--- # 元数据标签,Hugging Face 会解析这些字段 language: - en tags: - sentiment-analysis - distilbert - text-classification - nlp license: apache-2.0 datasets: - amazon_polarity metrics: - accuracy - f1 model-index: - name: fine-tuned-distilbert results: - task: type: text-classification name: Sentiment Analysis dataset: name: Amazon Polarity type: amazon_polarity metrics: - name: Accuracy type: accuracy value: 0.90 # 示例值,替换为你的实际结果 - name: F1 type: f1 value: 0.89 # 示例值,替换为你的实际结果 --- # Fine-Tuned DistilBERT for Sentiment Analysis ## Model Description This model is a fine-tuned version of [`distilbert-base-uncased`](https://huggingface.co/distilbert-base-uncased) on the [`amazon_polarity`](https://huggingface.co/datasets/amazon_polarity) dataset. It is designed for binary sentiment classification, predicting whether a given text expresses a **positive** (1) or **negative** (0) sentiment. The model leverages the lightweight architecture of DistilBERT, making it efficient for deployment while maintaining strong performance. - **Developed by**: [Jack.RX Tech] - **Model Type**: Transformer-based text classification - **Base Model**: `distilbert-base-uncased` - **Language**: English - **License**: Apache 2.0 ## Intended Uses This model is intended for sentiment analysis tasks, particularly in analyzing product reviews or user feedback. It can be used in: - E-commerce platforms to monitor customer opinions. - Social media analysis for brand reputation management. - Market research to gauge consumer sentiment. ### Direct Use The model can classify text directly without additional fine-tuning for similar binary sentiment tasks. ### Downstream Use It can be further fine-tuned for domain-specific sentiment analysis (e.g., medical reviews, movie critiques). ## How to Use ### Python Code Example Below is an example of how to load and use the model with the `transformers` library: ```python from transformers import AutoModelForSequenceClassification, AutoTokenizer # 加载模型和tokenizer model_name = "huevan/distilbert-base-uncased-rx" # 替换为你的仓库名 tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForSequenceClassification.from_pretrained(model_name) # 输入文本 text = "I love this product, it's amazing!" inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True, max_length=128) # 预测 model.eval() with torch.no_grad(): outputs = model(**inputs) prediction = outputs.logits.argmax(-1).item() sentiment = "positive" if prediction == 1 else "negative" print(f"Sentiment: {sentiment}") # 输出: positive