]:
"""Run the ranking backbone and pruning head."""
if input_ids is None:
raise ValueError("input_ids must be provided")
effective_return_dict = return_dict if return_dict is not None else True
attention_mask = (
attention_mask.to(self._runtime_device) if attention_mask is not None else None
)
input_ids = input_ids.to(self._runtime_device)
outputs = self.ranking_model(
input_ids=input_ids,
attention_mask=attention_mask,
output_hidden_states=True,
return_dict=True,
**kwargs,
)
ranking_logits = cast(FloatTensor, outputs.logits)
hidden_states = outputs.hidden_states[-1]
pruning_inputs = hidden_states
head_param = next(self.pruning_head.parameters(), None)
if head_param is not None and pruning_inputs.dtype != head_param.dtype:
pruning_inputs = pruning_inputs.to(head_param.dtype)
pruning_outputs = self.pruning_head(
hidden_states=pruning_inputs,
attention_mask=attention_mask,
)
pruning_logits = cast(Tensor, pruning_outputs["logits"])
loss_tensor: torch.Tensor | None = None
if labels is not None:
if self.config.num_labels == 1:
loss_fct = nn.BCEWithLogitsLoss()
loss_tensor = loss_fct(ranking_logits.view(-1), labels.float())
else:
loss_fct = nn.CrossEntropyLoss()
loss_tensor = loss_fct(
ranking_logits.view(-1, self.config.num_labels), labels.view(-1)
)
loss_output: FloatTensor | None
if loss_tensor is None:
loss_output = None
else:
loss_output = cast(FloatTensor, loss_tensor.to(dtype=ranking_logits.dtype))
result = SequenceClassifierOutput(
loss=loss_output,
logits=ranking_logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
setattr(result, "pruning_logits", pruning_logits)
setattr(result, "ranking_logits", ranking_logits)
if not effective_return_dict:
output: tuple[torch.Tensor, ...] = (ranking_logits, pruning_logits)
if loss_output is not None:
return (loss_output,) + output
return output
return result
@torch.no_grad()
def get_raw_predictions(
self,
query: str,
contexts: Iterable[str],
) -> OpenProvenceRawPrediction:
"""Compute token-level keep probabilities for a single context list."""
batch_result = self.get_raw_predictions_batch(query, [list(contexts)])
return batch_result[0]
def get_raw_predictions_batch(
self,
query: str | Sequence[str],
contexts_batch: Sequence[Sequence[str]],
batch_size: int | None = None,
) -> list[OpenProvenceRawPrediction]:
"""Compute raw predictions for multiple context lists.
Supports either a single query string shared across the batch or a sequence of
per-sample queries matching ``contexts_batch``.
"""
if not contexts_batch:
return []
sep_token = self.tokenizer.sep_token or ""
if batch_size is None or batch_size <= 0:
batch_size = len(contexts_batch)
if isinstance(query, Sequence) and not isinstance(query, str):
query_list = [str(entry) for entry in query]
if len(query_list) != len(contexts_batch):
raise ValueError(
"When providing multiple queries, their count must match contexts_batch."
)
else:
query_list = [str(query)] * len(contexts_batch)
results: list[OpenProvenceRawPrediction] = []
for start in range(0, len(contexts_batch), batch_size):
chunk = contexts_batch[start : start + batch_size]
chunk_queries = query_list[start : start + batch_size]
chunk_combined = [
chunk_queries[idx] + sep_token + "".join(contexts)
for idx, contexts in enumerate(chunk)
]
encoding = self.tokenizer(
chunk_combined,
padding=True,
truncation=True,
max_length=self.max_length,
return_tensors="pt",
)
encoding = {key: value.to(self._runtime_device) for key, value in encoding.items()}
model_outputs = self.forward(return_dict=True, **encoding)
ranking_logits = self._extract_model_output(model_outputs, "ranking_logits")
pruning_logits = self._extract_model_output(model_outputs, "pruning_logits")
ranking_logits = ranking_logits.detach().cpu()
pruning_logits = pruning_logits.detach().cpu()
if ranking_logits.dtype != torch.float32:
ranking_logits = ranking_logits.to(dtype=torch.float32)
if pruning_logits.dtype != torch.float32:
pruning_logits = pruning_logits.to(dtype=torch.float32)
for idx, contexts in enumerate(chunk):
if len(contexts) == 0:
continue
logits = ranking_logits[idx]
if logits.ndim == 0 or logits.numel() == 1:
ranking_score = torch.sigmoid(logits.flatten())[0].item()
else:
ranking_score = torch.sigmoid(logits[..., 0]).item()
pruning_logit = pruning_logits[idx]
pruning_probs = torch.softmax(pruning_logit, dim=-1).numpy()
if pruning_probs.ndim == 2 and pruning_probs.shape[1] == 2:
pruning_probs = pruning_probs[:, 1]
elif pruning_probs.ndim == 1:
pruning_probs = pruning_probs
else:
pruning_probs = pruning_probs.reshape(-1)
context_ranges = self._context_ranges_from_contexts(chunk_queries[idx], contexts)
results.append(
OpenProvenceRawPrediction(
query=chunk_queries[idx],
contexts=list(contexts),
ranking_score=ranking_score,
pruning_probs=pruning_probs,
context_ranges=context_ranges,
)
)
return results
def predict_with_thresholds(
self,
query: str,
contexts: Iterable[str],
thresholds: Iterable[float],
*,
use_majority: bool = False,
) -> dict[str, Any]:
"""Return keep/delete decisions for each context under the thresholds."""
raw = self.get_raw_predictions(query, contexts)
predictions: dict[float, list[int]] = {}
for threshold in thresholds:
context_predictions: list[int] = []
for start, end in raw.context_ranges:
segment = raw.pruning_probs[start:end]
if segment.size == 0:
context_predictions.append(1)
continue
if use_majority:
kept_tokens = np.count_nonzero(segment > threshold)
context_predictions.append(1 if kept_tokens >= (segment.size / 2) else 0)
else:
mean_prob = float(segment.mean())
context_predictions.append(1 if mean_prob > threshold else 0)
predictions[threshold] = context_predictions
return {
"query": raw.query,
"contexts": raw.contexts,
"ranking_score": raw.ranking_score,
"predictions": predictions,
"context_ranges": raw.context_ranges,
"pruning_probs": raw.pruning_probs,
}
def _compute_context_ranges(
self,
query: str,
contexts: list[str],
pruning_probs: np.ndarray,
) -> list[tuple[int, int]]:
"""Reconstruct token spans for each context string."""
sep_token = self.tokenizer.sep_token or ""
prefix = query + sep_token
context_boundaries: list[int] = []
for idx in range(len(contexts)):
cumulative_text = prefix + "".join(contexts[: idx + 1])
cumulative_encoding = self.tokenizer(
cumulative_text,
padding=False,
truncation=True,
max_length=self.max_length,
return_tensors="pt",
)
input_ids = cast(Tensor, cumulative_encoding["input_ids"])
context_boundaries.append(int(input_ids.shape[1]))
prefix_encoding = self.tokenizer(
prefix,
padding=False,
truncation=False,
return_tensors="pt",
)
prefix_len = int(cast(Tensor, prefix_encoding["input_ids"]).shape[1])
context_ranges: list[tuple[int, int]] = []
prev = prefix_len
total = pruning_probs.shape[0]
for boundary in context_boundaries:
end = min(boundary, total)
context_ranges.append((prev, end))
prev = end
return context_ranges
def _context_ranges_from_contexts(
self,
query: str,
contexts: Sequence[str],
) -> list[tuple[int, int]]:
"""Compute token index ranges for a list of contexts given a query."""
if not contexts:
return []
sep_token = self.tokenizer.sep_token or ""
prefix = query + sep_token
cumulative_texts = []
for idx in range(len(contexts)):
cumulative_texts.append(prefix + "".join(contexts[: idx + 1]))
boundaries: list[int] = []
for text in cumulative_texts:
encoding = self.tokenizer(
text,
padding=False,
truncation=True,
max_length=self.max_length,
return_tensors="pt",
)
input_ids = cast(Tensor, encoding["input_ids"])
boundaries.append(int(input_ids.shape[1]))
prefix_encoding = self.tokenizer(
prefix,
padding=False,
truncation=False,
return_tensors="pt",
)
prefix_len = int(cast(Tensor, prefix_encoding["input_ids"]).shape[1])
ranges: list[tuple[int, int]] = []
prev = prefix_len
for boundary in boundaries:
ranges.append((prev, boundary))
prev = boundary
return ranges
def _resolve_prefix_sentences(
self,
title_spec: None | str | list[str] | list[list[str]],
context_idx: int,
) -> tuple[list[str], bool]:
"""Determine prefix sentences and whether the first context sentence is a title."""
