Commit 
							
							·
						
						afc3169
	
1
								Parent(s):
							
							2263de3
								
llama
Browse files- config.json +18 -30
 - configuration_granite.py +0 -98
 - generation_config.json +3 -4
 - model-00001-of-00002.safetensors +2 -2
 - model-00002-of-00002.safetensors +2 -2
 - model.safetensors.index.json +514 -322
 - modeling_granite.py +0 -1376
 
    	
        config.json
    CHANGED
    
    | 
         @@ -1,40 +1,28 @@ 
     | 
|
| 1 | 
         
             
            {
         
     | 
| 2 | 
         
            -
              "activation_function": "swiglu",
         
     | 
| 3 | 
         
            -
              "add_bias": true,
         
     | 
| 4 | 
         
            -
              "apply_residual_connection_post_layernorm": false,
         
     | 
| 5 | 
         
             
              "architectures": [
         
     | 
| 6 | 
         
            -
                " 
     | 
| 7 | 
         
             
              ],
         
     | 
| 8 | 
         
            -
              " 
     | 
| 9 | 
         
            -
              " 
     | 
| 10 | 
         
            -
              " 
     | 
| 11 | 
         
            -
              " 
     | 
| 12 | 
         
            -
              " 
     | 
| 13 | 
         
            -
             
     | 
| 14 | 
         
            -
                "AutoModel": "modeling_granite.GraniteModel",
         
     | 
| 15 | 
         
            -
                "AutoModelForCausalLM": "modeling_granite.GraniteForCausalLM"
         
     | 
| 16 | 
         
            -
              },
         
     | 
| 17 | 
         
            -
              "bos_token_id": 0,
         
     | 
| 18 | 
         
            -
              "embd_pdrop": 0.1,
         
     | 
| 19 | 
         
            -
              "eos_token_id": 0,
         
     | 
| 20 | 
         
             
              "initializer_range": 0.02,
         
     | 
| 21 | 
         
            -
              " 
     | 
| 22 | 
         
            -
              " 
     | 
| 23 | 
         
            -
              " 
     | 
| 24 | 
         
            -
              " 
     | 
| 25 | 
         
            -
              " 
     | 
| 26 | 
         
            -
              " 
     | 
| 27 | 
         
            -
              "n_positions": 2048,
         
     | 
| 28 | 
         
            -
              "normalization_function": "rmsnorm",
         
     | 
| 29 | 
         
             
              "num_key_value_heads": 32,
         
     | 
| 30 | 
         
            -
              " 
     | 
| 31 | 
         
            -
              " 
     | 
| 32 | 
         
            -
              " 
     | 
| 33 | 
         
             
              "rope_theta": 10000,
         
     | 
| 34 | 
         
            -
              " 
     | 
| 35 | 
         
            -
              "scale_attn_weights": true,
         
     | 
| 36 | 
         
             
              "torch_dtype": "bfloat16",
         
     | 
| 37 | 
         
            -
              "transformers_version": "4. 
     | 
| 38 | 
         
             
              "use_cache": true,
         
     | 
| 39 | 
         
             
              "vocab_size": 49152
         
     | 
| 40 | 
         
             
            }
         
     | 
| 
         | 
|
| 1 | 
         
             
            {
         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 2 | 
         
             
              "architectures": [
         
     | 
| 3 | 
         
            +
                "LlamaForCausalLM"
         
     | 
| 4 | 
         
             
              ],
         
     | 
| 5 | 
         
            +
              "attention_bias": true,
         
     | 
| 6 | 
         
            +
              "attention_dropout": 0.1,
         
     | 
| 7 | 
         
            +
              "bos_token_id": 1,
         
     | 
| 8 | 
         
            +
              "eos_token_id": 2,
         
     | 
| 9 | 
         
            +
              "hidden_act": "silu",
         
     | 
| 10 | 
         
            +
              "hidden_size": 2560,
         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 11 | 
         
             
              "initializer_range": 0.02,
         
     | 
| 12 | 
         
            +
              "intermediate_size": 10240,
         
     | 
| 13 | 
         
            +
              "max_position_embeddings": 2048,
         
     | 
| 14 | 
         
            +
              "mlp_bias": true,
         
     | 
| 15 | 
         
            +
              "model_type": "llama",
         
     | 
| 16 | 
         
            +
              "num_attention_heads": 32,
         
     | 
| 17 | 
         
            +
              "num_hidden_layers": 32,
         
     | 
| 
         | 
|
| 
         | 
|
| 18 | 
         
             
              "num_key_value_heads": 32,
         
     | 
| 19 | 
         
            +
              "pretraining_tp": 1,
         
     | 
| 20 | 
         
            +
              "rms_norm_eps": 1e-05,
         
     | 
| 21 | 
         
            +
              "rope_scaling": null,
         
     | 
| 22 | 
         
             
              "rope_theta": 10000,
         
     | 
| 23 | 
         
            +
              "tie_word_embeddings": true,
         
     | 
| 
         | 
|
| 24 | 
         
             
              "torch_dtype": "bfloat16",
         
     | 
| 25 | 
         
            +
              "transformers_version": "4.41.0.dev0",
         
     | 
| 26 | 
         
             
              "use_cache": true,
         
     | 
| 27 | 
         
             
              "vocab_size": 49152
         
     | 
| 28 | 
         
             
            }
         
     | 
    	
        configuration_granite.py
    DELETED
    
    | 
         @@ -1,98 +0,0 @@ 
     | 
|
| 1 | 
         
            -
            from transformers import PretrainedConfig
         
     | 
| 2 | 
         
            -
             
     | 
| 3 | 
         
            -
             
     | 
| 4 | 
         
            -
            class GraniteConfig(PretrainedConfig):
         
     | 
| 5 | 
         
            -
                model_type = "granite"
         
     | 
| 6 | 
         
            -
             
     | 
| 7 | 
         
            -
                keys_to_ignore_at_inference = ["past_key_values"]
         
     | 
| 8 | 
         
            -
                attribute_map = {
         
     | 
| 9 | 
         
            -
                    "hidden_size": "n_embd",
         
     | 
| 10 | 
         
            -
                    "max_position_embeddings": "n_positions",
         
     | 
| 11 | 
         
            -
                    "num_attention_heads": "n_head",
         
     | 
| 12 | 
         
            -
                    "num_hidden_layers": "n_layer",
         
     | 
| 13 | 
         
            -
                }
         
     | 
| 14 | 
         
            -
             
     | 
| 15 | 
         
            -
                def __init__(
         
     | 
| 16 | 
         
            -
                    self,
         
     | 
| 17 | 
         
            -
                    vocab_size: int = 50257,
         
     | 
| 18 | 
         
            -
                    n_positions: int = 1024,
         
     | 
| 19 | 
         
            -
                    n_embd: int = 768,
         
     | 
| 20 | 
         
            -
                    n_layer: int = 12,
         
     | 
| 21 | 
         
            -
                    n_head: int = 12,
         
     | 
| 22 | 
         
            -
                    num_key_value_heads: int = None,
         
     | 
| 23 | 
         
            -
                    n_inner: int = None,
         
     | 
| 24 | 
         
            -
                    activation_function: str = "gelu_pytorch_tanh",
         
     | 
| 25 | 
         
            -
                    attention_head_type: str = "mqa",
         
     | 
| 26 | 
         
            -
                    resid_pdrop: float = 0.1,
         
     | 
| 27 | 
         
            -
                    embd_pdrop: float = 0.1,
         
     | 
| 28 | 
         
            -
                    attn_pdrop: float = 0.1,
         
     | 
| 29 | 
         
            -
                    normalization_function: str = "layernorm",
         
     | 
| 30 | 
         
            -
                    layer_norm_epsilon: float = 1e-5,
         
     | 
| 31 | 
         
            -
                    initializer_range: float = 0.02,
         
     | 
| 32 | 
         
            -
                    scale_attn_weights: bool = True,
         
     | 
| 33 | 
         
            -
                    attention_multiplier: float = None,
         
     | 
| 34 | 
         
            -
                    use_cache: bool = True,
         
     | 
| 35 | 
         
            -
                    bos_token_id: int = 50256,
         
     | 
| 36 | 
         
            -
                    eos_token_id: int = 50256,
         
     | 
| 37 | 
         
            -
                    pad_token_id: int = 50256,
         
     | 
| 38 | 
         
            -
                    attention_softmax_in_fp32: bool = True,
         
     | 
| 39 | 
         
            -
                    scale_attention_softmax_in_fp32: bool = True,
         
     | 
| 40 | 
         
            -
                    add_bias: bool = True,
         
     | 
| 41 | 
         
            -
                    position_embedding_type: str = "learned_absolute",
         
     | 
| 42 | 
         
            -
                    rope_theta: int = 10000,
         
     | 
| 43 | 
         
            -
                    **kwargs,
         
     | 
| 44 | 
         
            -
                ) -> None:
         
     | 
| 45 | 
         
            -
                    self.vocab_size = vocab_size
         
     | 
| 46 | 
         
            -
                    self.n_positions = n_positions
         
     | 
| 47 | 
         
            -
                    self.n_embd = n_embd
         
     | 
| 48 | 
         
            -
                    self.n_layer = n_layer
         
     | 
| 49 | 
         
            -
                    self.n_head = n_head
         
     | 
| 50 | 
         
            -
                    self.num_key_value_heads = num_key_value_heads
         
     | 
| 51 | 
         
            -
                    self.n_inner = 4 * n_embd if n_inner is None else n_inner
         
     | 
| 52 | 
         
            -
                    self.activation_function = activation_function
         
     | 
| 53 | 
         
            -
                    self.attention_head_type = attention_head_type
         
     | 
| 54 | 
         
            -
                    self.resid_pdrop = resid_pdrop
         
     | 
| 55 | 
         
            -
                    self.embd_pdrop = embd_pdrop
         
     | 
| 56 | 
         
            -
                    self.attn_pdrop = attn_pdrop
         
     | 
| 57 | 
         
            -
                    self.normalization_function = normalization_function
         
     | 
| 58 | 
         
            -
                    self.layer_norm_epsilon = layer_norm_epsilon
         
     | 
| 59 | 
         
            -
                    self.initializer_range = initializer_range
         
     | 
| 60 | 
         
            -
                    self.scale_attn_weights = scale_attn_weights
         
     | 
| 61 | 
         
            -
                    self.attention_multiplier = attention_multiplier
         
     | 
| 62 | 
         
            -
                    self.use_cache = use_cache
         
     | 
| 63 | 
         
            -
                    self.attention_softmax_in_fp32 = attention_softmax_in_fp32
         
     | 
| 64 | 
         
            -
                    self.scale_attention_softmax_in_fp32 = scale_attention_softmax_in_fp32
         
     | 
| 65 | 
         
            -
                    self.position_embedding_type = position_embedding_type
         
     | 
| 66 | 
         
            -
                    self.add_bias = add_bias
         
     | 
| 67 | 
         
            -
                    self.rope_theta = rope_theta
         
     | 
| 68 | 
         
            -
             
     | 
| 69 | 
         
            -
                    if self.attention_multiplier is not None:
         
     | 
| 70 | 
         
            -
                        assert self.scale_attn_weights
         
     | 
| 71 | 
         
            -
             
     | 
| 72 | 
         
            -
                    # for compatibility with some features
         
     | 
| 73 | 
         
            -
                    self.multi_query = attention_head_type == "mqa"
         
     | 
| 74 | 
         
            -
             
     | 
| 75 | 
         
            -
                    if attention_head_type == "mha":
         
     | 
| 76 | 
         
            -
                        if self.num_key_value_heads is None:
         
     | 
| 77 | 
         
            -
                            self.num_key_value_heads = self.n_head
         
     | 
| 78 | 
         
            -
             
     | 
| 79 | 
         
            -
                        assert (
         
     | 
| 80 | 
         
            -
                            self.n_head == self.num_key_value_heads
         
     | 
| 81 | 
         
            -
                        ), "MultiHeadAttention should have same number of heads for query, keys and values"
         
     | 
| 82 | 
         
            -
                    elif attention_head_type == "mqa":
         
     | 
| 83 | 
         
            -
                        if self.num_key_value_heads is None:
         
     | 
| 84 | 
         
            -
                            self.num_key_value_heads = 1
         
     | 
| 85 | 
         
            -
             
     | 
| 86 | 
         
            -
                        assert self.num_key_value_heads == 1, "MultiQueryAttention should have 1 head for keys and values"
         
     | 
| 87 | 
         
            -
                    elif attention_head_type == "gqa":
         
     | 
| 88 | 
         
            -
                        assert (
         
     | 
| 89 | 
         
            -
                            self.num_key_value_heads is not None
         
     | 
| 90 | 
         
            -
                        ), "`num_key_value_heads` needs to be specified with GroupedQueryAttention"
         
     | 
| 91 | 
         
            -
             
     | 
| 92 | 
         
            -
                        assert (
         
     | 
| 93 | 
         
            -
                            self.n_head % self.num_key_value_heads == 0
         
     | 
| 94 | 
         
            -
                        ), "GroupedQueryAttention should have more than 1 head for keys and values"
         
     | 
| 95 | 
         
            -
                    else:
         
     | 
| 96 | 
         
            -
                        raise ValueError(f"unexpected attention_head_type ({attention_head_type})")
         
     | 
| 97 | 
         
            -
             
     | 
| 98 | 
         
            -
                    super().__init__(bos_token_id=bos_token_id, eos_token_id=eos_token_id, pad_token_id=pad_token_id, **kwargs)
         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
    	
        generation_config.json
    CHANGED
    
    | 
         @@ -1,7 +1,6 @@ 
     | 
|
| 1 | 
         
             
            {
         
     | 
| 2 | 
         
             
              "_from_model_config": true,
         
     | 
| 3 | 
         
            -
              "bos_token_id":  
     | 
| 4 | 
         
            -
              "eos_token_id":  
     | 
| 5 | 
         
            -
              " 
     | 
| 6 | 
         
            -
              "transformers_version": "4.38.1"
         
     | 
| 7 | 
         
             
            }
         
     | 
| 
         | 
|
| 1 | 
         
             
            {
         
     | 
| 2 | 
         
             
              "_from_model_config": true,
         
     | 
| 3 | 
         
            +
              "bos_token_id": 1,
         
     | 
| 4 | 
         
            +
              "eos_token_id": 2,
         
     | 
| 5 | 
         
            +
              "transformers_version": "4.41.0.dev0"
         
