Improve installation + code snippets (#4)
Browse files- Improve installation + code snippets (a02b070b1911ba4638c193217ae0edfbf72c71a9)
Co-authored-by: Joshua <[email protected]>
README.md
CHANGED
|
@@ -33,18 +33,12 @@ This repository contains [`meta-llama/Meta-Llama-3.1-405B-Instruct`](https://hug
|
|
| 33 |
|
| 34 |
In order to use the current quantized model, support is offered for different solutions as `transformers`, `autoawq`, or `text-generation-inference`.
|
| 35 |
|
| 36 |
-
### 🤗
|
| 37 |
|
| 38 |
-
In order to run the inference with Llama 3.1 405B Instruct AWQ in INT4,
|
| 39 |
|
| 40 |
```bash
|
| 41 |
-
pip install
|
| 42 |
-
```
|
| 43 |
-
|
| 44 |
-
Then, the latest version of `transformers` need to be installed, being 4.43.0 or higher, as:
|
| 45 |
-
|
| 46 |
-
```bash
|
| 47 |
-
pip install "transformers[accelerate]>=4.43.0" --upgrade
|
| 48 |
```
|
| 49 |
|
| 50 |
To run the inference on top of Llama 3.1 405B Instruct AWQ in INT4 precision, the AWQ model can be instantiated as any other causal language modeling model via `AutoModelForCausalLM` and run the inference normally.
|
|
@@ -54,15 +48,7 @@ import torch
|
|
| 54 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 55 |
|
| 56 |
model_id = "hugging-quants/Meta-Llama-3.1-405B-Instruct-AWQ-INT4"
|
| 57 |
-
prompt = [
|
| 58 |
-
{"role": "system", "content": "You are a helpful assistant, that responds as a pirate."},
|
| 59 |
-
{"role": "user", "content": "What's Deep Learning?"},
|
| 60 |
-
]
|
| 61 |
-
|
| 62 |
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
| 63 |
-
|
| 64 |
-
inputs = tokenizer.apply_chat_template(prompt, tokenize=True, add_generation_prompt=True, return_tensors="pt").cuda()
|
| 65 |
-
|
| 66 |
model = AutoModelForCausalLM.from_pretrained(
|
| 67 |
model_id,
|
| 68 |
torch_dtype=torch.float16,
|
|
@@ -70,22 +56,28 @@ model = AutoModelForCausalLM.from_pretrained(
|
|
| 70 |
device_map="auto",
|
| 71 |
)
|
| 72 |
|
| 73 |
-
|
| 74 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 75 |
```
|
| 76 |
|
| 77 |
### AutoAWQ
|
| 78 |
|
| 79 |
-
In order to run the inference with Llama 3.1 405B Instruct AWQ in INT4,
|
| 80 |
-
|
| 81 |
-
```bash
|
| 82 |
-
pip install "torch>=2.2.0,<2.3.0" autoawq --upgrade
|
| 83 |
-
```
|
| 84 |
-
|
| 85 |
-
Then, the latest version of `transformers` need to be installed, being 4.43.0 or higher, as:
|
| 86 |
|
| 87 |
```bash
|
| 88 |
-
pip install
|
| 89 |
```
|
| 90 |
|
| 91 |
Alternatively, one may want to run that via `AutoAWQ` even though it's built on top of 🤗 `transformers`, which is the recommended approach instead as described above.