prefix_sentences: list[str] = []
title_is_first_sentence = False
if title_spec == "first_sentence":
title_is_first_sentence = True
elif isinstance(title_spec, list):
if title_spec and isinstance(title_spec[0], list):
raw_title = title_spec[context_idx] if context_idx < len(title_spec) else None
if raw_title:
prefix_sentences.extend(
[
title.strip()
for title in raw_title
if isinstance(title, str) and title.strip()
]
)
else:
raw_title = title_spec[context_idx] if context_idx < len(title_spec) else None
if isinstance(raw_title, str) and raw_title.strip():
prefix_sentences.append(raw_title.strip())
elif isinstance(title_spec, str) and title_spec.strip():
prefix_sentences.append(title_spec.strip())
if prefix_sentences:
last_idx = len(prefix_sentences) - 1
prefix_sentences[last_idx] = prefix_sentences[last_idx].rstrip("\n") + "\n"
return prefix_sentences, title_is_first_sentence
def _resolve_sentence_splitter(
self,
splitter: SentenceSplitter | Mapping[str, SentenceSplitter] | None,
language: str | None,
) -> SentenceSplitter:
if isinstance(splitter, Mapping):
if language is None:
raise ValueError("language must be provided when sentence_splitter is a mapping")
if language in splitter:
return splitter[language]
raise ValueError(f"No sentence splitter registered for language '{language}'")
if callable(splitter):
return splitter
default_language = getattr(self, "default_splitter_language", None)
lang = language if language is not None else default_language
if lang is None:
lang = "auto"
lang_normalized = str(lang).lower()
if lang_normalized == "auto":
return create_auto_sentence_splitter()
if lang_normalized == "ja":
return fast_bunkai_sentence_splitter
if lang_normalized == "en":
return english_sentence_splitter
raise ValueError(
f"Unsupported language code for sentence splitting: '{lang}'. Supported values are 'auto', 'en', and 'ja'."
)
def _run_sequential_fragmentize(
self,
jobs: list[dict[str, Any]],
*,
max_fragment_tokens: int,
splitter: SentenceSplitter,
show_progress: bool,
strip_sentences: bool,
respect_sentence_boundaries: bool,
) -> list[dict[str, Any]]:
processed_entries: list[dict[str, Any]] = []
if not jobs:
return processed_entries
progress = None
if show_progress and is_progress_bar_enabled():
try:
from tqdm import tqdm # pragma: no cover - optional dependency
except Exception: # pragma: no cover - tqdm may be unavailable
progress = None
else:
progress = tqdm(total=len(jobs), desc="Preprocess")
for job in jobs:
entry = _fragmentize_single_job(
self.tokenizer,
job,
max_fragment_tokens=max_fragment_tokens,
splitter=splitter,
strip_sentences=strip_sentences,
respect_sentence_boundaries=respect_sentence_boundaries,
)
processed_entries.append(entry)
if progress is not None:
progress.update(1)
if progress is not None:
progress.close()
return processed_entries
def _truncate_fragment(self, fragment: _FragmentRecord, max_tokens: int) -> _FragmentRecord:
if max_tokens <= 0:
max_tokens = 1
if fragment.token_length <= max_tokens:
return fragment
new_tokens = fragment.token_ids[:max_tokens]
new_text = self.tokenizer.decode(
new_tokens,
skip_special_tokens=True,
clean_up_tokenization_spaces=False,
)
return _FragmentRecord(
text=new_text,
sentence_index=fragment.sentence_index,
fragment_index=fragment.fragment_index,
global_index=fragment.global_index,
token_length=len(new_tokens),
token_ids=list(new_tokens),
)
def _prepare_block_inputs(
self,
query_tokens: Sequence[int],
fragments: Sequence[_FragmentRecord],
) -> tuple[list[int], list[int], list[int] | None, list[tuple[int, int]]]:
query_list = [int(token) for token in query_tokens]
context_tokens: list[int] = []
for fragment in fragments:
context_tokens.extend(int(token) for token in fragment.token_ids)
built_with_specials = self.tokenizer.build_inputs_with_special_tokens(
query_list, context_tokens
)
built_with_specials = [int(token) for token in built_with_specials]
manual_override = getattr(self, "_manual_special_tokens_required", False)
manual_cls_token = getattr(self, "_manual_cls_token_id", None)
manual_sep_token = getattr(self, "_manual_sep_token_id", None)
if manual_override:
# Some tokenizers, notably ModernBERT, omit CLS/SEP when provided with pre-tokenised
# input. We rebuild the sequence manually so that downstream code sees consistent
# boundaries without ever converting back to strings.
input_ids: list[int] = []
if manual_cls_token is not None:
input_ids.append(manual_cls_token)
input_ids.extend(int(token) for token in query_list)
if manual_sep_token is not None:
input_ids.append(manual_sep_token)
input_ids.extend(int(token) for token in context_tokens)
if manual_sep_token is not None and context_tokens:
input_ids.append(manual_sep_token)
else:
# Most tokenizers already handle special tokens correctly, so we can reuse the
# sequence they produce directly.
if built_with_specials:
input_ids = built_with_specials
else:
input_ids = [int(token) for token in query_list]
input_ids.extend(int(token) for token in context_tokens)
attention_mask = [1] * len(input_ids)
token_type_ids: list[int] | None
try:
token_type_ids = self.tokenizer.create_token_type_ids_from_sequences(
query_list,
context_tokens,
)
except Exception:
token_type_ids = None
else:
if token_type_ids is not None:
token_type_ids = [int(token) for token in token_type_ids]
def _find_subsequence_start(
haystack: Sequence[int],
needle: Sequence[int],
) -> int:
if not needle:
return -1
needle_list = list(needle)
limit = len(haystack) - len(needle_list) + 1
for idx in range(max(limit, 0)):
if haystack[idx : idx + len(needle_list)] == needle_list:
return idx
return -1
ranges: list[tuple[int, int]] = []
if context_tokens:
context_start = _find_subsequence_start(input_ids, context_tokens)
if context_start < 0:
prefix_ids = self.tokenizer.build_inputs_with_special_tokens(query_list, [])
context_start = len(prefix_ids)
cursor = context_start
for fragment in fragments:
start = cursor
cursor += len(fragment.token_ids)
ranges.append((start, cursor))
else:
ranges = []
if token_type_ids is not None and len(token_type_ids) < len(input_ids):
pad_value = token_type_ids[-1] if token_type_ids else 0
token_type_ids = token_type_ids + [pad_value] * (len(input_ids) - len(token_type_ids))
if token_type_ids is None:
token_type_ids = [0] * len(input_ids)
context_start = ranges[0][0] if context_tokens else len(input_ids)
for idx in range(context_start, len(input_ids)):
token_type_ids[idx] = 1
return input_ids, attention_mask, token_type_ids, ranges
def _precompute_sentences_and_tokens(
self,
context_text: str,
prefix_sentences: list[str],
manual_sentences: list[str] | None,
splitter: SentenceSplitter,
strip_sentences: bool,
) -> tuple[list[str], list[list[int]]]:
example_payload = {
"context_text": context_text,
"prefix_sentences": prefix_sentences,
"manual_sentences": manual_sentences,
}
raw_sentences = _collect_candidate_sentences(example_payload, splitter)
sentences = _normalize_sentences(raw_sentences, context_text, strip_sentences)
token_lists = _tokenize_sentences_with_context(
self.tokenizer,
sentences,
len(prefix_sentences),
context_text,
strip_sentences=strip_sentences,
)
return sentences, token_lists
def _assemble_blocks_from_fragments(
self,
query_token_length: int,
sep_token_length: int,
fragments: list[_FragmentRecord],
) -> list[list[_FragmentRecord]]:
if not fragments:
return []
available_len = self.max_length - 2 # [CLS], [SEP]
base_len = query_token_length + sep_token_length
max_fragment_capacity = max(1, available_len - base_len)
blocks: list[list[_FragmentRecord]] = []
current_block: list[_FragmentRecord] = []
current_len = base_len
for fragment in fragments:
fragment_len = fragment.token_length
if current_len + fragment_len <= available_len:
current_block.append(fragment)
current_len += fragment_len
continue
if current_block:
blocks.append(current_block)
current_block = []
current_len = base_len
truncated_fragment = self._truncate_fragment(fragment, max_fragment_capacity)
current_block.append(truncated_fragment)
current_len = base_len + truncated_fragment.token_length
if current_block:
blocks.append(current_block)
return blocks
def _normalize_inputs(
self,
question: str | Sequence[str],
context: ContextInput,
) -> tuple[list[str], list[list[Any]], str]:
"""Normalize input structures for process()."""