     | 
| 
         | 
|
| 6 | 
         
             
            }
         
     | 
    	
        model-00001-of-00002.safetensors
    CHANGED
    
    | 
         @@ -1,3 +1,3 @@ 
     | 
|
| 1 | 
         
             
            version https://git-lfs.github.com/spec/v1
         
     | 
| 2 | 
         
            -
            oid sha256: 
     | 
| 3 | 
         
            -
            size  
     | 
| 
         | 
|
| 1 | 
         
             
            version https://git-lfs.github.com/spec/v1
         
     | 
| 2 | 
         
            +
            oid sha256:7127432f1ffff5b25875ce4e287c9dfa458655ad1b6183a2d274c061bf9e4b1b
         
     | 
| 3 | 
         
            +
            size 4972021832
         
     | 
    	
        model-00002-of-00002.safetensors
    CHANGED
    
    | 
         @@ -1,3 +1,3 @@ 
     | 
|
| 1 | 
         
             
            version https://git-lfs.github.com/spec/v1
         
     | 
| 2 | 
         
            -
            oid sha256: 
     | 
| 3 | 
         
            -
            size  
     | 
| 
         | 
|
| 1 | 
         
             
            version https://git-lfs.github.com/spec/v1
         
     | 
| 2 | 
         
            +
            oid sha256:344a03bb26fe17bacac63b616c45397758aeb6dfb0f36b4495139dc4530b885b
         