|
|
@@ -96,11 +88,6 @@ from awq import AutoAWQForCausalLM
|
|
| 96 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 97 |
|
| 98 |
model_id = "hugging-quants/Meta-Llama-3.1-405B-Instruct-AWQ-INT4"
|
| 99 |
-
prompt = [
|
| 100 |
-
{"role": "system", "content": "You are a helpful assistant, that responds as a pirate."},
|
| 101 |
-
{"role": "user", "content": "What's Deep Learning?"},
|
| 102 |
-
]
|
| 103 |
-
|
| 104 |
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
| 105 |
model = AutoAWQForCausalLM.from_pretrained(
|
| 106 |
model_id,
|
|
@@ -109,9 +96,20 @@ model = AutoAWQForCausalLM.from_pretrained(
|
|
| 109 |
device_map="auto",
|
| 110 |
)
|
| 111 |
|
| 112 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 113 |
outputs = model.generate(**inputs, do_sample=True, max_new_tokens=256)
|
| 114 |
-
print(tokenizer.batch_decode(outputs, skip_special_tokens=True))
|
| 115 |
```
|
| 116 |
|
| 117 |
The AutoAWQ script has been adapted from [AutoAWQ/examples/generate.py](https://github.com/casper-hansen/AutoAWQ/blob/main/examples/generate.py).
|
|
@@ -125,21 +123,13 @@ Coming soon!
|
|
| 125 |
> [!NOTE]
|
| 126 |
> In order to quantize Llama 3.1 405B Instruct using AutoAWQ, you will need to use an instance with at least enough CPU RAM to fit the whole model i.e. ~800GiB, and an NVIDIA GPU with 80GiB of VRAM to quantize it.
|
| 127 |
|
| 128 |
-
In order to quantize Llama 3.1 405B Instruct, first install
|
| 129 |
-
|
| 130 |
-
```bash
|
| 131 |
-
pip install "torch>=2.2.0,<2.3.0" autoawq --upgrade
|
| 132 |
-
```
|
| 133 |
-
|
| 134 |
-
Otherwise the quantization may fail, since the AutoAWQ kernels are built with PyTorch 2.2.1, meaning that those will break with PyTorch 2.3.0.
|
| 135 |
-
|
| 136 |
-
Then install the latest version of `transformers` as follows:
|
| 137 |
|
| 138 |
```bash
|
| 139 |
-
pip install
|
| 140 |
```
|
| 141 |
|
| 142 |
-
|
| 143 |
|
| 144 |
```python
|
| 145 |
from awq import AutoAWQForCausalLM
|
|
@@ -156,9 +146,9 @@ quant_config = {
|
|
| 156 |
|
| 157 |
# Load model
|
| 158 |
model = AutoAWQForCausalLM.from_pretrained(
|
| 159 |
-
model_path,
|
| 160 |
)
|
| 161 |
-
tokenizer = AutoTokenizer.from_pretrained(model_path
|
| 162 |
|
| 163 |
# Quantize
|
| 164 |
model.quantize(tokenizer, quant_config=quant_config)
|
|
|
|
| 33 |
|
| 34 |
In order to use the current quantized model, support is offered for different solutions as `transformers`, `autoawq`, or `text-generation-inference`.
|
| 35 |
|
| 36 |
+
### 🤗 Transformers
|
| 37 |
|
| 38 |
+
In order to run the inference with Llama 3.1 405B Instruct AWQ in INT4, you need to install the following packages:
|
| 39 |
|
| 40 |
```bash
|
| 41 |
+
pip install -q --upgrade transformers autoawq accelerate
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 42 |
```
|
| 43 |
|
| 44 |
To run the inference on top of Llama 3.1 405B Instruct AWQ in INT4 precision, the AWQ model can be instantiated as any other causal language modeling model via `AutoModelForCausalLM` and run the inference normally.