if isinstance(question, str):
queries = [question]
else:
queries = [str(q) for q in question]
def _is_sequence(value: Any) -> bool:
return isinstance(value, Sequence) and not isinstance(value, (str, bytes, bytearray))
def _normalize_context_collection(values: Sequence[Any]) -> list[Any]:
normalized: list[Any] = []
for item in values:
if _is_sequence(item):
normalized.append([str(element) for element in item])
else:
normalized.append(str(item))
return normalized
if isinstance(context, str):
context_structure = "str"
contexts: list[list[Any]] = [[context]]
elif not _is_sequence(context):
raise ValueError("Unsupported context format")
elif len(queries) == 1:
normalized_contexts = _normalize_context_collection(context)
context_structure = "list"
contexts = [normalized_contexts]
else:
context_sequence = list(context)
all_scalars = all(not _is_sequence(entry) for entry in context_sequence)
if all_scalars:
if len(context_sequence) != len(queries):
raise ValueError("Number of contexts must match number of queries")
context_structure = "aligned"
contexts = [[str(entry)] for entry in context_sequence]
else:
context_structure = "nested"
normalized_nested: list[list[Any]] = []
for entry in context_sequence:
if not _is_sequence(entry):
raise ValueError("Number of context lists must match number of queries")
normalized_nested.append(_normalize_context_collection(entry))
contexts = normalized_nested
if context_structure == "list" and len(queries) != 1:
raise ValueError("Single list of contexts requires a single query")
if context_structure == "nested" and len(contexts) != len(queries):
raise ValueError("Number of context lists must match number of queries")
if context_structure == "str" and len(queries) != 1:
raise ValueError("Single context string requires a single query")
if context_structure in {"str", "list"}:
contexts = [contexts[0]]
return queries, contexts, context_structure
def _prepare_titles(
self,
title: None | str | Sequence[str] | Sequence[Sequence[str]],
queries: list[str],
contexts: list[list[str]],
) -> list[Any]:
"""Normalize title inputs for process()."""
n_queries = len(queries)
if title is None:
return [None] * n_queries
if isinstance(title, str):
if title == "first_sentence":
return ["first_sentence"] * n_queries
return [[title for _ in ctxs] for ctxs in contexts]
if isinstance(title, Sequence):
normalized: list[Any] = []
for entry in title:
if isinstance(entry, Sequence) and not isinstance(entry, str):
normalized.append([str(value) for value in entry])
else:
normalized.append(str(entry))
if n_queries == 1 and all(isinstance(item, str) for item in normalized):
return [[str(item) for item in normalized]]
if len(normalized) == n_queries and all(isinstance(item, list) for item in normalized):
return [list(map(str, item)) for item in normalized] # type: ignore[list-item]
if len(normalized) == n_queries and all(isinstance(item, str) for item in normalized):
return [[value for _ in contexts[idx]] for idx, value in enumerate(normalized)]
raise ValueError("Unsupported title format")
def _extract_first_line_titles(
self,
contexts: list[list[Any]],
) -> tuple[list[list[Any]], list[list[str]]]:
"""Split the first non-empty line from each context as a title candidate."""
updated_contexts: list[list[Any]] = []
extracted_titles: list[list[str]] = []
for context_group in contexts:
group_titles: list[str] = []
updated_group: list[Any] = []
for entry in context_group:
if isinstance(entry, list):
normalized = [str(value) for value in entry]
title_candidate = ""
remainder: list[str] = []
for idx, segment in enumerate(normalized):
if segment.strip():
title_candidate = segment.rstrip("\r\n")
remainder = normalized[idx + 1 :]
break
else:
remainder = normalized
group_titles.append(title_candidate)
updated_group.append(remainder)
else:
text_entry = str(entry)
title_candidate = ""
remainder_text = ""
if text_entry:
lines = text_entry.splitlines(keepends=True)
remainder_segments: list[str] = []
for idx, line in enumerate(lines):
if line.strip():
title_candidate = line.rstrip("\r\n")
remainder_segments = lines[idx + 1 :]
break
else:
remainder_segments = lines
remainder_text = "".join(remainder_segments)
group_titles.append(title_candidate)
updated_group.append(remainder_text)
extracted_titles.append(group_titles)
updated_contexts.append(updated_group)
return updated_contexts, extracted_titles
def _resolve_titles(
self,
queries: list[str],
contexts: list[list[Any]],
title: None | str | Sequence[str] | Sequence[Sequence[str]],
*,
first_line_as_title: bool,
) -> tuple[list[list[Any]], list[Any]]:
"""Resolve title inputs, optionally extracting first lines from contexts."""
title_payload: None | str | Sequence[str] | Sequence[Sequence[str]]
if first_line_as_title:
if title not in (None, "first_sentence"):
raise ValueError(
"first_line_as_title=True cannot be combined with an explicit title override."
)
contexts, extracted_titles = self._extract_first_line_titles(contexts)
title_payload = extracted_titles
else:
title_payload = title
titles = self._prepare_titles(title_payload, queries, contexts)
return contexts, titles
def _build_preprocess_jobs(
self,
queries: list[str],
contexts: list[list[Any]],
titles: list[Any],
splitter: SentenceSplitter,
*,
strip_sentences: bool,
show_progress: bool,
) -> tuple[list[dict[str, Any]], list[list[int]]]:
"""Construct preprocessing jobs and cache query token ids."""
preprocess_jobs: list[dict[str, Any]] = []
query_token_ids: list[list[int]] = []
total_contexts = sum(len(context_collection) for context_collection in contexts)
progress = None
if show_progress and is_progress_bar_enabled() and total_contexts:
try:
from tqdm import tqdm # pragma: no cover - optional dependency
except Exception: # pragma: no cover - tqdm may be unavailable
progress = None
else:
progress = tqdm(total=total_contexts, desc="Prepare contexts")
for query_idx, query_text in enumerate(queries):
query_tokens = self.tokenizer.encode(query_text, add_special_tokens=False)
query_token_ids.append(query_tokens)
title_spec = titles[query_idx]
for context_idx, context_entry in enumerate(contexts[query_idx]):
if isinstance(context_entry, list):
manual_sentences = [str(s) for s in context_entry if str(s).strip()]
context_text = "".join(manual_sentences)
else:
manual_sentences = None
context_text = context_entry
prefix_sentences, title_is_first_sentence = self._resolve_prefix_sentences(
title_spec,
context_idx,
)
cached_sentences, cached_token_lists = self._precompute_sentences_and_tokens(
context_text,
prefix_sentences,
manual_sentences,
splitter,
strip_sentences,
)
prefix_count = len(prefix_sentences)
if cached_token_lists is not None:
prefix_token_counts = [
len(tokens) for tokens in cached_token_lists[:prefix_count]
]
else:
prefix_token_counts = [
len(self.tokenizer.encode(sentence, add_special_tokens=False))
if sentence
else 0
for sentence in prefix_sentences
]
preprocess_jobs.append(
{
"query_idx": query_idx,
"context_idx": context_idx,
"context_text": context_text,
"prefix_sentences": prefix_sentences,
"title_is_first_sentence": title_is_first_sentence,
"prefix_token_counts": prefix_token_counts,
"manual_sentences": manual_sentences,
"cached_sentences": cached_sentences,
"cached_token_lists": cached_token_lists,
}
)
if progress is not None:
progress.update(1)
if progress is not None:
progress.close()
return preprocess_jobs, query_token_ids
def _resolve_preprocess_workers(self, override: int | None) -> int:
if override is not None:
return max(0, int(override))
env_value = os.getenv("OPEN_PROVENCE_PREPROCESS_WORKERS")
if env_value:
try:
parsed = int(env_value)
except ValueError:
parsed = 0
if parsed > 0:
return parsed
return _default_preprocess_workers()
def _estimate_device_memory_bytes(self) -> int | None:
override_gb = os.getenv("OPEN_PROVENCE_DEVICE_MEMORY_GB")
if override_gb:
try:
parsed = float(override_gb)
except ValueError:
parsed = None
else:
if parsed > 0:
return int(parsed * (1024**3))
device = getattr(self, "_runtime_device", None)
if not isinstance(device, torch.device):
return None
if device.type == "cuda":
try:
index = device.index if device.index is not None else torch.cuda.current_device()
except Exception:
index = None
if index is None:
return None
try:
props = torch.cuda.get_device_properties(index)
except Exception:
return None
total = getattr(props, "total_memory", None)
return int(total) if total is not None else None
return None
def _auto_tune_preprocess_loader(
self,
*,
total_jobs: int,
inference_batch_size: int,
current_workers: int,
current_preprocess_batch: int,
current_prefetch: int | None,
workers_explicit: bool,
batch_explicit: bool,
prefetch_explicit: bool,
) -> tuple[int, int, int | None]:
# NOTE: This helper encapsulates several heuristics that evolved from
# manual benchmarking. Adding a comment here keeps the expectations
# close to the code, so future refactors know which behaviours must
# stay stable (and are covered by tests).
jobs_count = max(0, int(total_jobs))
workers = max(0, int(current_workers))
preprocess_batch = max(1, int(current_preprocess_batch))
prefetch_factor = current_prefetch if prefetch_explicit else None
if not workers_explicit:
cpu_limit = max(0, _default_preprocess_workers())
workers = min(workers or cpu_limit, cpu_limit)
if jobs_count < 2_000:
workers = 0
elif workers == 0 and cpu_limit > 0:
workers = min(cpu_limit, 4)
if jobs_count:
workers = min(workers, jobs_count)
if not batch_explicit:
device_bytes = self._estimate_device_memory_bytes()
cap_from_device: int | None = None
if device_bytes:
device_gb = device_bytes / float(1024**3)
if device_gb < 12:
cap_from_device = 64
elif device_gb < 20:
cap_from_device = 128
else:
cap_from_device = 192
fallback_cap = min(96, max(32, inference_batch_size))
target_cap = cap_from_device or fallback_cap
preprocess_batch = min(preprocess_batch, target_cap)
preprocess_batch = min(preprocess_batch, max(1, inference_batch_size))
if jobs_count:
preprocess_batch = min(preprocess_batch, jobs_count)
if workers <= 0:
workers = 0
if workers == 0 and not prefetch_explicit:
prefetch_factor = None
elif workers > 0 and not prefetch_explicit:
prefetch_factor = max(2, min(8, math.ceil(preprocess_batch / workers)))
return workers, preprocess_batch, prefetch_factor
def _run_preprocess_pipeline(
self,
jobs: list[dict[str, Any]],
max_fragment_tokens: int,
splitter: SentenceSplitter,
show_progress: bool,
strip_sentences: bool,
*,
respect_sentence_boundaries: bool,
) -> tuple[list[dict[str, Any]], float]:
"""Execute the preprocessing pipeline and return processed entries with timing."""
preprocess_start = perf_counter()
processed_entries = self._run_sequential_fragmentize(
jobs,
max_fragment_tokens=max_fragment_tokens,
splitter=splitter,
show_progress=show_progress,
strip_sentences=strip_sentences,
respect_sentence_boundaries=respect_sentence_boundaries,
)
preprocess_time = perf_counter() - preprocess_start
return processed_entries, preprocess_time
def _assemble_inference_inputs(
self,
preprocess_jobs: list[dict[str, Any]],
processed_entries: list[dict[str, Any]],
query_token_ids: list[list[int]],
sep_token_ids: list[int],
) -> tuple[
dict[tuple[int, int], dict[str, Any]],
list[dict[str, Any]],
dict[str, float],
float,
]:
"""Convert processed entries into inference jobs and aggregate timing metrics."""
contexts_info: dict[tuple[int, int], dict[str, Any]] = {}
inference_jobs: list[dict[str, Any]] = []
timing_totals = {
"sentence_collect_seconds": 0.0,
"sentence_normalize_seconds": 0.0,
"tokenize_seconds": 0.0,
"fragment_split_seconds": 0.0,
"fragment_decode_seconds": 0.0,
}
def _consume_timing(payload: dict[str, Any], key: str) -> float:
value = payload.pop(key, 0.0)
if isinstance(value, (list, tuple)):
value = sum(value)
try:
return float(value)
except (TypeError, ValueError):
return 0.0
assembly_start = perf_counter()
for job, processed in zip(preprocess_jobs, processed_entries):
job.pop("cached_sentences", None)
job.pop("cached_token_lists", None)
timing_totals["sentence_collect_seconds"] += _consume_timing(
processed, "timing_sentence_collect"
)
timing_totals["sentence_normalize_seconds"] += _consume_timing(
processed, "timing_sentence_normalize"
)
timing_totals["tokenize_seconds"] += _consume_timing(processed, "timing_tokenize")
timing_totals["fragment_split_seconds"] += _consume_timing(
processed, "timing_fragment_split"
)
timing_totals["fragment_decode_seconds"] += _consume_timing(
processed, "timing_fragment_decode"
)
fragment_texts = processed.get("fragment_texts", [])
sentence_indices = processed.get("fragment_sentence_index", [])
fragment_indices = processed.get("fragment_fragment_index", [])
global_indices = processed.get("fragment_global_index", [])
token_id_lists = processed.get("fragment_token_ids", [])
fragments: list[_FragmentRecord] = []
for idx, text in enumerate(fragment_texts):
tokens = list(token_id_lists[idx]) if idx < len(token_id_lists) else []
fragments.append(
_FragmentRecord(
text=text,
sentence_index=int(sentence_indices[idx])
if idx < len(sentence_indices)
else 0,
fragment_index=int(fragment_indices[idx])
if idx < len(fragment_indices)
else 0,
global_index=int(global_indices[idx])
if idx < len(global_indices)
else idx,
token_length=len(tokens),
token_ids=tokens,
)
)
sentences: list[str] = processed.get("sentences", [])
query_idx = job["query_idx"]
context_idx = job["context_idx"]
prefix_len = len(job.get("prefix_sentences", []))
prefix_token_counts = job.get("prefix_token_counts", [])
blocks = self._assemble_blocks_from_fragments(
len(query_token_ids[query_idx]), len(sep_token_ids), fragments
)
contexts_info[(query_idx, context_idx)] = {
"sentences": sentences,
"fragments": fragments,
"blocks": blocks,
"prefix_length": prefix_len,
"prefix_sentences": job.get("prefix_sentences", []),
"prefix_token_counts": prefix_token_counts,
"title_is_first_sentence": job.get("title_is_first_sentence", False),
"original_text": job["context_text"],
"raw_blocks": [],
}
for block_idx, block in enumerate(blocks):
inference_jobs.append(
{
"query_idx": query_idx,
"context_idx": context_idx,
"block_idx": block_idx,
"texts": [fragment.text for fragment in block],
}
)
assembly_time = perf_counter() - assembly_start
return contexts_info, inference_jobs, timing_totals, assembly_time
def _run_inference_batches(
self,
inference_jobs: list[dict[str, Any]],
batch_size: int,
queries: list[str],
query_token_ids: list[list[int]],
contexts_info: dict[tuple[int, int], dict[str, Any]],
*,
show_inference_progress: bool,
show_progress: bool,
) -> float:
"""Execute model inference over prepared jobs and attach raw predictions."""