     | 
| 3 | 
         
            +
            size 1993043568
         
     | 
    	
        model.safetensors.index.json
    CHANGED
    
    | 
         @@ -3,327 +3,519 @@ 
     | 
|
| 3 | 
         
             
                "total_size": 6965007360
         
     | 
| 4 | 
         
             
              },
         
     | 
| 5 | 
         
             
              "weight_map": {
         
     | 
| 6 | 
         
            -
                " 
     | 
| 7 | 
         
            -
                " 
     | 
| 8 | 
         
            -
                " 
     | 
| 9 | 
         
            -
                " 
     | 
| 10 | 
         
            -
                " 
     | 
| 11 | 
         
            -
                " 
     | 
| 12 | 
         
            -
                " 
     | 
| 13 | 
         
            -
                " 
     | 
| 14 | 
         
            -
                " 
     | 
| 15 | 
         
            -
                " 
     | 
| 16 | 
         
            -
                " 
     | 
| 17 | 
         
            -
                " 
     | 
| 18 | 
         
            -
                " 
     | 
| 19 | 
         
            -
                " 
     | 
| 20 | 
         
            -
                " 
     | 
| 21 | 
         
            -
                " 
     | 
| 22 | 
         
            -
                " 
     | 
| 23 | 
         
            -
                " 
     | 
| 24 | 
         
            -
                " 
     | 
| 25 | 
         
            -
                " 
     | 
| 26 | 
         
            -
                " 
     | 
| 27 | 
         
            -
                " 
     | 
| 28 | 
         
            -
                " 
     | 
| 29 | 
         
            -
                " 
     | 
| 30 | 
         
            -
                " 
     | 
| 31 | 
         
            -
                " 
     | 
| 32 | 
         
            -
                " 
     | 
| 33 | 
         
            -
                " 
     | 
| 34 | 
         
            -
                " 
     | 
| 35 | 
         
            -
                " 
     | 
| 36 | 
         
            -
                " 
     | 
| 37 | 
         
            -
                " 
     | 
| 38 | 
         
            -
                " 
     | 
| 39 | 
         
            -
                " 
     | 
| 40 | 
         
            -
                " 
     | 
| 41 | 
         
            -
                " 
     | 
| 42 | 
         
            -
                " 
     | 
| 43 | 
         
            -
                " 
     | 
| 44 | 
         
            -
                " 
     | 
| 45 | 
         
            -
                " 
     | 
| 46 | 
         
            -
                " 
     | 
| 47 | 
         
            -
                " 
     | 
| 48 | 
         
            -
                " 
     | 
| 49 | 
         
            -
                " 
     | 
| 50 | 
         
            -
                " 
     | 
| 51 | 
         
            -
                " 
     | 
| 52 | 
         
            -
                " 
     | 
| 53 | 
         
            -
                " 
     | 
| 54 | 
         
            -
                " 
     | 
| 55 | 
         
            -
                " 
     | 
| 56 | 
         
            -
                " 
     | 
| 57 | 
         
            -
                " 
     | 
| 58 | 
         
            -
                " 
     | 
| 59 | 
         
            -
                " 
     | 
| 60 | 
         
            -
                " 
     | 
| 61 | 
         
            -
                " 
     | 
| 62 | 
         
            -
                " 
     | 
| 63 | 
         
            -
                " 
     | 
| 64 | 
         
            -
                " 
     | 
| 65 | 
         
            -
                " 
     | 
| 66 | 
         
            -
                " 
     | 
| 67 | 
         
            -
                " 
     | 
| 68 | 
         
            -
                " 
     | 
| 69 | 
         
            -
                " 
     | 
| 70 | 
         
            -
                " 
     | 
| 71 | 
         
            -
                " 
     | 
| 72 | 
         
            -
                " 
     | 
| 73 | 
         
            -
                " 
     | 
| 74 | 
         
            -
                " 
     | 
| 75 | 
         
            -
                " 
     | 
| 76 | 
         
            -
                " 
     | 
| 77 | 
         
            -
                " 
     | 
| 78 | 
         
            -
                " 
     | 
| 79 | 
         
            -
                " 
     | 
| 80 | 
         
            -
                " 
     | 
| 81 | 
         
            -
                " 
     | 
| 82 | 
         
            -
                " 
     | 
| 83 | 
         
            -
                " 
     | 
| 84 | 
         
            -
                " 
     | 
| 85 | 
         
            -
                " 
     | 
| 86 | 
         
            -
                " 
     | 
| 87 | 
         
            -
                " 
     | 
| 88 | 
         
            -
                " 
     | 
| 89 | 
         
            -
                " 
     | 
| 90 | 
         
            -
                " 
     | 
| 91 | 
         
            -
                " 
     | 
| 92 | 
         
            -
                " 
     | 
| 93 | 
         
            -
                " 
     | 
| 94 | 
         
            -
                " 
     | 
| 95 | 
         
            -
                " 
     | 
| 96 | 
         
            -
                " 
     | 
| 97 | 
         
            -
                " 
     | 
| 98 | 
         
            -
                " 
     | 
| 99 | 
         
            -
                " 
     | 
| 100 | 
         
            -
                " 
     | 
| 101 | 
         
            -
                " 
     | 
| 102 | 
         
            -
                " 
     | 
| 103 | 
         
            -
                " 
     | 
| 104 | 
         
            -
                " 
     | 
| 105 | 
         
            -
                " 
     | 
| 106 | 
         
            -
                " 
     | 
| 107 | 
         
            -
                " 
     | 
| 108 | 
         
            -
                " 
     | 
| 109 | 
         
            -
                " 
     | 
| 110 | 
         
            -
                " 
     | 
| 111 | 
         
            -
                " 
     | 
| 112 | 
         
            -
                " 
     | 
| 113 | 
         
            -
                " 
     | 
| 114 | 
         
            -
                " 
     | 
| 115 | 
         
            -
                " 
     | 
| 116 | 
         
            -
                " 
     | 
| 117 | 
         
            -
                " 
     | 
| 118 | 
         
            -
                " 
     | 
| 119 | 
         
            -
                " 
     | 
| 120 | 
         
            -
                " 
     | 
| 121 | 
         
            -
                " 
     | 
| 122 | 
         
            -
                " 
     | 
| 123 | 
         
            -
                " 
     | 
| 124 | 
         
            -
                " 
     | 
| 125 | 
         
            -
                " 
     | 
| 126 | 
         
            -
                " 
     | 
| 127 | 
         
            -
                " 
     | 
| 128 | 
         
            -
                " 
     | 
| 129 | 
         
            -
                " 
     | 
| 130 | 
         
            -
                " 
     | 
| 131 | 
         
            -
                " 
     | 
| 132 | 
         
            -
                " 
     | 
| 133 | 
         
            -
                " 
     | 
| 134 | 
         
            -
                " 
     | 
| 135 | 
         
            -
                " 
     | 
| 136 | 
         
            -
                " 
     | 
| 137 | 
         
            -
                " 
     | 
| 138 | 
         
            -
                " 
     | 
| 139 | 
         
            -
                " 
     | 
| 140 | 
         
            -
                " 
     | 
| 141 | 
         
            -
                " 
     | 
| 142 | 
         
            -
                " 
     | 
| 143 | 
         
            -
                " 
     | 
| 144 | 
         
            -
                " 
     | 
| 145 | 
         
            -
                " 
     | 
| 146 | 
         
            -
                " 
     | 
| 147 | 
         
            -
                " 
     | 
| 148 | 
         
            -
                " 
     | 
| 149 | 
         
            -
                " 
     | 
| 150 | 
         
            -
                " 
     | 
| 151 | 
         
            -
                " 
     | 
| 152 | 
         
            -
                " 
     | 
| 153 | 
         
            -
                " 
     | 
| 154 | 
         
            -
                " 
     | 
| 155 | 
         
            -
                " 
     | 
| 156 | 
         
            -
                " 
     | 
| 157 | 
         
            -
                " 
     | 
| 158 | 
         
            -
                " 
     | 
| 159 | 
         
            -
                " 
     | 
| 160 | 
         
            -
                " 
     | 
| 161 | 
         
            -
                " 
     | 
| 162 | 
         
            -
                " 
     | 
| 163 | 
         
            -
                " 
     | 
| 164 | 
         
            -
                " 
     | 
| 165 | 
         
            -
                " 
     | 
| 166 | 
         
            -
                " 
     | 
| 167 | 
         
            -
                " 
     | 
| 168 | 
         
            -
                " 
     | 
| 169 | 
         
            -
                " 
     | 
| 170 | 
         
            -
                " 
     | 
| 171 | 
         
            -
                " 
     | 
| 172 | 
         
            -
                " 
     | 
| 173 | 
         
            -
                " 
     | 
| 174 | 
         
            -
                " 
     | 
| 175 | 
         
            -
                " 
     | 
| 176 | 
         
            -
                " 
     | 
| 177 | 
         
            -
                " 
     | 
| 178 | 
         
            -
                " 
     | 
| 179 | 
         
            -
                " 
     | 
| 180 | 
         
            -
                " 
     | 
| 181 | 
         
            -
                " 
     | 
| 182 | 
         
            -
                " 
     | 
| 183 | 
         
            -
                " 
     | 
| 184 | 
         
            -
                " 
     | 
| 185 | 
         
            -
                " 
     | 
| 186 | 
         
            -
                " 
     | 
| 187 | 
         
            -
                " 
     | 
| 188 | 
         
            -
                " 
     | 
| 189 | 
         
            -
                " 
     | 
| 190 | 
         
            -
                " 
     | 
| 191 | 
         
            -
                " 
     | 
| 192 | 
         
            -
                " 
     | 
| 193 | 
         
            -
                " 
     | 
| 194 | 
         
            -
                " 
     | 
| 195 | 
         
            -
                " 
     | 
| 196 | 
         
            -
                " 
     | 
| 197 | 
         
            -
                " 
     | 
| 198 | 
         
            -
                " 
     | 
| 199 | 
         
            -
                " 
     | 
| 200 | 
         
            -
                " 
     | 
| 201 | 
         
            -
                " 
     | 
| 202 | 
         
            -
                " 
     | 
| 203 | 
         
            -
                " 
     | 
| 204 | 
         
            -
                " 
     | 
| 205 | 
         
            -
                " 
     | 
| 206 | 
         
            -
                " 
     | 
| 207 | 
         
            -
                " 
     | 
| 208 | 
         
            -
                " 
     | 
| 209 | 
         
            -
                " 
     | 
| 210 | 
         
            -
                " 
     | 
| 211 | 
         
            -
                " 
     | 
| 212 | 
         
            -
                " 
     | 
| 213 | 
         
            -
                " 
     | 
| 214 | 
         
            -
                " 
     | 
| 215 | 
         
            -
                " 
     | 
| 216 | 
         
            -
                " 
     | 
| 217 | 
         
            -
                " 
     | 
| 218 | 
         
            -
                " 
     | 
| 219 | 
         
            -
                " 
     | 
| 220 | 
         
            -
                " 
     | 
| 221 | 
         
            -
                " 
     | 
| 222 | 
         
            -
                " 
     | 
| 223 | 
         
            -
                " 
     | 
| 224 | 
         
            -
                " 
     | 
| 225 | 
         
            -
                " 
     | 
| 226 | 
         
            -
                " 
     | 
| 227 | 
         
            -
                " 
     | 
| 228 | 
         
            -
                " 
     | 
| 229 | 
         
            -
                " 
     | 
| 230 | 
         
            -
                " 
     | 
| 231 | 
         
            -
                " 
     | 
| 232 | 
         
            -
                " 
     | 
| 233 | 
         
            -
                " 
     | 
| 234 | 
         
            -
                " 
     | 
| 235 | 
         
            -
                " 
     | 
| 236 | 
         
            -
                " 
     | 
| 237 | 
         
            -
                " 
     | 
| 238 | 
         
            -
                " 
     | 
| 239 | 
         
            -
                " 
     | 
| 240 | 
         
            -
                " 
     | 
| 241 | 
         
            -
                " 
     | 
| 242 | 
         
            -
                " 
     | 
| 243 | 
         
            -
                " 
     | 
| 244 | 
         
            -
                " 
     | 
| 245 | 
         
            -
                " 
     | 
| 246 | 
         
            -
                " 
     | 
| 247 | 
         
            -
                " 
     | 
| 248 | 
         
            -
                " 
     | 
| 249 | 
         
            -
                " 
     | 
| 250 | 
         
            -
                " 
     | 
| 251 | 
         
            -
                " 
     | 
| 252 | 
         
            -
                " 
     | 
| 253 | 
         
            -
                " 
     | 
| 254 | 
         
            -
                " 
     | 
| 255 | 
         
            -
                " 
     | 
| 256 | 
         
            -
                " 
     | 
| 257 | 
         
            -
                " 
     | 
| 258 | 
         
            -
                " 
     | 
| 259 | 
         
            -
                " 
     | 
| 260 | 
         
            -
                " 
     | 
| 261 | 
         
            -
                " 
     | 
| 262 | 
         
            -
                " 
     | 
| 263 | 
         
            -
                " 
     | 
| 264 | 
         
            -
                " 
     | 
| 265 | 
         
            -
                " 
     | 
| 266 | 
         
            -
                " 
     | 
| 267 | 
         
            -
                " 
     | 
| 268 | 
         
            -
                " 
     | 
| 269 | 
         
            -
                " 
     | 
| 270 | 
         
            -
                " 
     | 
| 271 | 
         
            -
                " 
     | 
| 272 | 
         
            -
                " 
     | 
| 273 | 
         
            -
                " 
     | 
| 274 | 
         
            -
                " 
     | 
| 275 | 
         
            -
                " 
     | 
| 276 | 
         
            -
                " 
     | 
| 277 | 
         
            -
                " 
     | 
| 278 | 
         
            -
                " 
     | 
| 279 | 
         
            -
                " 
     | 
| 280 | 
         
            -
                " 
     | 
| 281 | 
         
            -
                " 
     | 
| 282 | 
         
            -
                " 
     | 
| 283 | 
         
            -
                " 
     | 
| 284 | 
         
            -
                " 
     | 
| 285 | 
         
            -
                " 
     | 
| 286 | 
         
            -
                " 
     | 
| 287 | 
         
            -
                " 
     | 
| 288 | 
         
            -
                " 
     | 
| 289 | 
         
            -
                " 
     | 
| 290 | 
         
            -
                " 
     | 
| 291 | 
         
            -
                " 
     | 
| 292 | 
         
            -
                " 
     | 
| 293 | 
         
            -
                " 
     | 
| 294 | 
         
            -
                " 
     | 
| 295 | 
         
            -
                " 
     | 
| 296 | 
         
            -
                " 
     | 
| 297 | 
         
            -
                " 
     | 
| 298 | 
         
            -
                " 
     | 
| 299 | 
         
            -
                " 
     | 
| 300 | 
         
            -
                " 
     | 
| 301 | 
         
            -
                " 
     | 
| 302 | 
         
            -
                " 
     | 
| 303 | 
         
            -
                " 
     | 
| 304 | 
         
            -
                " 
     | 
| 305 | 
         
            -
                " 
     | 
| 306 | 
         
            -
                " 
     | 
| 307 | 
         
            -
                " 
     | 
| 308 | 
         
            -
                " 
     | 
| 309 | 
         
            -
                " 
     | 
| 310 | 
         
            -
                " 
     | 
| 311 | 
         
            -
                " 
     | 
| 312 | 
         
            -
                " 
     | 
| 313 | 
         
            -
                " 
     | 
| 314 | 
         
            -
                " 
     | 
| 315 | 
         
            -
                " 
     | 
| 316 | 
         
            -
                " 
     | 
| 317 | 
         
            -
                " 
     | 
| 318 | 
         
            -
                " 
     | 
| 319 | 
         
            -
                " 
     | 
| 320 | 
         
            -
                " 
     | 
| 321 | 
         
            -
                " 
     | 
| 322 | 
         
            -
                " 
     | 
| 323 | 
         
            -
                " 
     | 
| 324 | 
         
            -
                " 
     | 
| 325 | 
         
            -
                " 
     | 
| 326 | 
         
            -
                " 
     | 
| 327 | 
         
            -
                " 
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 328 | 
         
             
              }
         
     | 
| 329 | 
         
             
            }
         
     | 
| 
         | 
|
| 3 | 
         
             
                "total_size": 6965007360
         
     | 
| 4 | 
         
             
              },
         
     | 
| 5 | 
         
             
              "weight_map": {
         
     | 
| 6 | 
         
            +
                "model.embed_tokens.weight": "model-00001-of-00002.safetensors",
         
     | 
| 7 | 
         
            +
                "model.layers.0.input_layernorm.weight": "model-00001-of-00002.safetensors",
         
     | 
| 8 | 
         
            +
                "model.layers.0.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
         
     | 
| 9 | 
         
            +
                "model.layers.0.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
         
     | 
| 10 | 
         
            +
                "model.layers.0.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
         
     | 
| 11 | 
         
            +
                "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
         
     | 
| 12 | 
         
            +
                "model.layers.0.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
         
     | 
| 13 | 
         
            +
                "model.layers.0.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
         
     | 
| 14 | 
         
            +
                "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
         
     | 
| 15 | 
         
            +
                "model.layers.0.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
         
     | 
| 16 | 
         
            +
                "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
         
     | 
| 17 | 
         
            +
                "model.layers.0.self_attn.o_proj.bias": "model-00001-of-00002.safetensors",
         
     | 
| 18 | 
         
            +
                "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
         
     | 
| 19 | 
         
            +
                "model.layers.0.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
         
     | 
| 20 | 
         
            +
                "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
         
     | 
| 21 | 
         
            +
                "model.layers.0.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
         
     | 
| 22 | 
         
            +
                "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
         
     | 
| 23 | 
         
            +
                "model.layers.1.input_layernorm.weight": "model-00001-of-00002.safetensors",
         
     | 
| 24 | 
         
            +
                "model.layers.1.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
         
     | 
| 25 | 
         
            +
                "model.layers.1.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
         
     | 
| 26 | 
         
            +
                "model.layers.1.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
         
     | 
| 27 | 
         
            +
                "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
         
     | 
| 28 | 
         
            +
                "model.layers.1.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
         
     | 
| 29 | 
         
            +
                "model.layers.1.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
         
     | 
| 30 | 
         
            +
                "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
         
     | 
| 31 | 
         
            +
                "model.layers.1.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
         
     | 
| 32 | 
         
            +
                "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
         
     | 
| 33 | 
         
            +
                "model.layers.1.self_attn.o_proj.bias": "model-00001-of-00002.safetensors",
         
     | 
| 34 | 
         
            +
                "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
         
     | 
| 35 | 
         
            +
                "model.layers.1.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
         
     | 
| 36 | 
         
            +
                "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
         
     | 
| 37 | 
         
            +
                "model.layers.1.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
         
     | 
| 38 | 
         
            +
                "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
         
     | 
| 39 | 
         
            +
                "model.layers.10.input_layernorm.weight": "model-00001-of-00002.safetensors",
         
     | 
| 40 | 
         
            +
                "model.layers.10.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
         
     | 
| 41 | 
         
            +
                "model.layers.10.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
         
     | 
| 42 | 
         
            +
                "model.layers.10.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
         
     | 
| 43 | 
         
            +
                "model.layers.10.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
         
     | 
| 44 | 
         
            +
                "model.layers.10.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
         
     | 
| 45 | 
         
            +
                "model.layers.10.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
         
     | 
| 46 | 
         
            +
                "model.layers.10.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
         
     | 
| 47 | 
         
            +
                "model.layers.10.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
         
     | 
| 48 | 
         
            +
                "model.layers.10.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
         
     | 
| 49 | 
         
            +
                "model.layers.10.self_attn.o_proj.bias": "model-00001-of-00002.safetensors",
         
     | 
| 50 | 
         
            +
                "model.layers.10.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
         
     | 
| 51 | 
         
            +
                "model.layers.10.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
         
     | 
| 52 | 
         
            +
                "model.layers.10.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
         
     | 
| 53 | 
         
            +
                "model.layers.10.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
         
     | 
| 54 | 
         
            +
                "model.layers.10.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
         
     | 
| 55 | 
         
            +
                "model.layers.11.input_layernorm.weight": "model-00001-of-00002.safetensors",
         
     | 
| 56 | 
         
            +
                "model.layers.11.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
         
     | 
| 57 | 
         
            +
                "model.layers.11.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
         
     | 
| 58 | 
         
            +
                "model.layers.11.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
         
     | 
| 59 | 
         
            +
                "model.layers.11.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
         
     | 
| 60 | 
         
            +
                "model.layers.11.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
         
     | 
| 61 | 
         
            +
                "model.layers.11.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
         
     | 
| 62 | 
         
            +
                "model.layers.11.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
         
     | 
| 63 | 
         
            +
                "model.layers.11.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
         
     | 
| 64 | 
         
            +
                "model.layers.11.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
         
     | 
| 65 | 
         
            +
                "model.layers.11.self_attn.o_proj.bias": "model-00001-of-00002.safetensors",
         
     | 
| 66 | 
         
            +
                "model.layers.11.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
         
     | 
| 67 | 
         
            +
                "model.layers.11.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
         
     | 
| 68 | 
         
            +
                "model.layers.11.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
         
     | 
| 69 | 
         
            +
                "model.layers.11.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
         
     | 
| 70 | 
         
            +
                "model.layers.11.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
         
     | 
| 71 | 
         
            +
                "model.layers.12.input_layernorm.weight": "model-00001-of-00002.safetensors",
         
     | 
| 72 | 
         
            +
                "model.layers.12.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
         
     | 
| 73 | 
         
            +
                "model.layers.12.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
         
     | 
| 74 | 
         
            +
                "model.layers.12.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
         
     | 
| 75 | 
         
            +
                "model.layers.12.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
         
     | 
| 76 | 
         
            +
                "model.layers.12.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
         
     | 
| 77 | 
         
            +
                "model.layers.12.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
         
     | 
| 78 | 
         
            +
                "model.layers.12.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
         
     | 
| 79 | 
         
            +
                "model.layers.12.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
         
     | 
| 80 | 
         
            +
                "model.layers.12.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
         
     | 
| 81 | 
         
            +
                "model.layers.12.self_attn.o_proj.bias": "model-00001-of-00002.safetensors",
         
     | 
| 82 | 
         
            +
                "model.layers.12.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
         
     | 
| 83 | 
         
            +
                "model.layers.12.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
         
     | 
| 84 | 
         
            +
                "model.layers.12.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
         
     | 
| 85 | 
         
            +
                "model.layers.12.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
         
     | 
| 86 | 
         
            +
                "model.layers.12.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
         
     | 
| 87 | 
         
            +
                "model.layers.13.input_layernorm.weight": "model-00001-of-00002.safetensors",
         
     | 
| 88 | 
         
            +
                "model.layers.13.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
         
     | 
| 89 | 
         
            +
                "model.layers.13.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
         
     | 
| 90 | 
         
            +
                "model.layers.13.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
         
     | 
| 91 | 
         
            +
                "model.layers.13.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
         
     | 
| 92 | 
         
            +
                "model.layers.13.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
         
     | 
| 93 | 
         
            +
                "model.layers.13.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
         
     | 
| 94 | 
         
            +
                "model.layers.13.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
         
     | 
| 95 | 
         
            +
                "model.layers.13.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
         
     | 
| 96 | 
         
            +
                "model.layers.13.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
         
     | 
| 97 | 
         
            +
                "model.layers.13.self_attn.o_proj.bias": "model-00001-of-00002.safetensors",
         
     | 
| 98 | 
         
            +
                "model.layers.13.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
         
     | 
| 99 | 
         
            +
                "model.layers.13.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
         
     | 
| 100 | 
         
            +
                "model.layers.13.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
         
     | 
| 101 | 
         
            +
                "model.layers.13.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
         
     | 
| 102 | 
         
            +
                "model.layers.13.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
         
     | 
| 103 | 
         
            +
                "model.layers.14.input_layernorm.weight": "model-00001-of-00002.safetensors",
         
     | 
| 104 | 
         
            +
                "model.layers.14.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
         
     | 
| 105 | 
         
            +
                "model.layers.14.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
         
     | 
| 106 | 
         
            +
                "model.layers.14.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
         
     | 
| 107 | 
         
            +
                "model.layers.14.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
         
     | 
| 108 | 
         
            +
                "model.layers.14.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
         
     | 
| 109 | 
         
            +
                "model.layers.14.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
         
     | 
| 110 | 
         
            +
                "model.layers.14.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
         
     | 
| 111 | 
         
            +
                "model.layers.14.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
         
     | 
| 112 | 
         
            +
                "model.layers.14.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
         
     | 
| 113 | 
         
            +
                "model.layers.14.self_attn.o_proj.bias": "model-00001-of-00002.safetensors",
         
     | 
| 114 | 
         
            +
                "model.layers.14.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
         
     | 
| 115 | 
         
            +
                "model.layers.14.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
         
     | 
| 116 | 
         
            +
                "model.layers.14.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
         
     | 
| 117 | 
         
            +
                "model.layers.14.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
         
     | 
| 118 | 
         
            +
                "model.layers.14.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
         
     | 
| 119 | 
         
            +
                "model.layers.15.input_layernorm.weight": "model-00001-of-00002.safetensors",
         
     | 
| 120 | 
         
            +
                "model.layers.15.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
         
     | 
| 121 | 
         
            +
                "model.layers.15.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
         
     | 
| 122 | 
         
            +
                "model.layers.15.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
         
     | 
| 123 | 
         
            +
                "model.layers.15.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
         
     | 
| 124 | 
         
            +
                "model.layers.15.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
         
     | 
| 125 | 
         
            +
                "model.layers.15.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
         
     | 
| 126 | 
         
            +
                "model.layers.15.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
         
     | 
| 127 | 
         
            +
                "model.layers.15.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
         
     | 
| 128 | 
         
            +
                "model.layers.15.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
         
     | 
| 129 | 
         
            +
                "model.layers.15.self_attn.o_proj.bias": "model-00001-of-00002.safetensors",
         
     | 
| 130 | 
         
            +
                "model.layers.15.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
         
     | 
| 131 | 
         
            +
                "model.layers.15.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
         
     | 
| 132 | 
         
            +
                "model.layers.15.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
         
     | 
| 133 | 
         
            +
                "model.layers.15.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
         
     | 
| 134 | 
         
            +
                "model.layers.15.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
         
     | 
| 135 | 
         
            +
                "model.layers.16.input_layernorm.weight": "model-00001-of-00002.safetensors",
         
     | 
| 136 | 
         
            +
                "model.layers.16.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
         
     | 
| 137 | 
         
            +
                "model.layers.16.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
         
     | 
| 138 | 
         
            +
                "model.layers.16.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
         
     | 
| 139 | 
         
            +
                "model.layers.16.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
         
     | 
| 140 | 
         
            +
                "model.layers.16.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
         
     | 
| 141 | 
         
            +
                "model.layers.16.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
         
     | 
| 142 | 
         
            +
                "model.layers.16.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
         
     | 
| 143 | 
         
            +
                "model.layers.16.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
         
     | 
| 144 | 
         
            +
                "model.layers.16.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
         
     | 
| 145 | 
         
            +
                "model.layers.16.self_attn.o_proj.bias": "model-00001-of-00002.safetensors",
         
     | 
| 146 | 
         
            +
                "model.layers.16.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
         
     | 
| 147 | 
         
            +
                "model.layers.16.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
         
     | 
| 148 | 
         
            +
                "model.layers.16.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
         
     | 
| 149 | 
         
            +
                "model.layers.16.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
         
     | 
| 150 | 
         
            +
                "model.layers.16.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
         
     | 
| 151 | 
         
            +
                "model.layers.17.input_layernorm.weight": "model-00001-of-00002.safetensors",
         
     | 
| 152 | 
         
            +
                "model.layers.17.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
         
     | 
| 153 | 
         
            +
                "model.layers.17.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
         
     | 
| 154 | 
         
            +
                "model.layers.17.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
         
     | 
| 155 | 
         
            +
                "model.layers.17.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
         
     | 
| 156 | 
         
            +
                "model.layers.17.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
         
     | 
| 157 | 
         
            +
                "model.layers.17.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
         
     | 
| 158 | 
         
            +
                "model.layers.17.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
         