|
|
|
|
| 48 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 49 |
|
| 50 |
model_id = "hugging-quants/Meta-Llama-3.1-405B-Instruct-AWQ-INT4"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 51 |
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
|
|
|
|
|
|
|
|
|
| 52 |
model = AutoModelForCausalLM.from_pretrained(
|
| 53 |
model_id,
|
| 54 |
torch_dtype=torch.float16,
|
|
|
|
| 56 |
device_map="auto",
|
| 57 |
)
|
| 58 |
|
| 59 |
+
prompt = [
|
| 60 |
+
{"role": "system", "content": "You are a helpful assistant, that responds as a pirate."},
|
| 61 |
+
{"role": "user", "content": "What's Deep Learning?"},
|
| 62 |
+
]
|
| 63 |
+
inputs = tokenizer.apply_chat_template(
|
| 64 |
+
prompt,
|
| 65 |
+
tokenize=True,
|
| 66 |
+
add_generation_prompt=True,
|
| 67 |
+
return_tensors="pt",
|
| 68 |
+
return_dict=True,
|
| 69 |
+
).to("cuda")
|
| 70 |
+
|
| 71 |
+
outputs = model.generate(**inputs, do_sample=True, max_new_tokens=256)
|
| 72 |
+
print(tokenizer.batch_decode(outputs[:, inputs['input_ids'].shape[1]:], skip_special_tokens=True)[0])
|
| 73 |
```
|
| 74 |
|
| 75 |
### AutoAWQ
|
| 76 |
|
| 77 |
+
In order to run the inference with Llama 3.1 405B Instruct AWQ in INT4, you need to install the following packages:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 78 |
|
| 79 |
```bash
|
| 80 |
+
pip install -q --upgrade transformers autoawq accelerate
|
| 81 |
```
|
| 82 |
|
| 83 |
Alternatively, one may want to run that via `AutoAWQ` even though it's built on top of 🤗 `transformers`, which is the recommended approach instead as described above.
|
|
|
|
| 88 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 89 |
|
| 90 |
model_id = "hugging-quants/Meta-Llama-3.1-405B-Instruct-AWQ-INT4"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 91 |
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
| 92 |
model = AutoAWQForCausalLM.from_pretrained(
|
| 93 |
model_id,
|
|
|
|
| 96 |
device_map="auto",
|
| 97 |
)
|
| 98 |
|
| 99 |
+
prompt = [
|
| 100 |
+
{"role": "system", "content": "You are a helpful assistant, that responds as a pirate."},
|
| 101 |
+
{"role": "user", "content": "What's Deep Learning?"},
|
| 102 |
+
]
|
| 103 |
+
inputs = tokenizer.apply_chat_template(
|
| 104 |
+
prompt,
|
| 105 |
+
tokenize=True,
|
| 106 |
+
add_generation_prompt=True,
|
| 107 |
+
return_tensors="pt",
|
| 108 |
+
return_dict=True,
|
| 109 |
+
).to("cuda")
|
| 110 |
+
|
| 111 |
outputs = model.generate(**inputs, do_sample=True, max_new_tokens=256)
|
| 112 |
+
print(tokenizer.batch_decode(outputs[:, inputs['input_ids'].shape[1]:], skip_special_tokens=True)[0])
|
| 113 |
```
|
| 114 |
|
| 115 |
The AutoAWQ script has been adapted from [AutoAWQ/examples/generate.py](https://github.com/casper-hansen/AutoAWQ/blob/main/examples/generate.py).
|
|
|
|
| 123 |
> [!NOTE]
|
| 124 |
> In order to quantize Llama 3.1 405B Instruct using AutoAWQ, you will need to use an instance with at least enough CPU RAM to fit the whole model i.e. ~800GiB, and an NVIDIA GPU with 80GiB of VRAM to quantize it.
|
| 125 |
|
| 126 |
+
In order to quantize Llama 3.1 405B Instruct, first install the following packages:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 127 |
|
| 128 |
```bash
|
| 129 |
+
pip install -q --upgrade transformers autoawq accelerate
|
| 130 |
```
|
| 131 |
|
| 132 |
+
Then run the following script, adapted from [`AutoAWQ/examples/quantize.py`](https://github.com/casper-hansen/AutoAWQ/blob/main/examples/quantize.py):
|
| 133 |
|
| 134 |
```python
|
| 135 |
from awq import AutoAWQForCausalLM
|
|
|
|
| 146 |
|
| 147 |
# Load model
|
| 148 |
model = AutoAWQForCausalLM.from_pretrained(
|
| 149 |
+
model_path, low_cpu_mem_usage=True, use_cache=False,
|
| 150 |
)
|
| 151 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
| 152 |
|
| 153 |
# Quantize
|
| 154 |
model.quantize(tokenizer, quant_config=quant_config)
|