inference_time = 0.0
total_inference_jobs = len(inference_jobs)
progress_bar: Any | None = None
if not total_inference_jobs:
return inference_time
if show_inference_progress:
from tqdm import tqdm # inline import to avoid dependency when unused
total_batches = (total_inference_jobs + batch_size - 1) // batch_size
progress_bar = tqdm(
range(0, total_inference_jobs, batch_size),
total=total_batches,
desc="Model inference",
unit="batch",
leave=False,
)
batch_indices: Iterable[int] = progress_bar
else:
batch_indices = range(0, total_inference_jobs, batch_size)
pad_token_raw = getattr(self.tokenizer, "pad_token_id", None)
pad_token_id = int(pad_token_raw) if pad_token_raw is not None else 0
for start in batch_indices:
chunk_jobs = inference_jobs[start : start + batch_size]
if not chunk_jobs:
continue
chunk_queries = [queries[job["query_idx"]] for job in chunk_jobs]
chunk_context_texts = [job["texts"] for job in chunk_jobs]
chunk_query_tokens = [query_token_ids[job["query_idx"]] for job in chunk_jobs]
prepared_inputs: list[dict[str, Any]] = []
ranges_per_job: list[list[tuple[int, int]]] = []
for job_entry, query_tokens_entry in zip(chunk_jobs, chunk_query_tokens):
block_fragments = contexts_info[
(job_entry["query_idx"], job_entry["context_idx"])
]["blocks"][job_entry["block_idx"]]
(
input_ids_prepared,
attention_mask_prepared,
token_type_ids,
context_ranges,
) = self._prepare_block_inputs(
query_tokens_entry,
block_fragments,
)
prepared_inputs.append(
{
"input_ids": input_ids_prepared,
"attention_mask": attention_mask_prepared,
"token_type_ids": token_type_ids,
}
)
ranges_per_job.append(context_ranges)
max_len = (
max(len(entry["input_ids"]) for entry in prepared_inputs) if prepared_inputs else 0
)
input_tensor = torch.full(
(len(prepared_inputs), max_len),
pad_token_id,
dtype=torch.long,
device=self._runtime_device,
)
attention_tensor = torch.zeros(
(len(prepared_inputs), max_len),
dtype=torch.long,
device=self._runtime_device,
)
token_type_tensor: torch.Tensor | None = (
torch.zeros(
(len(prepared_inputs), max_len), dtype=torch.long, device=self._runtime_device
)
if any(entry.get("token_type_ids") for entry in prepared_inputs)
else None
)
for tensor_idx, entry in enumerate(prepared_inputs):
ids_list = entry["input_ids"]
attn_list = entry["attention_mask"]
seq_len = len(ids_list)
if seq_len == 0:
continue
input_tensor[tensor_idx, :seq_len] = torch.tensor(
ids_list,
dtype=torch.long,
device=self._runtime_device,
)
attention_tensor[tensor_idx, :seq_len] = torch.tensor(
attn_list if attn_list else [1] * seq_len,
dtype=torch.long,
device=self._runtime_device,
)
if token_type_tensor is not None:
type_ids = entry.get("token_type_ids") or [0] * seq_len
if len(type_ids) > seq_len:
type_ids = type_ids[:seq_len]
if len(type_ids) < seq_len:
type_ids = list(type_ids) + [type_ids[-1]] * (seq_len - len(type_ids))
token_type_tensor[tensor_idx, :seq_len] = torch.tensor(
type_ids,
dtype=torch.long,
device=self._runtime_device,
)
infer_start = perf_counter()
model_inputs = {
"input_ids": input_tensor,
"attention_mask": attention_tensor,
}
if token_type_tensor is not None:
model_inputs["token_type_ids"] = token_type_tensor
model_outputs = self.forward(return_dict=True, **model_inputs)
inference_time += perf_counter() - infer_start
ranking_logits = (
self._extract_model_output(model_outputs, "ranking_logits").detach().cpu()
)
pruning_logits = (
self._extract_model_output(model_outputs, "pruning_logits").detach().cpu()
)
if ranking_logits.dtype != torch.float32:
ranking_logits = ranking_logits.to(dtype=torch.float32)
if pruning_logits.dtype != torch.float32:
pruning_logits = pruning_logits.to(dtype=torch.float32)
for job_dict, raw_query, raw_contexts, ranges, rank_logits, prune_logits in zip(
chunk_jobs,
chunk_queries,
chunk_context_texts,
ranges_per_job,
ranking_logits,
pruning_logits,
):
if rank_logits.ndim == 0 or rank_logits.numel() == 1:
ranking_score = torch.sigmoid(rank_logits.flatten())[0].item()
else:
ranking_score = torch.sigmoid(rank_logits[..., 0]).item()
pruning_probs = torch.softmax(prune_logits, dim=-1).numpy()
if pruning_probs.ndim == 2 and pruning_probs.shape[1] == 2:
pruning_probs = pruning_probs[:, 1]
elif pruning_probs.ndim == 1:
pruning_probs = pruning_probs
else:
pruning_probs = pruning_probs.reshape(-1)
contexts_info[(job_dict["query_idx"], job_dict["context_idx"])][
"raw_blocks"
].append(
(
job_dict["block_idx"],
OpenProvenceRawPrediction(
query=raw_query,
contexts=list(raw_contexts),
ranking_score=ranking_score,
pruning_probs=pruning_probs,
context_ranges=ranges,
),
)
)
if progress_bar is not None:
try:
progress_bar.close()
except Exception: # pragma: no cover - harmless
pass
if show_progress:
try:
progress_bar.write(
f"Model inference time: {inference_time:.2f}s "
f"({total_inference_jobs} blocks)"
)
except Exception: # pragma: no cover - best effort fallback
print(
f"[OpenProvenceModel] Model inference took {inference_time:.2f}s "
f"({total_inference_jobs} blocks)",
flush=True,
)
return inference_time
def _postprocess_contexts(
self,
queries: list[str],
contexts: list[list[Any]],
contexts_info: dict[tuple[int, int], dict[str, Any]],
*,
threshold: float,
always_select_title: bool,
use_best_reranker_score: bool,
sentence_probability_groups_requested: bool,
collect_sentence_texts: bool,
first_line_as_title: bool,
zero_score_when_empty: bool,
) -> tuple[
list[list[str]],
list[list[float | None]],
list[list[float]],
list[list[list[str]]] | None,
list[list[list[str]]] | None,
list[list[Any]],
list[list[list[float]]] | None,
float,
]:
"""Aggregate pruning outputs into user-facing structures."""
post_start = perf_counter()
pruned_contexts: list[list[str]] = []
reranking_scores: list[list[float | None]] = []
compression_rates: list[list[float]] = []
if collect_sentence_texts:
kept_sentences: list[list[list[str]]] | None = []
removed_sentences: list[list[list[str]]] | None = []
else:
kept_sentences = None
removed_sentences = None
title_values: list[list[Any]] = []
sentence_probability_groups: list[list[list[float]]] | None = (
[] if sentence_probability_groups_requested else None
)
for query_idx, _ in enumerate(queries):
query_pruned: list[str] = []
query_scores: list[float | None] = []
query_compression: list[float] = []
query_kept: list[list[str]] | None = [] if collect_sentence_texts else None
query_removed: list[list[str]] | None = [] if collect_sentence_texts else None
query_titles: list[Any] = []
query_sentence_probabilities: list[list[float]] | None = (
[] if sentence_probability_groups is not None else None
)
for context_idx, context_entry in enumerate(contexts[query_idx]):
info = contexts_info.get((query_idx, context_idx))
prefix_sentences_value: Sequence[str] = ()
if info:
raw_prefix = info.get("prefix_sentences", [])
if isinstance(raw_prefix, str):
prefix_sentences_value = (raw_prefix,)
elif isinstance(raw_prefix, Sequence):
prefix_sentences_value = tuple(str(item) for item in raw_prefix)
if first_line_as_title and prefix_sentences_value:
if len(prefix_sentences_value) == 1:
fallback_title: Any = prefix_sentences_value[0]
else:
fallback_title = list(prefix_sentences_value)
else:
fallback_title = None
context_sentence_probs: list[float] | None = (
[] if sentence_probability_groups is not None else None
)
if not info or not info.get("fragments"):
query_pruned.append(context_entry)
query_scores.append(None)
query_compression.append(0.0)
if query_kept is not None:
query_kept.append([context_entry] if context_entry else [])
if query_removed is not None:
query_removed.append([])
query_titles.append(fallback_title)
if query_sentence_probabilities is not None:
query_sentence_probabilities.append(context_sentence_probs or [])
continue
blocks = info["blocks"]
raw_blocks = sorted(info["raw_blocks"], key=lambda x: x[0])
if not blocks or not raw_blocks:
query_pruned.append(context_entry)
query_scores.append(None)
query_compression.append(0.0)
if query_kept is not None:
query_kept.append(info["sentences"])
if query_removed is not None:
query_removed.append([])
query_titles.append(fallback_title)
if context_sentence_probs is not None:
context_sentence_probs.extend([1.0] * len(info["sentences"]))
if query_sentence_probabilities is not None:
query_sentence_probabilities.append(context_sentence_probs or [])
continue
fragment_scores: dict[int, list[float]] = defaultdict(list)
ranking_score: float | None = None
for (_, raw), block in zip(raw_blocks, blocks):
block_probs = raw.pruning_probs
ranges = raw.context_ranges
prefix_counts = contexts_info[(query_idx, context_idx)].get(
"prefix_token_counts", []
)
for fragment, (start, end) in zip(block, ranges):
offset = sum(prefix_counts[: fragment.sentence_index])
start = max(0, start - offset)
end = max(start, end - offset)
end = min(end, len(block_probs))
start = min(start, len(block_probs))
mean_prob = 1.0 if end <= start else float(block_probs[start:end].mean())
fragment_scores[fragment.global_index].append(mean_prob)
if raw.ranking_score is not None:
if use_best_reranker_score:
if ranking_score is None:
ranking_score = raw.ranking_score
else:
ranking_score = max(ranking_score, raw.ranking_score)
else:
if ranking_score is None:
ranking_score = raw.ranking_score
sentence_scores: dict[int, list[float]] = defaultdict(list)
for fragment in info["fragments"]:
if fragment.global_index in fragment_scores:
sentence_scores[fragment.sentence_index].extend(
fragment_scores[fragment.global_index]
)
kept_sentence_texts: list[str] = []
removed_sentence_texts: list[str] = []
sentences = info["sentences"]
prefix_len = info["prefix_length"]
title_sentence_index: int | None = None
sentence_keep_flags: list[bool] = []
if always_select_title:
if prefix_len > 0:
title_sentence_index = 0
elif info.get("title_is_first_sentence") and len(sentences) > prefix_len:
title_sentence_index = prefix_len
sentence_avg_probabilities: list[float] = []
has_sentence_above_threshold = False
for sentence_index in range(len(sentences)):
probabilities = sentence_scores.get(sentence_index)
avg_probability = float(np.mean(probabilities)) if probabilities else 0.0
avg_probability = max(0.0, min(avg_probability, 1.0))
sentence_avg_probabilities.append(avg_probability)
if avg_probability > threshold:
has_sentence_above_threshold = True
force_keep_title = (
title_sentence_index is not None and has_sentence_above_threshold
)