     | 
| 159 | 
         
            +
                "model.layers.17.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
         
     | 
| 160 | 
         
            +
                "model.layers.17.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
         
     | 
| 161 | 
         
            +
                "model.layers.17.self_attn.o_proj.bias": "model-00001-of-00002.safetensors",
         
     | 
| 162 | 
         
            +
                "model.layers.17.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
         
     | 
| 163 | 
         
            +
                "model.layers.17.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
         
     | 
| 164 | 
         
            +
                "model.layers.17.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
         
     | 
| 165 | 
         
            +
                "model.layers.17.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
         
     | 
| 166 | 
         
            +
                "model.layers.17.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
         
     | 
| 167 | 
         
            +
                "model.layers.18.input_layernorm.weight": "model-00001-of-00002.safetensors",
         
     | 
| 168 | 
         
            +
                "model.layers.18.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
         
     | 
| 169 | 
         
            +
                "model.layers.18.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
         
     | 
| 170 | 
         
            +
                "model.layers.18.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
         
     | 
| 171 | 
         
            +
                "model.layers.18.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
         
     | 
| 172 | 
         
            +
                "model.layers.18.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
         
     | 
| 173 | 
         
            +
                "model.layers.18.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
         
     | 
| 174 | 
         
            +
                "model.layers.18.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
         
     | 
| 175 | 
         
            +
                "model.layers.18.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
         
     | 
| 176 | 
         
            +
                "model.layers.18.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
         
     | 
| 177 | 
         
            +
                "model.layers.18.self_attn.o_proj.bias": "model-00001-of-00002.safetensors",
         
     | 
| 178 | 
         
            +
                "model.layers.18.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
         
     | 
| 179 | 
         
            +
                "model.layers.18.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
         
     | 
| 180 | 
         
            +
                "model.layers.18.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
         
     | 
| 181 | 
         
            +
                "model.layers.18.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
         
     | 
| 182 | 
         
            +
                "model.layers.18.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
         
     | 
| 183 | 
         
            +
                "model.layers.19.input_layernorm.weight": "model-00001-of-00002.safetensors",
         
     | 
| 184 | 
         
            +
                "model.layers.19.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
         
     | 
| 185 | 
         
            +
                "model.layers.19.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
         
     | 
| 186 | 
         
            +
                "model.layers.19.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
         
     | 
| 187 | 
         
            +
                "model.layers.19.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
         
     | 
| 188 | 
         
            +
                "model.layers.19.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
         
     | 
| 189 | 
         
            +
                "model.layers.19.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
         
     | 
| 190 | 
         
            +
                "model.layers.19.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
         
     | 
| 191 | 
         
            +
                "model.layers.19.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
         
     | 
| 192 | 
         
            +
                "model.layers.19.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
         
     | 
| 193 | 
         
            +
                "model.layers.19.self_attn.o_proj.bias": "model-00001-of-00002.safetensors",
         
     | 
| 194 | 
         
            +
                "model.layers.19.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
         
     | 
| 195 | 
         
            +
                "model.layers.19.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
         
     | 
| 196 | 
         
            +
                "model.layers.19.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
         
     | 
| 197 | 
         
            +
                "model.layers.19.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
         
     | 
| 198 | 
         
            +
                "model.layers.19.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
         
     | 
| 199 | 
         
            +
                "model.layers.2.input_layernorm.weight": "model-00001-of-00002.safetensors",
         
     | 
| 200 | 
         
            +
                "model.layers.2.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
         
     | 
| 201 | 
         
            +
                "model.layers.2.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
         
     | 
| 202 | 
         
            +
                "model.layers.2.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
         
     | 
| 203 | 
         
            +
                "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
         
     | 
| 204 | 
         
            +
                "model.layers.2.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
         
     | 
| 205 | 
         
            +
                "model.layers.2.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
         
     | 
| 206 | 
         
            +
                "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
         
     | 
| 207 | 
         
            +
                "model.layers.2.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
         
     | 
| 208 | 
         
            +
                "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
         
     | 
| 209 | 
         
            +
                "model.layers.2.self_attn.o_proj.bias": "model-00001-of-00002.safetensors",
         
     | 
| 210 | 
         
            +
                "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
         
     | 
| 211 | 
         
            +
                "model.layers.2.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
         
     | 
| 212 | 
         
            +
                "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
         
     | 
| 213 | 
         
            +
                "model.layers.2.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
         
     | 
| 214 | 
         
            +
                "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
         
     | 
| 215 | 
         
            +
                "model.layers.20.input_layernorm.weight": "model-00001-of-00002.safetensors",
         
     | 
| 216 | 
         
            +
                "model.layers.20.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
         
     | 
| 217 | 
         
            +
                "model.layers.20.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
         
     | 
| 218 | 
         
            +
                "model.layers.20.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
         
     | 
| 219 | 
         
            +
                "model.layers.20.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
         
     | 
| 220 | 
         
            +
                "model.layers.20.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
         
     | 
| 221 | 
         
            +
                "model.layers.20.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
         
     | 
| 222 | 
         
            +
                "model.layers.20.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
         
     | 
| 223 | 
         
            +
                "model.layers.20.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
         
     | 
| 224 | 
         
            +
                "model.layers.20.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
         
     | 
| 225 | 
         
            +
                "model.layers.20.self_attn.o_proj.bias": "model-00001-of-00002.safetensors",
         
     | 
| 226 | 
         
            +
                "model.layers.20.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
         
     | 
| 227 | 
         
            +
                "model.layers.20.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
         
     | 
| 228 | 
         
            +
                "model.layers.20.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
         
     | 
| 229 | 
         
            +
                "model.layers.20.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
         
     | 
| 230 | 
         
            +
                "model.layers.20.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
         
     | 
| 231 | 
         
            +
                "model.layers.21.input_layernorm.weight": "model-00001-of-00002.safetensors",
         
     | 
| 232 | 
         
            +
                "model.layers.21.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
         
     | 
| 233 | 
         
            +
                "model.layers.21.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
         
     | 
| 234 | 
         
            +
                "model.layers.21.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
         
     | 
| 235 | 
         
            +
                "model.layers.21.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
         
     | 
| 236 | 
         
            +
                "model.layers.21.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
         
     | 
| 237 | 
         
            +
                "model.layers.21.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
         
     | 
| 238 | 
         
            +
                "model.layers.21.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
         
     | 
| 239 | 
         
            +
                "model.layers.21.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
         
     | 
| 240 | 
         
            +
                "model.layers.21.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
         
     | 
| 241 | 
         
            +
                "model.layers.21.self_attn.o_proj.bias": "model-00001-of-00002.safetensors",
         
     | 
| 242 | 
         
            +
                "model.layers.21.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
         
     | 
| 243 | 
         
            +
                "model.layers.21.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
         
     | 
| 244 | 
         
            +
                "model.layers.21.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
         
     | 
| 245 | 
         
            +
                "model.layers.21.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
         
     | 
| 246 | 
         
            +
                "model.layers.21.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
         
     | 
| 247 | 
         
            +
                "model.layers.22.input_layernorm.weight": "model-00002-of-00002.safetensors",
         
     | 
| 248 | 
         
            +
                "model.layers.22.mlp.down_proj.bias": "model-00002-of-00002.safetensors",
         
     | 
| 249 | 
         
            +
                "model.layers.22.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
         
     | 
| 250 | 
         
            +
                "model.layers.22.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
         
     | 
| 251 | 
         
            +
                "model.layers.22.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
         
     | 
| 252 | 
         
            +
                "model.layers.22.mlp.up_proj.bias": "model-00002-of-00002.safetensors",
         
     | 
| 253 | 
         
            +
                "model.layers.22.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
         
     | 
| 254 | 
         
            +
                "model.layers.22.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
         
     | 
| 255 | 
         
            +
                "model.layers.22.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
         
     | 
| 256 | 
         
            +
                "model.layers.22.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
         
     | 
| 257 | 
         
            +
                "model.layers.22.self_attn.o_proj.bias": "model-00001-of-00002.safetensors",
         
     | 
| 258 | 
         
            +
                "model.layers.22.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
         
     | 
| 259 | 
         
            +
                "model.layers.22.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
         
     | 
| 260 | 
         
            +
                "model.layers.22.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
         
     | 
| 261 | 
         
            +
                "model.layers.22.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
         
     | 
| 262 | 
         
            +
                "model.layers.22.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
         
     | 
| 263 | 
         
            +
                "model.layers.23.input_layernorm.weight": "model-00002-of-00002.safetensors",
         
     | 
| 264 | 
         
            +
                "model.layers.23.mlp.down_proj.bias": "model-00002-of-00002.safetensors",
         
     | 
| 265 | 
         
            +
                "model.layers.23.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
         
     | 
| 266 | 
         
            +
                "model.layers.23.mlp.gate_proj.bias": "model-00002-of-00002.safetensors",
         
     | 
| 267 | 
         
            +
                "model.layers.23.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
         
     | 
| 268 | 
         
            +
                "model.layers.23.mlp.up_proj.bias": "model-00002-of-00002.safetensors",
         
     | 
| 269 | 
         
            +
                "model.layers.23.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
         
     | 
| 270 | 
         
            +
                "model.layers.23.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
         
     | 
| 271 | 
         
            +
                "model.layers.23.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
         
     | 
| 272 | 
         
            +
                "model.layers.23.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
         
     | 
| 273 | 
         
            +
                "model.layers.23.self_attn.o_proj.bias": "model-00002-of-00002.safetensors",
         
     | 
| 274 | 
         
            +
                "model.layers.23.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
         
     | 
| 275 | 
         
            +
                "model.layers.23.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
         
     | 
| 276 | 
         
            +
                "model.layers.23.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
         
     | 
| 277 | 
         
            +
                "model.layers.23.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
         
     | 
| 278 | 
         
            +
                "model.layers.23.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
         
     | 
| 279 | 
         
            +
                "model.layers.24.input_layernorm.weight": "model-00002-of-00002.safetensors",
         
     | 
| 280 | 
         
            +
                "model.layers.24.mlp.down_proj.bias": "model-00002-of-00002.safetensors",
         
     | 
| 281 | 
         
            +
                "model.layers.24.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
         
     | 
| 282 | 
         
            +
                "model.layers.24.mlp.gate_proj.bias": "model-00002-of-00002.safetensors",
         
     | 
| 283 | 
         
            +
                "model.layers.24.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
         
     | 
| 284 | 
         
            +
                "model.layers.24.mlp.up_proj.bias": "model-00002-of-00002.safetensors",
         
     | 
| 285 | 
         
            +
                "model.layers.24.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
         
     | 
| 286 | 
         
            +
                "model.layers.24.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
         
     | 
| 287 | 
         
            +
                "model.layers.24.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
         
     | 
| 288 | 
         
            +
                "model.layers.24.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
         
     | 
| 289 | 
         
            +
                "model.layers.24.self_attn.o_proj.bias": "model-00002-of-00002.safetensors",
         
     | 
| 290 | 
         
            +
                "model.layers.24.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
         
     | 
| 291 | 
         
            +
                "model.layers.24.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
         
     | 
| 292 | 
         
            +
                "model.layers.24.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
         
     | 
| 293 | 
         
            +
                "model.layers.24.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
         
     | 
| 294 | 
         
            +
                "model.layers.24.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
         
     | 
| 295 | 
         
            +
                "model.layers.25.input_layernorm.weight": "model-00002-of-00002.safetensors",
         
     | 
| 296 | 
         
            +
                "model.layers.25.mlp.down_proj.bias": "model-00002-of-00002.safetensors",
         
     | 
| 297 | 
         
            +
                "model.layers.25.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
         
     | 
| 298 | 
         
            +
                "model.layers.25.mlp.gate_proj.bias": "model-00002-of-00002.safetensors",
         
     | 
| 299 | 
         
            +
                "model.layers.25.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
         
     | 
| 300 | 
         
            +
                "model.layers.25.mlp.up_proj.bias": "model-00002-of-00002.safetensors",
         
     | 
| 301 | 
         
            +
                "model.layers.25.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
         
     | 
| 302 | 
         
            +
                "model.layers.25.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
         
     | 
| 303 | 
         
            +
                "model.layers.25.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
         
     | 
| 304 | 
         
            +
                "model.layers.25.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
         
     | 
| 305 | 
         
            +
                "model.layers.25.self_attn.o_proj.bias": "model-00002-of-00002.safetensors",
         
     | 
| 306 | 
         
            +
                "model.layers.25.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
         
     | 
| 307 | 
         
            +
                "model.layers.25.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
         
     | 
| 308 | 
         
            +
                "model.layers.25.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
         
     | 
| 309 | 
         
            +
                "model.layers.25.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
         
     | 
| 310 | 
         
            +
                "model.layers.25.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
         
     | 
| 311 | 
         
            +
                "model.layers.26.input_layernorm.weight": "model-00002-of-00002.safetensors",
         
     | 
| 312 | 
         
            +
                "model.layers.26.mlp.down_proj.bias": "model-00002-of-00002.safetensors",
         
     | 
| 313 | 
         
            +
                "model.layers.26.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
         
     | 
| 314 | 
         
            +
                "model.layers.26.mlp.gate_proj.bias": "model-00002-of-00002.safetensors",
         
     | 
| 315 | 
         
            +
                "model.layers.26.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
         
     | 
| 316 | 
         
            +
                "model.layers.26.mlp.up_proj.bias": "model-00002-of-00002.safetensors",
         
     | 
| 317 | 
         
            +
                "model.layers.26.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
         
     | 
| 318 | 
         
            +
                "model.layers.26.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
         
     | 
| 319 | 
         
            +
                "model.layers.26.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
         
     | 
| 320 | 
         
            +
                "model.layers.26.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
         
     | 
| 321 | 
         
            +
                "model.layers.26.self_attn.o_proj.bias": "model-00002-of-00002.safetensors",
         
     | 
| 322 | 
         
            +
                "model.layers.26.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
         
     | 
| 323 | 
         
            +
                "model.layers.26.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
         
     | 
| 324 | 
         
            +
                "model.layers.26.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
         
     | 
| 325 | 
         
            +
                "model.layers.26.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
         
     | 
| 326 | 
         
            +
                "model.layers.26.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
         
     | 
| 327 | 
         
            +
                "model.layers.27.input_layernorm.weight": "model-00002-of-00002.safetensors",
         
     | 
| 328 | 
         
            +
                "model.layers.27.mlp.down_proj.bias": "model-00002-of-00002.safetensors",
         
     | 
| 329 | 
         
            +
                "model.layers.27.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
         
     | 
| 330 | 
         
            +
                "model.layers.27.mlp.gate_proj.bias": "model-00002-of-00002.safetensors",
         
     | 
| 331 | 
         
            +
                "model.layers.27.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
         
     | 
| 332 | 
         
            +
                "model.layers.27.mlp.up_proj.bias": "model-00002-of-00002.safetensors",
         
     | 
| 333 | 
         
            +
                "model.layers.27.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
         
     | 
| 334 | 
         
            +
                "model.layers.27.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
         
     | 
| 335 | 
         
            +
                "model.layers.27.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
         
     | 
| 336 | 
         
            +
                "model.layers.27.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
         
     | 
| 337 | 
         
            +
                "model.layers.27.self_attn.o_proj.bias": "model-00002-of-00002.safetensors",
         
     | 
| 338 | 
         
            +
                "model.layers.27.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
         
     | 
| 339 | 
         
            +
                "model.layers.27.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
         
     | 
| 340 | 
         
            +
                "model.layers.27.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
         
     | 
| 341 | 
         
            +
                "model.layers.27.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
         
     | 
| 342 | 
         
            +
                "model.layers.27.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
         
     | 
| 343 | 
         
            +
                "model.layers.28.input_layernorm.weight": "model-00002-of-00002.safetensors",
         
     | 
| 344 | 
         
            +
                "model.layers.28.mlp.down_proj.bias": "model-00002-of-00002.safetensors",
         
     | 
| 345 | 
         
            +
                "model.layers.28.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
         
     | 
| 346 | 
         
            +
                "model.layers.28.mlp.gate_proj.bias": "model-00002-of-00002.safetensors",
         
     | 
| 347 | 
         
            +
                "model.layers.28.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
         
     | 
| 348 | 
         
            +
                "model.layers.28.mlp.up_proj.bias": "model-00002-of-00002.safetensors",
         
     | 
| 349 | 
         
            +
                "model.layers.28.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
         
     | 
| 350 | 
         
            +
                "model.layers.28.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
         
     | 
| 351 | 
         
            +
                "model.layers.28.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
         
     | 
| 352 | 
         
            +
                "model.layers.28.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
         
     | 
| 353 | 
         
            +
                "model.layers.28.self_attn.o_proj.bias": "model-00002-of-00002.safetensors",
         
     | 
| 354 | 
         
            +
                "model.layers.28.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
         
     | 
| 355 | 
         
            +
                "model.layers.28.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
         
     | 
| 356 | 
         
            +
                "model.layers.28.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
         
     | 
| 357 | 
         
            +
                "model.layers.28.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
         
     | 
| 358 | 
         
            +
                "model.layers.28.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
         
     | 
| 359 | 
         
            +
                "model.layers.29.input_layernorm.weight": "model-00002-of-00002.safetensors",
         
     | 
| 360 | 
         
            +
                "model.layers.29.mlp.down_proj.bias": "model-00002-of-00002.safetensors",
         
     | 
| 361 | 
         
            +
                "model.layers.29.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
         
     | 
| 362 | 
         
            +
                "model.layers.29.mlp.gate_proj.bias": "model-00002-of-00002.safetensors",
         
     | 
| 363 | 
         
            +
                "model.layers.29.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
         
     | 
| 364 | 
         
            +
                "model.layers.29.mlp.up_proj.bias": "model-00002-of-00002.safetensors",
         
     | 
| 365 | 
         
            +
                "model.layers.29.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
         
     | 
| 366 | 
         
            +
                "model.layers.29.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
         
     | 
| 367 | 
         
            +
                "model.layers.29.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
         
     | 
| 368 | 
         
            +
                "model.layers.29.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
         
     | 
| 369 | 
         
            +
                "model.layers.29.self_attn.o_proj.bias": "model-00002-of-00002.safetensors",
         
     | 
| 370 | 
         
            +
                "model.layers.29.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
         
     | 
| 371 | 
         
            +
                "model.layers.29.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
         
     | 
| 372 | 
         
            +
                "model.layers.29.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
         
     | 
| 373 | 
         
            +
                "model.layers.29.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
         
     | 
| 374 | 
         
            +
                "model.layers.29.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
         
     | 
| 375 | 
         
            +
                "model.layers.3.input_layernorm.weight": "model-00001-of-00002.safetensors",
         
     | 
| 376 | 
         
            +
                "model.layers.3.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
         
     | 
| 377 | 
         
            +
                "model.layers.3.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
         
     | 
| 378 | 
         
            +
                "model.layers.3.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
         
     | 
| 379 | 
         
            +
                "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
         
     | 
| 380 | 
         
            +
                "model.layers.3.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
         
     | 
| 381 | 
         
            +
                "model.layers.3.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
         
     | 
| 382 | 
         
            +
                "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
         
     | 
| 383 | 
         
            +
                "model.layers.3.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
         
     | 
| 384 | 
         
            +
                "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
         
     | 
| 385 | 
         
            +
                "model.layers.3.self_attn.o_proj.bias": "model-00001-of-00002.safetensors",
         
     | 
| 386 | 
         
            +
                "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
         
     | 
| 387 | 
         
            +
                "model.layers.3.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
         
     | 
| 388 | 
         
            +
                "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
         
     | 
| 389 | 
         
            +
                "model.layers.3.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
         
     | 
| 390 | 
         
            +
                "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
         
     | 
| 391 | 
         
            +
                "model.layers.30.input_layernorm.weight": "model-00002-of-00002.safetensors",
         
     | 
| 392 | 
         
            +
                "model.layers.30.mlp.down_proj.bias": "model-00002-of-00002.safetensors",
         
     | 
| 393 | 
         
            +
                "model.layers.30.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
         
     | 
| 394 | 
         
            +
                "model.layers.30.mlp.gate_proj.bias": "model-00002-of-00002.safetensors",
         
     | 
| 395 | 
         
            +
                "model.layers.30.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
         
     | 
| 396 | 
         
            +
                "model.layers.30.mlp.up_proj.bias": "model-00002-of-00002.safetensors",
         
     | 
| 397 | 
         
            +
                "model.layers.30.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
         
     | 
| 398 | 
         
            +
                "model.layers.30.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
         
     | 
| 399 | 
         
            +
                "model.layers.30.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
         
     | 
| 400 | 
         
            +
                "model.layers.30.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
         
     | 
| 401 | 
         
            +
                "model.layers.30.self_attn.o_proj.bias": "model-00002-of-00002.safetensors",
         
     | 
| 402 | 
         
            +
                "model.layers.30.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
         
     | 
| 403 | 
         
            +
                "model.layers.30.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
         
     | 
| 404 | 
         
            +
                "model.layers.30.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
         
     | 
| 405 | 
         
            +
                "model.layers.30.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
         
     | 
| 406 | 
         
            +
                "model.layers.30.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
         
     | 
| 407 | 
         
            +
                "model.layers.31.input_layernorm.weight": "model-00002-of-00002.safetensors",
         
     | 
| 408 | 
         
            +
                "model.layers.31.mlp.down_proj.bias": "model-00002-of-00002.safetensors",
         
     | 
| 409 | 
         
            +
                "model.layers.31.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
         
     | 
| 410 | 
         
            +
                "model.layers.31.mlp.gate_proj.bias": "model-00002-of-00002.safetensors",
         
     | 
| 411 | 
         
            +
                "model.layers.31.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
         
     | 
| 412 | 
         
            +
                "model.layers.31.mlp.up_proj.bias": "model-00002-of-00002.safetensors",
         
     | 
| 413 | 
         
            +
                "model.layers.31.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
         
     | 
| 414 | 
         
            +
                "model.layers.31.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
         
     | 
| 415 | 
         
            +
                "model.layers.31.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
         
     | 
| 416 | 
         
            +
                "model.layers.31.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
         
     | 
| 417 | 
         
            +
                "model.layers.31.self_attn.o_proj.bias": "model-00002-of-00002.safetensors",
         
     | 
| 418 | 
         
            +
                "model.layers.31.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
         
     | 
| 419 | 
         
            +
                "model.layers.31.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
         
     | 
| 420 | 
         
            +
                "model.layers.31.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
         
     | 
| 421 | 
         
            +
                "model.layers.31.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
         
     | 
| 422 | 
         
            +
                "model.layers.31.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
         
     | 
| 423 | 
         
            +
                "model.layers.4.input_layernorm.weight": "model-00001-of-00002.safetensors",
         
     | 
| 424 | 
         
            +
                "model.layers.4.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
         
     | 
| 425 | 
         
            +
                "model.layers.4.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
         
     | 
| 426 | 
         
            +
                "model.layers.4.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
         
     | 
| 427 | 
         
            +
                "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
         
     | 
| 428 | 
         
            +
                "model.layers.4.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
         
     | 
| 429 | 
         
            +
                "model.layers.4.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
         
     | 
| 430 | 
         
            +
                "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
         
     | 
| 431 | 
         
            +
                "model.layers.4.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
         
     | 
| 432 | 
         
            +
                "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
         
     | 
| 433 | 
         
            +
                "model.layers.4.self_attn.o_proj.bias": "model-00001-of-00002.safetensors",
         
     | 
| 434 | 
         
            +
                "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
         
     | 
| 435 | 
         
            +
                "model.layers.4.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
         
     | 
| 436 | 
         
            +
                "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
         
     | 
| 437 | 
         
            +
                "model.layers.4.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
         
     | 
| 438 | 
         
            +
                "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
         
     | 
| 439 | 
         
            +
                "model.layers.5.input_layernorm.weight": "model-00001-of-00002.safetensors",
         
     | 
| 440 | 
         
            +
                "model.layers.5.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
         
     | 
| 441 | 
         
            +
                "model.layers.5.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
         
     | 
| 442 | 
         
            +
                "model.layers.5.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
         
     | 
| 443 | 
         
            +
                "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
         
     | 
| 444 | 
         
            +
                "model.layers.5.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
         
     | 
| 445 | 
         
            +
                "model.layers.5.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
         
     | 
| 446 | 
         
            +
                "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
         
     | 
| 447 | 
         
            +
                "model.layers.5.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
         
     | 
| 448 | 
         
            +
                "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
         
     | 
| 449 | 
         
            +
                "model.layers.5.self_attn.o_proj.bias": "model-00001-of-00002.safetensors",
         
     | 
| 450 | 
         
            +
                "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
         
     | 
| 451 | 
         
            +
                "model.layers.5.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
         
     | 
| 452 | 
         
            +
                "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
         
     | 
| 453 | 
         
            +
                "model.layers.5.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
         
     | 
| 454 | 
         
            +
                "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
         
     | 
| 455 | 
         
            +
                "model.layers.6.input_layernorm.weight": "model-00001-of-00002.safetensors",
         
     | 
| 456 | 
         
            +
                "model.layers.6.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
         
     | 
| 457 | 
         
            +
                "model.layers.6.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
         
     | 
| 458 | 
         
            +
                "model.layers.6.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
         
     | 
| 459 | 
         
            +
                "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
         
     | 
| 460 | 
         
            +
                "model.layers.6.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
         
     | 
| 461 | 
         
            +
                "model.layers.6.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
         
     | 
| 462 | 
         
            +
                "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
         
     | 
| 463 | 
         
            +
                "model.layers.6.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
         
     | 
| 464 | 
         
            +
                "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
         
     | 
| 465 | 
         
            +
                "model.layers.6.self_attn.o_proj.bias": "model-00001-of-00002.safetensors",
         
     | 
| 466 | 
         
            +
                "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
         
     | 
| 467 | 
         
            +
                "model.layers.6.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
         
     | 
| 468 | 
         
            +
                "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
         
     | 
| 469 | 
         
            +
                "model.layers.6.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
         
     | 
| 470 | 
         
            +
                "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
         
     | 
| 471 | 
         
            +
                "model.layers.7.input_layernorm.weight": "model-00001-of-00002.safetensors",
         
     | 
| 472 | 
         
            +
                "model.layers.7.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
         
     | 
| 473 | 
         
            +
                "model.layers.7.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
         
     | 
| 474 | 
         
            +
                "model.layers.7.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
         
     | 
| 475 | 
         
            +
                "model.layers.7.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
         
     | 
| 476 | 
         
            +
                "model.layers.7.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
         
     | 
| 477 | 
         
            +
                "model.layers.7.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
         
     | 
| 478 | 
         
            +
                "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
         
     | 
| 479 | 
         
            +
                "model.layers.7.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
         
     | 
| 480 | 
         
            +
                "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
         
     | 
| 481 | 
         
            +
                "model.layers.7.self_attn.o_proj.bias": "model-00001-of-00002.safetensors",
         
     | 
| 482 | 
         
            +
                "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
         
     | 
| 483 | 
         
            +
                "model.layers.7.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
         
     | 
| 484 | 
         
            +
                "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
         
     | 
| 485 | 
         
            +
                "model.layers.7.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
         
     | 
| 486 | 
         
            +
                "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
         
     | 
| 487 | 
         
            +
                "model.layers.8.input_layernorm.weight": "model-00001-of-00002.safetensors",
         
     | 
| 488 | 
         
            +
                "model.layers.8.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
         
     | 
| 489 | 
         
            +
                "model.layers.8.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
         
     | 
| 490 | 
         
            +
                "model.layers.8.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
         
     | 
| 491 | 
         
            +
                "model.layers.8.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
         
     | 
| 492 | 
         
            +
                "model.layers.8.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
         
     | 
| 493 | 
         
            +
                "model.layers.8.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
         
     | 
| 494 | 
         
            +
                "model.layers.8.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
         
     | 
| 495 | 
         
            +
                "model.layers.8.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
         
     | 
| 496 | 
         
            +
                "model.layers.8.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
         
     | 
| 497 | 
         
            +
                "model.layers.8.self_attn.o_proj.bias": "model-00001-of-00002.safetensors",
         
     | 
| 498 | 
         
            +
                "model.layers.8.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
         
     | 
| 499 | 
         
            +
                "model.layers.8.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
         
     | 
| 500 | 
         
            +
                "model.layers.8.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
         
     | 
| 501 | 
         
            +
                "model.layers.8.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
         
     | 
| 502 | 
         
            +
                "model.layers.8.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
         
     | 
| 503 | 
         
            +
                "model.layers.9.input_layernorm.weight": "model-00001-of-00002.safetensors",
         
     | 
| 504 | 
         
            +
                "model.layers.9.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
         
     | 
| 505 | 
         
            +
                "model.layers.9.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
         
     | 
| 506 | 
         
            +
                "model.layers.9.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
         
     | 
| 507 | 
         
            +
                "model.layers.9.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
         
     | 
| 508 | 
         
            +
                "model.layers.9.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
         
     | 
| 509 | 
         
            +
                "model.layers.9.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
         
     | 
| 510 | 
         
            +
                "model.layers.9.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
         
     | 
| 511 | 
         
            +
                "model.layers.9.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
         
     | 
| 512 | 
         
            +
                "model.layers.9.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
         
     | 
| 513 | 
         
            +
                "model.layers.9.self_attn.o_proj.bias": "model-00001-of-00002.safetensors",
         