for sentence_index in range(len(sentences)):
avg_probability = sentence_avg_probabilities[sentence_index]
keep_flag = avg_probability > threshold
if force_keep_title and sentence_index == title_sentence_index:
keep_flag = True
sentence_keep_flags.append(keep_flag)
if context_sentence_probs is not None:
context_sentence_probs.append(avg_probability)
kept_sentence_texts = [
sentences[idx] for idx, keep in enumerate(sentence_keep_flags) if keep
]
removed_sentence_texts = [
sentences[idx] for idx, keep in enumerate(sentence_keep_flags) if not keep
]
content_kept_sentences = [
sentences[idx]
for idx, keep in enumerate(sentence_keep_flags)
if idx >= prefix_len and keep
]
pruned_text = "".join(content_kept_sentences)
original_text = info["original_text"]
original_length = max(len(original_text), 1)
compression = (len(original_text) - len(pruned_text)) / original_length * 100.0
if zero_score_when_empty and not pruned_text.strip():
ranking_score = 0.0
prefix_sentences_value = info.get("prefix_sentences", [])
if prefix_sentences_value:
if len(prefix_sentences_value) == 1:
title_value = prefix_sentences_value[0]
else:
title_value = list(prefix_sentences_value)
else:
title_value = None
query_pruned.append(pruned_text)
query_scores.append(ranking_score)
query_compression.append(compression)
if query_kept is not None:
query_kept.append(kept_sentence_texts)
if query_removed is not None:
query_removed.append(removed_sentence_texts)
query_titles.append(title_value)
if query_sentence_probabilities is not None:
query_sentence_probabilities.append(context_sentence_probs or [])
pruned_contexts.append(query_pruned)
reranking_scores.append(query_scores)
compression_rates.append(query_compression)
if kept_sentences is not None and query_kept is not None:
kept_sentences.append(query_kept)
if removed_sentences is not None and query_removed is not None:
removed_sentences.append(query_removed)
title_values.append(query_titles)
if (
sentence_probability_groups is not None
and query_sentence_probabilities is not None
):
sentence_probability_groups.append(query_sentence_probabilities)
post_time = perf_counter() - post_start
return (
pruned_contexts,
reranking_scores,
compression_rates,
kept_sentences,
removed_sentences,
title_values,
sentence_probability_groups,
post_time,
)
def _apply_reordering(
self,
pruned_contexts: list[list[str]],
reranking_scores: list[list[float | None]],
compression_rates: list[list[float]],
kept_sentences: list[list[list[str]]] | None,
removed_sentences: list[list[list[str]]] | None,
title_values: list[list[Any]],
sentence_probability_groups: list[list[list[float]]] | None,
*,
top_k: int | None,
) -> tuple[
list[list[str]],
list[list[float | None]],
list[list[float]],
list[list[list[str]]] | None,
list[list[list[str]]] | None,
list[list[Any]],
list[list[list[float]]] | None,
]:
"""Reorder contexts by reranker score and apply optional top-k truncation."""
if not pruned_contexts:
return (
pruned_contexts,
reranking_scores,
compression_rates,
kept_sentences,
removed_sentences,
title_values,
sentence_probability_groups,
)
if top_k is None:
effective_top_k = None
else:
effective_top_k = max(0, int(top_k))
reordered_pruned: list[list[str]] = []
reordered_scores: list[list[float | None]] = []
reordered_compression: list[list[float]] = []
reordered_kept: list[list[list[str]]] | None = [] if kept_sentences is not None else None
reordered_removed: list[list[list[str]]] | None = (
[] if removed_sentences is not None else None
)
reordered_titles: list[list[Any]] = []
reordered_probs: list[list[list[float]]] | None = (
[] if sentence_probability_groups is not None else None
)
for query_idx, scores in enumerate(reranking_scores):
if not scores:
reordered_pruned.append(pruned_contexts[query_idx])
reordered_scores.append(scores)
reordered_compression.append(compression_rates[query_idx])
if reordered_kept is not None and kept_sentences is not None:
reordered_kept.append(kept_sentences[query_idx])
if reordered_removed is not None and removed_sentences is not None:
reordered_removed.append(removed_sentences[query_idx])
reordered_titles.append(title_values[query_idx])
if reordered_probs is not None:
reordered_probs.append(
sentence_probability_groups[query_idx]
if sentence_probability_groups is not None
else []
)
continue
def _score_key(idx: int) -> float:
value = scores[idx]
if value is None:
return float("-inf")
return float(value)
ranking_indices = sorted(range(len(scores)), key=_score_key, reverse=True)
if effective_top_k is None:
limited_indices = ranking_indices
else:
limited_indices = ranking_indices[:effective_top_k]
reordered_pruned.append([pruned_contexts[query_idx][idx] for idx in limited_indices])
reordered_scores.append([scores[idx] for idx in limited_indices])
reordered_compression.append(
[compression_rates[query_idx][idx] for idx in limited_indices]
)
if reordered_kept is not None and kept_sentences is not None:
reordered_kept.append([kept_sentences[query_idx][idx] for idx in limited_indices])
if reordered_removed is not None and removed_sentences is not None:
reordered_removed.append(
[removed_sentences[query_idx][idx] for idx in limited_indices]
)
reordered_titles.append([title_values[query_idx][idx] for idx in limited_indices])
if reordered_probs is not None:
reordered_probs.append(
[sentence_probability_groups[query_idx][idx] for idx in limited_indices]
if sentence_probability_groups is not None
else []
)
return (
reordered_pruned,
reordered_scores,
reordered_compression,
reordered_kept,
reordered_removed,
reordered_titles,
reordered_probs if reordered_probs is not None else None,
)
def process(
self,
question: str | Sequence[str],
context: str | Sequence[str] | Sequence[Sequence[str]],
title: None | str | Sequence[str] | Sequence[Sequence[str]] = "first_sentence",
first_line_as_title: bool = False,
*,
batch_size: int = 32,
threshold: float | None = None,
always_select_title: bool = False,
reorder: bool = False,
top_k: int | None = None,
sentence_splitter: SentenceSplitter | Mapping[str, SentenceSplitter] | None = None,
language: str | None = None,
use_best_reranker_score: bool = True,
zero_score_when_empty: bool = True,
show_progress: bool = True,
debug_messages: bool | Callable[[str], None] = False,
enable_warnings: bool = True,
strip_sentences: bool = False,
respect_sentence_boundaries: bool = False,
return_sentence_metrics: bool = False,
return_sentence_texts: bool = False,
show_inference_progress: bool | None = None,
preprocess_workers: int | None = None,
preprocess_batch_size: int | None = None,
torch_dataloader_kwargs: Mapping[str, Any] | None = None,
) -> dict[str, Any]:
"""Prune long contexts by chunking them while preserving sentence boundaries.
Args:
question: Query text or list of queries.
context: Context text(s) corresponding to each query.
title: Optional title sentences to prepend. Use "first_sentence" to reuse the
initial sentence per context (legacy default).
first_line_as_title: When True, split the first non-empty line of each context and
treat it as the title. Cannot be combined with explicit title overrides.
batch_size: GPU batch size for inference.
threshold: Pruning probability threshold. When omitted, the method first attempts to
read ``self.config.default_threadshold`` (legacy spelling) from the checkpoint's
``config.json``. If that field is absent, the module constant
``DEFAULT_PROCESS_THRESHOLD`` (set to ``0.1``) is used.
always_select_title: Force keeping title sentence.
reorder: When True, sort contexts for each query by descending reranker score.
top_k: When set along with ``reorder=True``, keep only the first ``top_k`` contexts
per query after sorting.
sentence_splitter: Callable that splits text into sentences or a mapping from language
code to splitter. If omitted, the ``language`` parameter selects one of the built-in
splitters.
language: Language code used when choosing the default splitter or resolving a
splitter mapping. When None, ``"auto"`` is assumed, which automatically handles
Japanese and English text. Supported values remain ``"auto"``, ``"ja"`` (fast-bunkai),
and ``"en"`` (NLTK Punkt with additional heuristics) for backwards compatibility.
use_best_reranker_score: When True (default), store the highest reranker score among all
processed blocks for each context. When False, keep the score from the first block
only (original behaviour). If all sentences are discarded, the reranker score is set
to 0.0 when ``zero_score_when_empty`` is enabled.
zero_score_when_empty: When True (default), force the reranker score to ``0.0`` when
the pruned context becomes empty after stripping whitespace. Disable to preserve the
original score even when no sentences are kept.
show_progress: When True, display progress bars for preprocessing and inference stages.
debug_messages: Enable verbose timing diagnostics. When True, messages are logged via
this module's logger. Provide a callable to redirect messages elsewhere. Timing
summaries are also attached to the return payload.
enable_warnings: Suppress warning output from dependencies when set to False.
strip_sentences: When True, trim sentence text with `strip()` after splitting and filter
out blank sentences (legacy behaviour). When False (default), preserve leading and
trailing whitespace for downstream scoring.
respect_sentence_boundaries: When True, keep each sentence produced by the splitter as
a single fragment whenever it fits within the model's maximum token window, only
falling back to token-level splitting when a sentence exceeds the allowed length.
return_sentence_metrics: When True, include per-sentence probabilities in the
response payload under ``sentence_probabilities``.
return_sentence_texts: When True, include ``kept_sentences`` / ``removed_sentences``
in the response payload. Defaults to False to minimise payload size.
preprocess_workers: Number of DataLoader worker processes to use while fragmentizing
contexts. When None, respects the ``OPEN_PROVENCE_PREPROCESS_WORKERS``
environment variable and defaults to 0 (main-process preprocessing).
preprocess_batch_size: Number of contexts processed per preprocessing batch. Defaults
to ``batch_size`` when omitted.
torch_dataloader_kwargs: Optional mapping forwarded directly to the preprocessing
``DataLoader`` to fine-tune worker behaviour (e.g., setting a custom
``worker_init_fn`` or pinning strategy).