     | 
| 514 | 
         
            +
                "model.layers.9.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
         
     | 
| 515 | 
         
            +
                "model.layers.9.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
         
     | 
| 516 | 
         
            +
                "model.layers.9.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
         
     | 
| 517 | 
         
            +
                "model.layers.9.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
         
     | 
| 518 | 
         
            +
                "model.layers.9.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
         
     | 
| 519 | 
         
            +
                "model.norm.weight": "model-00002-of-00002.safetensors"
         
     | 
| 520 | 
         
             
              }
         
     | 
| 521 | 
         
             
            }
         
     | 
    	
        modeling_granite.py
    DELETED
    
    | 
         @@ -1,1376 +0,0 @@ 
     | 
|
| 1 | 
         
            -
            import math
         
     | 
| 2 | 
         
            -
            import numbers
         
     | 
| 3 | 
         
            -
            import warnings
         
     | 
| 4 | 
         
            -
            from enum import Enum
         
     | 
| 5 | 
         
            -
            from typing import Optional, Tuple, Union
         
     | 
| 6 | 
         
            -
             
     | 
| 7 | 
         
            -
            import torch
         
     | 
| 8 | 
         
            -
            import torch.nn as nn
         
     | 
| 9 | 
         
            -
            import torch.nn.functional as F
         
     | 
| 10 | 
         
            -
            from transformers import DynamicCache, PreTrainedModel
         
     | 
| 11 | 
         
            -
            from transformers.activations import get_activation as get_base_activation
         
     | 
| 12 | 
         
            -
            from transformers.modeling_outputs import BaseModelOutputWithPastAndCrossAttentions, CausalLMOutputWithCrossAttentions
         
     | 
| 13 | 
         
            -
            from transformers.utils import is_flash_attn_2_available
         
     | 
| 14 | 
         
            -
             
     | 
| 15 | 
         
            -
            from .configuration_granite import GraniteConfig
         
     | 
| 16 | 
         
            -
             
     | 
| 17 | 
         
            -
             
     | 
| 18 | 
         
            -
            class PositionEmbeddingType(Enum):
         
     | 
| 19 | 
         
            -
                learned_absolute = "learned_absolute"
         
     | 
| 20 | 
         
            -
                alibi = "alibi"
         
     | 
| 21 | 
         
            -
                rope = "rope"
         
     | 
| 22 | 
         
            -
             
     | 
| 23 | 
         
            -
             
     | 
| 24 | 
         
            -
            class AttentionHeadType(Enum):
         
     | 
| 25 | 
         
            -
                mha = "mha"
         
     | 
| 26 | 
         
            -
                mqa = "mqa"
         
     | 
| 27 | 
         
            -
                gqa = "gqa"
         
     | 
| 28 | 
         
            -
             
     | 
| 29 | 
         
            -
             
     | 
| 30 | 
         
            -
            if is_flash_attn_2_available():
         
     | 
| 31 | 
         
            -
                from flash_attn.bert_padding import IndexFirstAxis, pad_input, unpad_input
         
     | 
| 32 | 
         
            -
                from flash_attn.flash_attn_interface import flash_attn_varlen_func
         
     | 
| 33 | 
         
            -
             
     | 
| 34 | 
         
            -
             
     | 
| 35 | 
         
            -
            # Copied from transformers.models.llama.modeling_llama._get_unpad_data
         
     | 
| 36 | 
         
            -
            def get_unpad_data(attention_mask: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
         
     | 
| 37 | 
         
            -
                seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
         
     | 
| 38 | 
         
            -
                indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
         
     | 
| 39 | 
         
            -
                max_seqlen_in_batch = seqlens_in_batch.max().item()
         
     | 
| 40 | 
         
            -
                cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0))
         
     | 
| 41 | 
         
            -
                return indices, cu_seqlens, max_seqlen_in_batch
         
     | 
| 42 | 
         
            -
             
     | 
| 43 | 
         
            -
             
     | 
| 44 | 
         
            -
            def repeat_key_value(x: torch.Tensor, num_heads: int, num_key_value_heads: int) -> torch.Tensor:
         
     | 
| 45 | 
         
            -
                num_groups = num_heads // num_key_value_heads
         
     | 
| 46 | 
         
            -
             
     | 
| 47 | 
         
            -
                # mha
         
     | 
| 48 | 
         
            -
                if num_groups == 1:
         
     | 
| 49 | 
         
            -
                    return x
         
     | 
| 50 | 
         
            -
             
     | 
| 51 | 
         
            -
                # mqa
         
     | 
| 52 | 
         
            -
                if num_key_value_heads == 1:
         
     | 
| 53 | 
         
            -
                    return x.expand(-1, num_heads, -1, -1)
         
     | 
| 54 | 
         
            -
             
     | 
| 55 | 
         
            -
                # gqa
         
     | 
| 56 | 
         
            -
                return x.repeat_interleave(num_groups, dim=1)
         
     | 
| 57 | 
         
            -
             
     | 
| 58 | 
         
            -
             
     | 
| 59 | 
         
            -
            ##################################################
         
     | 
| 60 | 
         
            -
            # activation functions
         
     | 
| 61 | 
         
            -
             
     | 
| 62 | 
         
            -
             
     | 
| 63 | 
         
            -
            _GLU_BASE_MAPPING = {
         
     | 
| 64 | 
         
            -
                "geglu": "gelu",
         
     | 
| 65 | 
         
            -
                "miglu": "mish",
         
     | 
| 66 | 
         
            -
                "mishglu": "mish",
         
     | 
| 67 | 
         
            -
                "swiglu": "swish",
         
     | 
| 68 | 
         
            -
            }
         
     | 
| 69 | 
         
            -
             
     | 
| 70 | 
         
            -
             
     | 
| 71 | 
         
            -
            class GLUActivation(nn.Module):
         
     | 
| 72 | 
         
            -
                def __init__(self, base_activation: nn.Module) -> None:
         
     | 
| 73 | 
         
            -
                    super().__init__()
         
     | 
| 74 | 
         
            -
                    self.base_activation = base_activation
         
     | 
| 75 | 
         
            -
             
     | 
| 76 | 
         
            -
                def forward(self, x: torch.Tensor) -> torch.Tensor:
         
     | 
| 77 | 
         
            -
                    x = x.chunk(2, dim=-1)
         
     | 
| 78 | 
         
            -
                    return x[0] * self.base_activation(x[1])
         
     | 
| 79 | 
         
            -
             
     | 
| 80 | 
         
            -
             
     | 
| 81 | 
         
            -
            def is_glu(name: str) -> bool:
         
     | 
| 82 | 
         
            -
                return name.endswith("glu")
         
     | 
| 83 | 
         
            -
             
     | 
| 84 | 
         
            -
             
     | 
| 85 | 
         
            -
            def get_activation_function(name: str) -> nn.Module:
         
     | 
| 86 | 
         
            -
                if is_glu(name):
         
     | 
| 87 | 
         
            -
                    # for glu and sigmoid_glu, we directly return the pytorch's GLU
         
     | 
| 88 | 
         
            -
                    if name in ["glu", "sigmoid_glu"]:
         
     | 
| 89 | 
         
            -
                        activation_function = nn.modules.GLU()
         
     | 
| 90 | 
         
            -
                    else:
         
     | 
| 91 | 
         
            -
                        if name in _GLU_BASE_MAPPING:
         
     | 
| 92 | 
         
            -
                            name = _GLU_BASE_MAPPING[name]
         
     | 
| 93 | 
         
            -
                        elif name.endswith("_glu"):
         
     | 
| 94 | 
         
            -
                            name = name.rstrip("_glu")
         
     | 
| 95 | 
         
            -
                        else:
         
     | 
| 96 | 
         
            -
                            raise ValueError("invalid activation function")
         
     | 
| 97 | 
         
            -
             
     | 
| 98 | 
         
            -
                        base_activation = get_base_activation(name)
         
     | 
| 99 | 
         
            -
                        activation_function = GLUActivation(base_activation)
         
     | 
| 100 | 
         
            -
                else:
         
     | 
| 101 | 
         
            -
                    activation_function = get_base_activation(name)
         
     | 
| 102 | 
         
            -
             
     | 
| 103 | 
         
            -
                return activation_function
         
     | 
| 104 | 
         
            -
             
     | 
| 105 | 
         
            -
             
     | 
| 106 | 
         
            -
            ##################################################
         
     | 
| 107 | 
         
            -
            # normalization functions
         
     | 
| 108 | 
         
            -
             
     | 
| 109 | 
         
            -
             
     | 
| 110 | 
         
            -
            class RMSNorm(nn.Module):
         
     | 
| 111 | 
         
            -
                def __init__(self, normalized_shape: int, eps: float = 1e-6) -> None:
         
     | 
| 112 | 
         
            -
                    super().__init__()
         
     | 
| 113 | 
         
            -
             
     | 
| 114 | 
         
            -
                    self.weight = nn.Parameter(torch.ones(normalized_shape))
         
     | 
| 115 | 
         
            -
                    self.eps = eps
         
     | 
| 116 | 
         
            -
             
     | 
| 117 | 
         
            -
                    if isinstance(normalized_shape, numbers.Integral):
         
     | 
| 118 | 
         
            -
                        normalized_shape = (normalized_shape,)
         
     | 
| 119 | 
         
            -
                    self.normalized_shape = normalized_shape
         
     | 
| 120 | 
         
            -
             
     | 
| 121 | 
         
            -
                def forward(self, input: torch.Tensor) -> torch.Tensor:
         
     | 
| 122 | 
         
            -
                    input_dtype = input.dtype
         
     | 
| 123 | 
         
            -
             
     | 
| 124 | 
         
            -
                    input = input.to(torch.float32)
         
     | 
| 125 | 
         
            -
                    variance = input.pow(2).mean(-1, keepdim=True)
         
     | 
| 126 | 
         
            -
                    input = input * torch.rsqrt(variance + self.eps)
         
     | 
| 127 | 
         
            -
             
     | 
| 128 | 
         
            -
                    return self.weight * input.to(input_dtype)
         
     | 
| 129 | 
         
            -
             
     | 
| 130 | 
         
            -
                def extra_repr(self) -> str:
         
     | 
| 131 | 
         
            -
                    return f"{self.normalized_shape}, eps={self.eps}"
         
     | 
| 132 | 
         
            -
             
     | 
| 133 | 
         
            -
                def reset_parameters(self) -> None:
         
     | 
| 134 | 
         
            -
                    nn.init.ones_(self.weight)
         
     | 
| 135 | 
         
            -
             
     | 
| 136 | 
         
            -
             
     | 
| 137 | 
         
            -
            _NORMALIZATION_FUNCTIONS = {
         
     | 
| 138 | 
         
            -
                "layernorm": nn.LayerNorm,
         
     | 
| 139 | 
         
            -
                "rmsnorm": RMSNorm,
         
     | 
| 140 | 
         
            -
            }
         
     | 
| 141 | 
         
            -
             
     | 
| 142 | 
         
            -
             
     | 
| 143 | 
         
            -
            def get_normalization_function(name: str, normalized_shape: int, eps: float = 1e-5) -> nn.Module:
         
     | 
| 144 | 
         
            -
                if name in _NORMALIZATION_FUNCTIONS:
         
     | 
| 145 | 
         
            -
                    return _NORMALIZATION_FUNCTIONS[name](normalized_shape, eps=eps)
         
     | 
| 146 | 
         
            -
             
     | 
| 147 | 
         
            -
                raise ValueError(f"unexpected `normalization_function` {name}")
         
     | 
| 148 | 
         
            -
             
     | 
| 149 | 
         
            -
             
     | 
| 150 | 
         
            -
            ##################################################
         
     | 
| 151 | 
         
            -
            # attention modules
         
     | 
| 152 | 
         
            -
             
     | 
| 153 | 
         
            -
             
     | 
| 154 | 
         
            -
            class GraniteAttention(nn.Module):
         
     | 
| 155 | 
         
            -
                def __init__(self, config: GraniteConfig, causal: bool, layer_idx: Optional[int] = None) -> None:
         
     | 
| 156 | 
         
            -
                    super().__init__()
         
     | 
| 157 | 
         
            -
             
     | 
| 158 | 
         
            -
                    self.causal = causal
         
     | 
| 159 | 
         
            -
                    self.hidden_size = config.n_embd
         
     | 
| 160 | 
         
            -
                    self.num_heads = config.n_head
         
     | 
| 161 | 
         
            -
                    self.num_key_value_heads = config.num_key_value_heads
         
     | 
| 162 | 
         
            -
                    self.add_bias = config.add_bias
         
     | 
| 163 | 
         
            -
             
     | 
| 164 | 
         
            -
                    assert (
         
     | 
| 165 | 
         
            -
                        self.hidden_size % self.num_heads == 0
         
     | 
| 166 | 
         
            -
                    ), f"`hidden_size` ({self.hidden_size}) must be divisible by `num_heads` ({self.num_heads})"
         
     | 
| 167 | 
         
            -
             
     | 
| 168 | 
         
            -
                    self.head_dim = self.hidden_size // self.num_heads
         
     | 
| 169 | 
         
            -
                    self.attention_head_type = AttentionHeadType(config.attention_head_type)
         
     | 
| 170 | 
         
            -
             
     | 
| 171 | 
         
            -
                    self.position_embedding_type = PositionEmbeddingType(config.position_embedding_type)
         
     | 
| 172 | 
         
            -
                    self.scale_attn_weights = config.scale_attn_weights
         
     | 
| 173 | 
         
            -
                    self.attention_multiplier = config.attention_multiplier
         
     | 
| 174 | 
         
            -
             
     | 
| 175 | 
         
            -
                    self.layer_idx = layer_idx
         
     | 
| 176 | 
         
            -
                    self.attention_softmax_in_fp32 = config.attention_softmax_in_fp32
         
     | 
| 177 | 
         
            -
                    self.scale_attention_softmax_in_fp32 = (
         
     | 
| 178 | 
         
            -
                        config.scale_attention_softmax_in_fp32 and config.attention_softmax_in_fp32
         
     | 
| 179 | 
         
            -
                    )
         
     | 
| 180 | 
         
            -
             
     | 
| 181 | 
         
            -
                    if self.attention_head_type == AttentionHeadType.mha:
         
     | 
| 182 | 
         
            -
                        if self.num_key_value_heads is None:
         
     | 
| 183 | 
         
            -
                            self.num_key_value_heads = self.num_heads
         
     | 
| 184 | 
         
            -
             
     | 
| 185 | 
         
            -
                        assert (
         
     | 
| 186 | 
         
            -
                            self.num_heads == self.num_key_value_heads
         
     | 
| 187 | 
         
            -
                        ), f"{self.__class__.__name__} should have same number of heads for query, keys and values"
         
     | 
| 188 | 
         
            -
                    elif self.attention_head_type == AttentionHeadType.gqa:
         
     | 
| 189 | 
         
            -
                        assert (
         
     | 
| 190 | 
         
            -
                            self.num_key_value_heads is not None
         
     | 
| 191 | 
         
            -
                        ), "`num_key_value_heads` needs to be specified with GroupedQueryAttention"
         
     | 
| 192 | 
         
            -
             
     | 
| 193 | 
         
            -
                        assert self.num_heads % self.num_key_value_heads == 0, (
         
     | 
| 194 | 
         
            -
                            f"`num_heads` ({self.num_heads}) should be a multiple of `num_key_value_heads` "
         
     | 
| 195 | 
         
            -
                            f"({self.num_key_value_heads})"
         
     | 
| 196 | 
         
            -
                        )
         
     | 
| 197 | 
         
            -
                    elif self.attention_head_type == AttentionHeadType.mqa:
         
     | 
| 198 | 
         
            -
                        if self.num_key_value_heads is None:
         
     | 
| 199 | 
         
            -
                            self.num_key_value_heads = 1
         
     | 
| 200 | 
         
            -
             
     | 
| 201 | 
         
            -
                        assert self.num_key_value_heads == 1, f"{self.__class__.__name__} should have 1 head for keys and values"
         
     | 
| 202 | 
         
            -
                    else:
         
     | 
| 203 | 
         
            -
                        raise ValueError(f"unexpected attention_head_type ({self.attention_head_type})")
         
     | 
| 204 | 
         
            -
             
     | 
| 205 | 
         
            -
                    # note that the actual layout is different for the output and depends on whether we are using MHA, MQA or GQA
         
     | 
| 206 | 
         
            -
                    # (self.hidden_size + 2 * self.num_key_value_heads * self.head_dim) is just the actual number output features
         
     | 
| 207 | 
         
            -
                    self.c_attn = nn.Linear(
         
     | 
| 208 | 
         
            -
                        self.hidden_size, self.hidden_size + 2 * self.num_key_value_heads * self.head_dim, bias=self.add_bias
         
     | 
| 209 | 
         
            -
                    )
         
     | 
| 210 | 
         
            -
                    self.c_proj = nn.Linear(self.hidden_size, self.hidden_size, bias=self.add_bias)
         
     | 
| 211 | 
         
            -
             
     | 
| 212 | 
         
            -
                    self.attn_pdrop = config.attn_pdrop
         
     | 
| 213 | 
         
            -
                    self.resid_pdrop = config.resid_pdrop
         
     | 
| 214 | 
         
            -
             
     | 
| 215 | 
         
            -
                    self.attn_dropout = nn.Identity() if self.attn_pdrop == 0 else nn.Dropout(self.attn_pdrop)
         
     | 
| 216 | 
         
            -
                    self.resid_dropout = nn.Identity() if self.resid_pdrop == 0 else nn.Dropout(self.resid_pdrop)
         
     | 
| 217 | 
         
            -
             
     | 
| 218 | 
         
            -
                def _prepare_qkv_for_forward(self, hidden_states: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
         
     | 
| 219 | 
         
            -
                    # ==========================================================================================
         
     | 
| 220 | 
         
            -
                    # hidden_states -> (batch_size, query_length, num_heads * head_dim)
         
     | 
| 221 | 
         
            -
                    # ==========================================================================================
         
     | 
| 222 | 
         
            -
             
     | 
| 223 | 
         
            -
                    # the output of following is a tuple if using MQA with tensor parallel
         
     | 
| 224 | 
         
            -
                    hidden_states = self.c_attn(hidden_states)
         
     | 
| 225 | 
         
            -
             
     | 
| 226 | 
         
            -
                    # ==========================================================================================
         
     | 
| 227 | 
         
            -
                    # hidden_states -> (batch_size, query_length, [num_heads + num_key_value_heads * 2] * head_dim)
         
     | 
| 228 | 
         
            -
                    # ==========================================================================================
         
     | 
| 229 | 
         
            -
             
     | 
| 230 | 
         
            -
                    # for MHA, we can get away with doing just 1 transpose which is not true for GQA
         
     | 
| 231 | 
         
            -
                    if self.attention_head_type == AttentionHeadType.mha:
         
     | 
| 232 | 
         
            -
                        query, key, value = self._prepare_qkv_for_forward_mha(hidden_states)
         
     | 
| 233 | 
         
            -
                    elif self.attention_head_type == AttentionHeadType.gqa:
         
     | 
| 234 | 
         
            -
                        query, key, value = self._prepare_qkv_for_forward_gqa(hidden_states)
         
     | 
| 235 | 
         
            -
                    elif self.attention_head_type == AttentionHeadType.mqa:
         
     | 
| 236 | 
         
            -
                        query, key, value = self._prepare_qkv_for_forward_mqa(hidden_states)
         
     | 
| 237 | 
         
            -
                    else:
         
     | 
| 238 | 
         
            -
                        raise ValueError(f"unexpected attention_head_type ({self.attention_head_type})")
         
     | 
| 239 | 
         
            -
             
     | 
| 240 | 
         
            -
                    # ==========================================================================================
         
     | 
| 241 | 
         
            -
                    # query -> (batch_size, num_heads, query_length, head_dim)
         
     | 
| 242 | 
         
            -
                    # key -> (batch_size, num_key_value_heads, query_length, head_dim)
         
     | 
| 243 | 
         
            -
                    # value -> (batch_size, num_key_value_heads, query_length, head_dim)
         
     | 
| 244 | 
         
            -
                    # ==========================================================================================
         
     | 
| 245 | 
         
            -
             
     | 
| 246 | 
         
            -
                    return query, key, value
         
     | 
| 247 | 
         
            -
             
     | 
| 248 | 
         
            -
                def _prepare_qkv_for_forward_mha(
         
     | 
| 249 | 
         
            -
                    self, hidden_states: torch.Tensor
         
     | 
| 250 | 
         
            -
                ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
         
     | 
| 251 | 
         
            -
                    batch_size, query_length = hidden_states.shape[:-1]
         
     | 
| 252 | 
         
            -
             
     | 
| 253 | 
         
            -
                    hidden_states = hidden_states.view(batch_size, query_length, self.num_heads, -1)
         
     | 
| 254 | 
         
            -
                    hidden_states = hidden_states.transpose(1, 2)
         
     | 
| 255 | 
         
            -
             
     | 
| 256 | 
         
            -
                    query, key, value = hidden_states.chunk(3, dim=-1)
         
     | 
| 257 | 
         
            -
             
     | 
| 258 | 
         
            -
                    return query, key, value
         
     | 
| 259 | 
         
            -
             
     | 
| 260 | 
         
            -
                def _prepare_qkv_for_forward_gqa(
         
     | 
| 261 | 
         
            -
                    self, hidden_states: torch.Tensor
         
     | 
| 262 | 
         
            -
                ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
         
     | 
| 263 | 
         
            -
                    batch_size, query_length = hidden_states.shape[:-1]
         
     | 
| 264 | 
         
            -
             
     | 
| 265 | 
         
            -
                    hidden_states = hidden_states.view(batch_size, query_length, self.num_key_value_heads, -1)
         
     | 
| 266 | 
         
            -
             
     | 
| 267 | 
         
            -
                    query, key, value = hidden_states.split(
         
     | 
| 268 | 
         
            -
                        ((self.num_heads // self.num_key_value_heads) * self.head_dim, self.head_dim, self.head_dim), dim=-1
         
     | 
| 269 | 
         
            -
                    )
         
     | 
| 270 | 
         
            -
             
     | 
| 271 | 
         
            -
                    # this needs to be a reshape instead of view sadly
         
     | 
| 272 | 
         
            -
                    query = query.reshape(batch_size, query_length, -1, self.head_dim)
         
     | 
| 273 | 
         
            -
             
     | 
| 274 | 
         
            -
                    query = query.transpose(1, 2)
         
     | 
| 275 | 
         
            -
                    key = key.transpose(1, 2)
         
     | 
| 276 | 
         
            -
                    value = value.transpose(1, 2)
         
     | 
| 277 | 
         
            -
             
     | 
| 278 | 
         
            -
                    return query, key, value
         
     | 
| 279 | 
         
            -
             
     | 
| 280 | 
         
            -
                def _prepare_qkv_for_forward_mqa(
         
     | 
| 281 | 
         
            -
                    self, hidden_states: torch.Tensor
         
     | 
| 282 | 
         
            -
                ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
         
     | 
| 283 | 
         
            -
                    batch_size, query_length = hidden_states.shape[:-1]
         
     | 
| 284 | 
         
            -
             
     | 
| 285 | 
         
            -
                    query, key, value = hidden_states.split((self.hidden_size, self.head_dim, self.head_dim), dim=-1)
         
     | 
| 286 | 
         
            -
             
     | 
| 287 | 
         
            -
                    query = query.view(batch_size, query_length, self.num_heads, -1)
         
     | 
| 288 | 
         
            -
             
     | 
| 289 | 
         
            -
                    query = query.transpose(1, 2)
         
     | 
| 290 | 
         
            -
                    key = key.unsqueeze(1)
         
     | 
| 291 | 
         
            -
                    value = value.unsqueeze(1)
         
     | 
| 292 | 
         
            -
             
     | 
| 293 | 
         
            -
                    return query, key, value
         
     | 
| 294 | 
         
            -
             
     | 
| 295 | 
         
            -
                def forward(
         
     | 
| 296 | 
         
            -
                    self,
         
     | 
| 297 | 
         
            -
                    hidden_states: torch.Tensor,
         
     | 
| 298 | 
         
            -
                    past_key_values: Optional[DynamicCache] = None,
         
     | 
| 299 | 
         
            -
                    attention_mask: Optional[torch.Tensor] = None,
         
     | 
| 300 | 
         
            -
                    rope_cos_sin: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
         
     | 
| 301 | 
         
            -
                ) -> torch.Tensor:
         
     | 
| 302 | 
         
            -
                    # ==========================================================================================
         
     | 
| 303 | 
         
            -
                    # hidden_states -> (batch_size, query_length, num_heads * head_dim)
         
     | 
| 304 | 
         
            -
                    # ==========================================================================================
         
     | 
| 305 | 
         
            -
             
     | 
| 306 | 
         
            -
                    query, key, value = self._prepare_qkv_for_forward(hidden_states)
         
     | 
| 307 | 
         
            -
             
     | 
| 308 | 
         
            -
                    # ==========================================================================================
         
     | 
| 309 | 
         
            -
                    # query -> (batch_size, num_heads, query_length, head_dim)
         
     | 
| 310 | 
         
            -
                    # key -> (batch_size, num_key_value_heads, query_length, head_dim)
         
     | 
| 311 | 
         
            -
                    # value -> (batch_size, num_key_value_heads, query_length, head_dim)
         
     | 
| 312 | 
         
            -
                    # ==========================================================================================
         
     | 
| 313 | 
         
            -
             
     | 
| 314 | 
         
            -
                    if self.position_embedding_type == PositionEmbeddingType.rope:
         
     | 
| 315 | 
         
            -
                        query = apply_rotary_pos_emb(query, rope_cos_sin)
         
     | 
| 316 | 
         
            -
                        key = apply_rotary_pos_emb(key, rope_cos_sin)
         
     | 
| 317 | 
         
            -
             
     | 
| 318 | 
         
            -
                    if past_key_values is not None:
         
     | 
| 319 | 
         
            -
                        key, value = past_key_values.update(key, value, self.layer_idx)
         
     | 
| 320 | 
         
            -
             
     | 
| 321 | 
         
            -
                    # ==========================================================================================
         
     | 
| 322 | 
         
            -
                    # query -> (batch_size, num_heads, query_length, head_dim)
         
     | 
| 323 | 
         
            -
                    # key -> (batch_size, num_key_value_heads, key_length, head_dim)
         
     | 
| 324 | 
         
            -
                    # value -> (batch_size, num_key_value_heads, key_length, head_dim)
         
     | 
| 325 | 
         
            -
                    # ==========================================================================================
         
     | 
| 326 | 
         
            -
             
     | 
| 327 | 
         
            -
                    key = key.transpose(-1, -2)
         
     | 
| 328 | 
         
            -
             
     | 
| 329 | 
         
            -
                    dtype = query.dtype
         
     | 
| 330 | 
         
            -
                    softmax_dtype = torch.float32 if self.attention_softmax_in_fp32 else dtype
         
     | 
| 331 | 
         
            -
             
     | 
| 332 | 
         
            -
                    if self.scale_attn_weights:
         
     | 
| 333 | 
         
            -
                        if self.attention_multiplier is None:
         
     | 
| 334 | 
         
            -
                            scale_factor = 1 / self.head_dim**0.5
         
     | 
| 335 | 
         
            -
                        else:
         
     | 
| 336 | 
         
            -
                            scale_factor = self.attention_multiplier
         
     | 
| 337 | 
         
            -
                    else:
         
     | 
| 338 | 
         
            -
                        scale_factor = 1
         
     | 
| 339 | 
         
            -
             
     | 
| 340 | 
         
            -
                    # ==========================================================================================
         
     | 
| 341 | 
         
            -
                    # query -> (batch_size, num_heads, query_length, head_dim)
         
     | 
| 342 | 
         
            -
                    # key -> (batch_size, num_key_value_heads, head_dim, key_length)
         
     | 
| 343 | 
         
            -
                    # value -> (batch_size, num_key_value_heads, key_length, head_dim)
         
     | 
| 344 | 
         
            -
                    # ==========================================================================================
         
     | 
| 345 | 
         
            -
             
     | 
| 346 | 
         
            -
                    batch_size = query.shape[0]
         
     | 
| 347 | 
         
            -
                    query_length = query.shape[2]
         
     | 
| 348 | 
         
            -
                    key_length = key.shape[-1]
         
     | 
| 349 | 
         
            -
             
     | 
| 350 | 
         
            -
                    key = repeat_key_value(key, self.num_heads, self.num_key_value_heads)
         
     | 
| 351 | 
         
            -
                    value = repeat_key_value(value, self.num_heads, self.num_key_value_heads)
         
     | 
| 352 | 
         
            -
             
     | 
| 353 | 
         
            -
                    # Always copies
         
     | 
| 354 | 
         
            -
                    query = query.reshape(batch_size * self.num_heads, query_length, self.head_dim)
         
     | 
| 355 | 
         
            -
                    # No copy when layer_past is provided.
         