.. caution::
Input shape determines how batching behaves. Passing ``question: str`` with
``context: List[str]`` is interpreted as *one* query paired with multiple
documents. To batch distinct question–context pairs, provide
``question: List[str]`` and ``context: List[str]`` of equal length. If you
supply ``context: List[List[str]]`` the inner lists are assumed to be
pre-split sentences and the sentence splitter is skipped—use this form only
when you have already segmented the text yourself.
"""
progress_restore: Callable[[], None] | None = None
original_progress_enabled = is_progress_bar_enabled()
if show_progress and not original_progress_enabled:
enable_progress_bar()
progress_restore = disable_progress_bar
elif not show_progress and original_progress_enabled:
disable_progress_bar()
progress_restore = enable_progress_bar
try:
batch_size = max(1, batch_size)
threshold = self._resolve_process_threshold(threshold)
start_total = perf_counter()
splitter = OpenProvenceModel._resolve_sentence_splitter(
self, sentence_splitter, language
)
debug_callback: Callable[[str], None] | None
if isinstance(debug_messages, bool):
debug_callback = LOGGER.info if debug_messages else None
elif callable(debug_messages):
debug_callback = debug_messages
else:
raise TypeError(
"debug_messages must be a bool or a callable that accepts a string"
)
def _log_debug(message: str) -> None:
if debug_callback is not None:
debug_callback(message)
if show_inference_progress is None:
show_inference_progress = show_progress
warnings_cm: contextlib.AbstractContextManager[Any]
warnings_entered = False
if enable_warnings:
warnings_cm = contextlib.nullcontext()
else: # pragma: no cover - depends on caller preference
warnings_cm = warnings.catch_warnings()
warnings_cm.__enter__()
warnings.simplefilter("ignore")
warnings_entered = True
preprocess_time = 0.0
assembly_time = 0.0
inference_time = 0.0
post_time = 0.0
timing_totals: dict[str, float] = {
"sentence_collect_seconds": 0.0,
"sentence_normalize_seconds": 0.0,
"tokenize_seconds": 0.0,
"fragment_split_seconds": 0.0,
"fragment_decode_seconds": 0.0,
}
queries: list[str] = []
contexts: list[list[Any]] = []
structure = "str"
preprocess_jobs: list[dict[str, Any]] = []
query_token_ids: list[list[int]] = []
contexts_info: dict[tuple[int, int], dict[str, Any]] = {}
pruned_contexts: list[list[str]] = []
reranking_scores: list[list[float | None]] = []
compression_rates: list[list[float]] = []
kept_sentences: list[list[list[str]]] | None = None
removed_sentences: list[list[list[str]]] | None = None
title_values: list[list[Any]] = []
sentence_probability_groups: list[list[list[float]]] | None = None
try:
queries, contexts, structure = OpenProvenceModel._normalize_inputs(
self, question, context
)
contexts, titles = self._resolve_titles(
queries,
contexts,
title,
first_line_as_title=first_line_as_title,
)
if respect_sentence_boundaries:
max_fragment_tokens = max(16, self.max_length - 2)
else:
max_fragment_tokens = max(16, self.max_length // 2)
sep_token_ids = self.tokenizer.encode(
self.tokenizer.sep_token or "", add_special_tokens=False
)
preprocess_jobs, query_token_ids = self._build_preprocess_jobs(
queries,
contexts,
titles,
splitter,
strip_sentences=strip_sentences,
show_progress=show_progress,
)
resolved_workers = self._resolve_preprocess_workers(preprocess_workers)
preprocess_batch = max(1, int(preprocess_batch_size or batch_size))
dataset = _PreprocessDataset(
preprocess_jobs,
self.tokenizer,
splitter,
max_fragment_tokens,
strip_sentences,
respect_sentence_boundaries,
)
loader_kwargs: dict[str, Any] = {
"batch_size": preprocess_batch,
"shuffle": False,
"num_workers": resolved_workers,
"collate_fn": _preprocess_collate_fn,
"pin_memory": False,
"persistent_workers": resolved_workers > 0,
}
total_jobs = len(preprocess_jobs)
workers_explicit = preprocess_workers is not None
batch_explicit = preprocess_batch_size is not None
prefetch_explicit = False
if not workers_explicit and preprocess_workers is None:
env_workers_raw = os.getenv("OPEN_PROVENCE_PREPROCESS_WORKERS")
if env_workers_raw:
try:
workers_explicit = int(env_workers_raw) > 0
except ValueError:
workers_explicit = False
if torch_dataloader_kwargs:
custom_kwargs = dict(torch_dataloader_kwargs)
if "num_workers" in custom_kwargs:
workers_explicit = True
if "batch_size" in custom_kwargs:
batch_explicit = True
if "prefetch_factor" in custom_kwargs:
prefetch_explicit = True
loader_kwargs.update(custom_kwargs)
resolved_workers = int(loader_kwargs.get("num_workers", resolved_workers))
preprocess_batch = int(loader_kwargs.get("batch_size", preprocess_batch))
current_prefetch_raw = loader_kwargs.get("prefetch_factor")
current_prefetch: int | None
if isinstance(current_prefetch_raw, (int, float)):
current_prefetch = int(current_prefetch_raw)
elif isinstance(current_prefetch_raw, str) and current_prefetch_raw.isdigit():
current_prefetch = int(current_prefetch_raw)
else:
current_prefetch = None
if "multiprocessing_context" in loader_kwargs:
loader_kwargs.pop("multiprocessing_context")
(
resolved_workers,
preprocess_batch,
tuned_prefetch,
) = self._auto_tune_preprocess_loader(
total_jobs=total_jobs,
inference_batch_size=batch_size,
current_workers=resolved_workers,
current_preprocess_batch=preprocess_batch,
current_prefetch=current_prefetch,
workers_explicit=workers_explicit,
batch_explicit=batch_explicit,
prefetch_explicit=prefetch_explicit,
)
loader_kwargs["num_workers"] = resolved_workers
loader_kwargs["batch_size"] = preprocess_batch
loader_kwargs["persistent_workers"] = resolved_workers > 0
if tuned_prefetch is not None:
loader_kwargs["prefetch_factor"] = tuned_prefetch
elif not prefetch_explicit and "prefetch_factor" in loader_kwargs:
loader_kwargs.pop("prefetch_factor", None)
loader = DataLoader(dataset, **loader_kwargs)
if debug_callback is not None:
_log_debug(
"[OpenProvenceModel] "
f"preprocess_workers={resolved_workers} "
f"preprocess_batch={preprocess_batch} "
f"default_workers={_default_preprocess_workers()}"
)
total_blocks_processed = 0
loader_iter = iter(loader)
shutdown_workers = getattr(loader_iter, "_shutdown_workers", None)
try:
for jobs_batch, entries_batch in loader_iter:
if not jobs_batch:
continue
(
batch_contexts,
batch_inference_jobs,
batch_timing_totals,
batch_assembly,
) = self._assemble_inference_inputs(
jobs_batch,
entries_batch,
query_token_ids,
sep_token_ids,
)
assembly_time += batch_assembly
preprocess_time += sum(batch_timing_totals.values())
for key, value in batch_timing_totals.items():
timing_totals[key] += value
for key, info in batch_contexts.items():
existing = contexts_info.get(key)
if existing is None:
contexts_info[key] = info
continue
existing_raw = existing.setdefault("raw_blocks", [])
existing_raw.extend(info.get("raw_blocks", []))
if not batch_inference_jobs:
continue
inference_time += self._run_inference_batches(
batch_inference_jobs,
batch_size,
queries,
query_token_ids,
contexts_info,
show_inference_progress=False,
show_progress=show_progress,
)
total_blocks_processed += len(batch_inference_jobs)
finally:
if shutdown_workers is not None:
shutdown_workers()
if show_progress and total_blocks_processed:
message = (
f"[OpenProvenceModel] Model inference time: {inference_time:.2f}s "
f"({total_blocks_processed} blocks)"
)
if debug_callback is None:
print(message, flush=True)
else:
_log_debug(message)
(
pruned_contexts,
reranking_scores,
compression_rates,
kept_sentences,
removed_sentences,
title_values,
sentence_probability_groups,
post_time,
) = self._postprocess_contexts(
queries,
contexts,
contexts_info,
threshold=threshold,
always_select_title=always_select_title,
use_best_reranker_score=use_best_reranker_score,
sentence_probability_groups_requested=return_sentence_metrics,
collect_sentence_texts=return_sentence_texts,
first_line_as_title=first_line_as_title,
zero_score_when_empty=zero_score_when_empty,
)
finally:
if warnings_entered: # pragma: no cover - depends on caller preference
warnings_cm.__exit__(None, None, None)
total_time = perf_counter() - start_total
performance_trace = ProcessPerformanceTrace(
preprocess_seconds=preprocess_time,
assembly_seconds=assembly_time,
inference_seconds=inference_time,
postprocess_seconds=post_time,
total_seconds=total_time,
sentence_collect_seconds=timing_totals.get("sentence_collect_seconds", 0.0),
sentence_normalize_seconds=timing_totals.get("sentence_normalize_seconds", 0.0),
tokenize_seconds=timing_totals.get("tokenize_seconds", 0.0),
fragment_split_seconds=timing_totals.get("fragment_split_seconds", 0.0),
fragment_decode_seconds=timing_totals.get("fragment_decode_seconds", 0.0),
)
timing_summary = performance_trace.as_dict()
timing_line = (
"Timing: "
f"preprocess={performance_trace.preprocess_seconds:.2f}s "
f"[collect={performance_trace.sentence_collect_seconds:.2f}s "
f"normalize={performance_trace.sentence_normalize_seconds:.2f}s "
f"tokenize={performance_trace.tokenize_seconds:.2f}s "
f"fragment_split={performance_trace.fragment_split_seconds:.2f}s "
f"fragment_decode={performance_trace.fragment_decode_seconds:.2f}s] "
f"assembly={performance_trace.assembly_seconds:.2f}s "
f"inference={performance_trace.inference_seconds:.2f}s "
f"postprocess={performance_trace.postprocess_seconds:.2f}s "
f"total={performance_trace.total_seconds:.2f}s"
)
_log_debug(f"[OpenProvenceModel] {timing_line}")
if reorder:
(
pruned_contexts,
reranking_scores,
compression_rates,
kept_sentences,
removed_sentences,
title_values,
sentence_probability_groups,
) = self._apply_reordering(
pruned_contexts,
reranking_scores,
compression_rates,
kept_sentences,
removed_sentences,
title_values,
sentence_probability_groups,
top_k=top_k,
)
pruned_output: Any = pruned_contexts
score_output: Any = reranking_scores
compression_output: Any = compression_rates
kept_output: Any = kept_sentences if kept_sentences is not None else None
removed_output: Any = removed_sentences if removed_sentences is not None else None
title_output: Any = title_values
sentence_prob_output: Any = sentence_probability_groups
if structure == "str" and pruned_contexts:
pruned_output = pruned_contexts[0][0] if pruned_contexts[0] else ""
score_output = reranking_scores[0][0] if reranking_scores[0] else None
compression_output = compression_rates[0][0] if compression_rates[0] else 0.0
if kept_sentences is not None:
kept_output = kept_sentences[0][0] if kept_sentences[0] else []
if removed_sentences is not None:
removed_output = removed_sentences[0][0] if removed_sentences[0] else []
title_output = title_values[0][0] if title_values[0] else None
if (
sentence_probability_groups is not None
and sentence_probability_groups
and sentence_probability_groups[0]
):
sentence_prob_output = sentence_probability_groups[0][0]
elif structure == "list" and pruned_contexts:
pruned_output = pruned_contexts[0]
score_output = reranking_scores[0]
compression_output = compression_rates[0]
if kept_sentences is not None:
kept_output = kept_sentences[0]
if removed_sentences is not None:
removed_output = removed_sentences[0]
title_output = title_values[0]
if sentence_probability_groups is not None:
sentence_prob_output = (
sentence_probability_groups[0] if sentence_probability_groups else []
)
elif structure == "aligned" and pruned_contexts:
pruned_output = [entry[0] if entry else "" for entry in pruned_contexts]
score_output = [scores[0] if scores else None for scores in reranking_scores]
compression_output = [rates[0] if rates else 0.0 for rates in compression_rates]
if kept_sentences is not None:
kept_output = [values[0] if values else [] for values in kept_sentences]
if removed_sentences is not None:
removed_output = [values[0] if values else [] for values in removed_sentences]
title_output = [values[0] if values else None for values in title_values]
if sentence_probability_groups is not None:
sentence_prob_output = [
values[0] if values else [] for values in sentence_probability_groups
]
result_payload = {
"pruned_context": pruned_output,
"reranking_score": score_output,
"compression_rate": compression_output,
"title": title_output,
"timing": timing_summary,
"performance_trace": performance_trace,
}
if kept_output is not None:
result_payload["kept_sentences"] = kept_output
if removed_output is not None:
result_payload["removed_sentences"] = removed_output
if sentence_prob_output is not None:
result_payload["sentence_probabilities"] = sentence_prob_output
return result_payload
finally:
if progress_restore is not None:
progress_restore()
# Hugging Face integration -------------------------------------------------
class OpenProvenceForSequenceClassification(OpenProvenceModel):
"""Sequence classification wrapper compatible with transformers.AutoModel."""
def forward(
self,
input_ids: torch.Tensor | None = None,
attention_mask: torch.Tensor | None = None,
labels: torch.Tensor | None = None,
return_dict: bool | None = None,
**kwargs: Any,
):
return super().forward(
input_ids=input_ids,
attention_mask=attention_mask,
labels=labels,
return_dict=return_dict,
**kwargs,
)
class OpenProvenceForTokenClassification(OpenProvenceModel):
"""Token classification wrapper that exposes pruning logits."""
def __init__(
self,
config: OpenProvenceConfig,
*model_args: Any,
device: str | torch.device | None = None,
**model_kwargs: Any,
) -> None:
super().__init__(config, *model_args, device=device, **model_kwargs)
self.num_labels = config.num_pruning_labels
def forward(
self,
input_ids: torch.Tensor | None = None,
attention_mask: torch.Tensor | None = None,
labels: torch.Tensor | None = None,
return_dict: bool | None = None,
**kwargs: Any,
):
effective_return_dict = return_dict if return_dict is not None else True
base_output = super().forward(
input_ids=input_ids,
attention_mask=attention_mask,
labels=None,
return_dict=True,
**kwargs,
)
classifier_output = cast(SequenceClassifierOutput, base_output)
pruning_logits = cast(Tensor, getattr(classifier_output, "pruning_logits"))
ranking_logits = cast(Tensor, getattr(classifier_output, "ranking_logits"))
loss = None
if labels is not None:
loss_fct = nn.CrossEntropyLoss()
if attention_mask is not None:
active_loss = attention_mask.view(-1) == 1
active_logits = pruning_logits.view(-1, self.num_labels)[active_loss]
active_labels = labels.view(-1)[active_loss]
if active_logits.numel() > 0:
loss = loss_fct(active_logits, active_labels)
else:
loss = torch.tensor(0.0, device=pruning_logits.device, requires_grad=True)
else:
loss = loss_fct(pruning_logits.view(-1, self.num_labels), labels.view(-1))
if not effective_return_dict:
output: tuple[torch.Tensor, ...] = (pruning_logits,)
if loss is not None:
return (loss,) + output
return output
logits_output = cast(FloatTensor, pruning_logits)
loss_output: FloatTensor | None = None
if loss is not None:
loss_output = cast(FloatTensor, loss.to(dtype=logits_output.dtype))
result = TokenClassifierOutput(
loss=loss_output,
logits=logits_output,
hidden_states=classifier_output.hidden_states,
attentions=classifier_output.attentions,
)
setattr(result, "ranking_logits", ranking_logits)
return result
OpenProvenceEncoderConfig = OpenProvenceConfig
OpenProvenceEncoderForSequenceClassification = OpenProvenceForSequenceClassification
OpenProvenceEncoderForTokenClassification = OpenProvenceForTokenClassification
__all__ = [
"OpenProvenceModel",
"OpenProvenceRawPrediction",
"OpenProvenceConfig",
"OpenProvenceForSequenceClassification",
"OpenProvenceForTokenClassification",
]
ContextItem: TypeAlias = str | Sequence[str]
ContextInput: TypeAlias = str | Sequence[ContextItem] | Sequence[Sequence[ContextItem]]
|