     | 
| 356 | 
         
            -
                    key = key.reshape(batch_size * self.num_heads, self.head_dim, key_length)
         
     | 
| 357 | 
         
            -
             
     | 
| 358 | 
         
            -
                    # ==========================================================================================
         
     | 
| 359 | 
         
            -
                    # query -> (batch_size * num_heads, query_length, head_dim)
         
     | 
| 360 | 
         
            -
                    # key -> (batch_size * num_heads, head_dim, key_length)
         
     | 
| 361 | 
         
            -
                    # value -> (batch_size, num_heads, key_length, head_dim)
         
     | 
| 362 | 
         
            -
                    # ==========================================================================================
         
     | 
| 363 | 
         
            -
             
     | 
| 364 | 
         
            -
                    attn_weights = torch.empty(
         
     | 
| 365 | 
         
            -
                        (batch_size * self.num_heads, query_length, key_length), device=query.device, dtype=query.dtype
         
     | 
| 366 | 
         
            -
                    )
         
     | 
| 367 | 
         
            -
             
     | 
| 368 | 
         
            -
                    attn_weights = torch.baddbmm(attn_weights, query, key, beta=0, alpha=scale_factor).view(
         
     | 
| 369 | 
         
            -
                        batch_size, self.num_heads, query_length, key_length
         
     | 
| 370 | 
         
            -
                    )
         
     | 
| 371 | 
         
            -
             
     | 
| 372 | 
         
            -
                    # ==========================================================================================
         
     | 
| 373 | 
         
            -
                    # attn_weights -> (batch_size, num_heads, query_length, key_length)
         
     | 
| 374 | 
         
            -
                    # ==========================================================================================
         
     | 
| 375 | 
         
            -
             
     | 
| 376 | 
         
            -
                    attn_weights = attn_weights.to(softmax_dtype)
         
     | 
| 377 | 
         
            -
             
     | 
| 378 | 
         
            -
                    if attention_mask is not None:
         
     | 
| 379 | 
         
            -
                        attn_weights = attn_weights + attention_mask
         
     | 
| 380 | 
         
            -
             
     | 
| 381 | 
         
            -
                    attn_weights = F.softmax(attn_weights, dim=-1).to(dtype)
         
     | 
| 382 | 
         
            -
             
     | 
| 383 | 
         
            -
                    attn_weights = self.attn_dropout(attn_weights)
         
     | 
| 384 | 
         
            -
             
     | 
| 385 | 
         
            -
                    # ==========================================================================================
         
     | 
| 386 | 
         
            -
                    # value -> (batch_size, num_heads, key_length, head_dim)
         
     | 
| 387 | 
         
            -
                    # attn_weights -> (batch_size, num_heads, query_length, key_length)
         
     | 
| 388 | 
         
            -
                    # ==========================================================================================
         
     | 
| 389 | 
         
            -
             
     | 
| 390 | 
         
            -
                    attn_output = torch.matmul(attn_weights, value)
         
     | 
| 391 | 
         
            -
             
     | 
| 392 | 
         
            -
                    # ==========================================================================================
         
     | 
| 393 | 
         
            -
                    # attn_output -> (batch_size, num_heads, query_length, head_dim)
         
     | 
| 394 | 
         
            -
                    # ==========================================================================================
         
     | 
| 395 | 
         
            -
             
     | 
| 396 | 
         
            -
                    attn_output = attn_output.transpose(1, 2)
         
     | 
| 397 | 
         
            -
                    attn_output = attn_output.reshape(batch_size, -1, self.num_heads * self.head_dim)
         
     | 
| 398 | 
         
            -
             
     | 
| 399 | 
         
            -
                    # ==========================================================================================
         
     | 
| 400 | 
         
            -
                    # attn_output -> (batch_size, query_length, num_heads * head_dim)
         
     | 
| 401 | 
         
            -
                    # ==========================================================================================
         
     | 
| 402 | 
         
            -
             
     | 
| 403 | 
         
            -
                    attn_output = self.c_proj(attn_output)
         
     | 
| 404 | 
         
            -
                    attn_output = self.resid_dropout(attn_output)
         
     | 
| 405 | 
         
            -
             
     | 
| 406 | 
         
            -
                    return attn_output
         
     | 
| 407 | 
         
            -
             
     | 
| 408 | 
         
            -
             
     | 
| 409 | 
         
            -
            class GraniteSDPA(GraniteAttention):
         
     | 
| 410 | 
         
            -
                def forward(
         
     | 
| 411 | 
         
            -
                    self,
         
     | 
| 412 | 
         
            -
                    hidden_states: torch.Tensor,
         
     | 
| 413 | 
         
            -
                    past_key_values: Optional[DynamicCache] = None,
         
     | 
| 414 | 
         
            -
                    attention_mask: Optional[torch.Tensor] = None,
         
     | 
| 415 | 
         
            -
                    rope_cos_sin: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
         
     | 
| 416 | 
         
            -
                ) -> torch.Tensor:
         
     | 
| 417 | 
         
            -
                    # ==========================================================================================
         
     | 
| 418 | 
         
            -
                    # hidden_states -> (batch_size, query_length, num_heads * head_dim)
         
     | 
| 419 | 
         
            -
                    # ==========================================================================================
         
     | 
| 420 | 
         
            -
             
     | 
| 421 | 
         
            -
                    query, key, value = self._prepare_qkv_for_forward(hidden_states)
         
     | 
| 422 | 
         
            -
             
     | 
| 423 | 
         
            -
                    # ==========================================================================================
         
     | 
| 424 | 
         
            -
                    # query -> (batch_size, num_heads, query_length, head_dim)
         
     | 
| 425 | 
         
            -
                    # key -> (batch_size, num_key_value_heads, query_length, head_dim)
         
     | 
| 426 | 
         
            -
                    # value -> (batch_size, num_key_value_heads, query_length, head_dim)
         
     | 
| 427 | 
         
            -
                    # ==========================================================================================
         
     | 
| 428 | 
         
            -
             
     | 
| 429 | 
         
            -
                    if self.position_embedding_type == PositionEmbeddingType.rope:
         
     | 
| 430 | 
         
            -
                        query = apply_rotary_pos_emb(query, rope_cos_sin)
         
     | 
| 431 | 
         
            -
                        key = apply_rotary_pos_emb(key, rope_cos_sin)
         
     | 
| 432 | 
         
            -
             
     | 
| 433 | 
         
            -
                    if past_key_values is not None:
         
     | 
| 434 | 
         
            -
                        key, value = past_key_values.update(key, value, self.layer_idx)
         
     | 
| 435 | 
         
            -
             
     | 
| 436 | 
         
            -
                    # ==========================================================================================
         
     | 
| 437 | 
         
            -
                    # query -> (batch_size, num_heads, query_length, head_dim)
         
     | 
| 438 | 
         
            -
                    # key -> (batch_size, num_key_value_heads, key_length, head_dim)
         
     | 
| 439 | 
         
            -
                    # value -> (batch_size, num_key_value_heads, key_length, head_dim)
         
     | 
| 440 | 
         
            -
                    # ==========================================================================================
         
     | 
| 441 | 
         
            -
             
     | 
| 442 | 
         
            -
                    key = repeat_key_value(key, self.num_heads, self.num_key_value_heads)
         
     | 
| 443 | 
         
            -
                    value = repeat_key_value(value, self.num_heads, self.num_key_value_heads)
         
     | 
| 444 | 
         
            -
             
     | 
| 445 | 
         
            -
                    # ==========================================================================================
         
     | 
| 446 | 
         
            -
                    # query -> (batch_size, num_heads, query_length, head_dim)
         
     | 
| 447 | 
         
            -
                    # key -> (batch_size, num_heads, key_length, head_dim)
         
     | 
| 448 | 
         
            -
                    # value -> (batch_size, num_heads, key_length, head_dim)
         
     | 
| 449 | 
         
            -
                    # ==========================================================================================
         
     | 
| 450 | 
         
            -
             
     | 
| 451 | 
         
            -
                    attn_output = F.scaled_dot_product_attention(
         
     | 
| 452 | 
         
            -
                        query,
         
     | 
| 453 | 
         
            -
                        key,
         
     | 
| 454 | 
         
            -
                        value,
         
     | 
| 455 | 
         
            -
                        attn_mask=attention_mask,
         
     | 
| 456 | 
         
            -
                        dropout_p=self.attn_pdrop if self.training else 0,
         
     | 
| 457 | 
         
            -
                        is_causal=self.causal if attention_mask is None else False,
         
     | 
| 458 | 
         
            -
                        scale=self.attention_multiplier if self.scale_attn_weights else 1,
         
     | 
| 459 | 
         
            -
                    )
         
     | 
| 460 | 
         
            -
             
     | 
| 461 | 
         
            -
                    # ==========================================================================================
         
     | 
| 462 | 
         
            -
                    # attn_output -> (batch_size, num_heads, query_length, head_dim)
         
     | 
| 463 | 
         
            -
                    # ==========================================================================================
         
     | 
| 464 | 
         
            -
             
     | 
| 465 | 
         
            -
                    batch_size = attn_output.shape[0]
         
     | 
| 466 | 
         
            -
                    attn_output = attn_output.transpose(1, 2)
         
     | 
| 467 | 
         
            -
                    attn_output = attn_output.reshape(batch_size, -1, self.num_heads * self.head_dim)
         
     | 
| 468 | 
         
            -
             
     | 
| 469 | 
         
            -
                    # ==========================================================================================
         
     | 
| 470 | 
         
            -
                    # attn_output -> (batch_size, query_length, num_heads * head_dim)
         
     | 
| 471 | 
         
            -
                    # ==========================================================================================
         
     | 
| 472 | 
         
            -
             
     | 
| 473 | 
         
            -
                    attn_output = self.c_proj(attn_output)
         
     | 
| 474 | 
         
            -
                    attn_output = self.resid_dropout(attn_output)
         
     | 
| 475 | 
         
            -
             
     | 
| 476 | 
         
            -
                    return attn_output
         
     | 
| 477 | 
         
            -
             
     | 
| 478 | 
         
            -
             
     | 
| 479 | 
         
            -
            class GraniteFlashAttention2(GraniteAttention):
         
     | 
| 480 | 
         
            -
                def forward(
         
     | 
| 481 | 
         
            -
                    self,
         
     | 
| 482 | 
         
            -
                    hidden_states: torch.Tensor,
         
     | 
| 483 | 
         
            -
                    past_key_values: Optional[DynamicCache] = None,
         
     | 
| 484 | 
         
            -
                    attention_mask: Optional[torch.Tensor] = None,
         
     | 
| 485 | 
         
            -
                    rope_cos_sin: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
         
     | 
| 486 | 
         
            -
                ) -> torch.Tensor:
         
     | 
| 487 | 
         
            -
                    # ==========================================================================================
         
     | 
| 488 | 
         
            -
                    # hidden_states -> (batch_size, query_length, num_heads * head_dim)
         
     | 
| 489 | 
         
            -
                    # ==========================================================================================
         
     | 
| 490 | 
         
            -
             
     | 
| 491 | 
         
            -
                    query, key, value = self._prepare_qkv_for_forward(hidden_states)
         
     | 
| 492 | 
         
            -
             
     | 
| 493 | 
         
            -
                    # ==========================================================================================
         
     | 
| 494 | 
         
            -
                    # query -> (batch_size, num_heads, query_length, head_dim)
         
     | 
| 495 | 
         
            -
                    # key -> (batch_size, num_key_value_heads, query_length, head_dim)
         
     | 
| 496 | 
         
            -
                    # value -> (batch_size, num_key_value_heads, query_length, head_dim)
         
     | 
| 497 | 
         
            -
                    # ==========================================================================================
         
     | 
| 498 | 
         
            -
             
     | 
| 499 | 
         
            -
                    if self.position_embedding_type == PositionEmbeddingType.rope:
         
     | 
| 500 | 
         
            -
                        query = apply_rotary_pos_emb(query, rope_cos_sin)
         
     | 
| 501 | 
         
            -
                        key = apply_rotary_pos_emb(key, rope_cos_sin)
         
     | 
| 502 | 
         
            -
             
     | 
| 503 | 
         
            -
                    if past_key_values is not None:
         
     | 
| 504 | 
         
            -
                        key, value = past_key_values.update(key, value, self.layer_idx)
         
     | 
| 505 | 
         
            -
             
     | 
| 506 | 
         
            -
                    # ==========================================================================================
         
     | 
| 507 | 
         
            -
                    # query -> (batch_size, num_heads, query_length, head_dim)
         
     | 
| 508 | 
         
            -
                    # key -> (batch_size, num_key_value_heads, key_length, head_dim)
         
     | 
| 509 | 
         
            -
                    # value -> (batch_size, num_key_value_heads, key_length, head_dim)
         
     | 
| 510 | 
         
            -
                    # ==========================================================================================
         
     | 
| 511 | 
         
            -
             
     | 
| 512 | 
         
            -
                    # TODO avoid this extra transpose
         
     | 
| 513 | 
         
            -
                    query = query.transpose(1, 2)
         
     | 
| 514 | 
         
            -
                    if self.attention_head_type == AttentionHeadType.mqa:
         
     | 
| 515 | 
         
            -
                        key = key.squeeze(1).unsqueeze(2)
         
     | 
| 516 | 
         
            -
                        value = value.squeeze(1).unsqueeze(2)
         
     | 
| 517 | 
         
            -
                    else:
         
     | 
| 518 | 
         
            -
                        key = key.transpose(1, 2)
         
     | 
| 519 | 
         
            -
                        value = value.transpose(1, 2)
         
     | 
| 520 | 
         
            -
             
     | 
| 521 | 
         
            -
                    # ==========================================================================================
         
     | 
| 522 | 
         
            -
                    # query -> (batch_size, query_length, num_heads, head_dim)
         
     | 
| 523 | 
         
            -
                    # key -> (batch_size, key_length, num_heads, head_dim)
         
     | 
| 524 | 
         
            -
                    # value -> (batch_size, key_length, num_heads, head_dim)
         
     | 
| 525 | 
         
            -
                    # ==========================================================================================
         
     | 
| 526 | 
         
            -
             
     | 
| 527 | 
         
            -
                    batch_size, query_length = query.shape[:2]
         
     | 
| 528 | 
         
            -
                    key_length = key.shape[1]
         
     | 
| 529 | 
         
            -
                    indices_k, cu_seqlens_k, max_seqlen_k = get_unpad_data(attention_mask)
         
     | 
| 530 | 
         
            -
             
     | 
| 531 | 
         
            -
                    key = IndexFirstAxis.apply(
         
     | 
| 532 | 
         
            -
                        key.reshape(batch_size * key_length, self.num_key_value_heads, self.head_dim), indices_k
         
     | 
| 533 | 
         
            -
                    )
         
     | 
| 534 | 
         
            -
                    value = IndexFirstAxis.apply(
         
     | 
| 535 | 
         
            -
                        value.reshape(batch_size * key_length, self.num_key_value_heads, self.head_dim), indices_k
         
     | 
| 536 | 
         
            -
                    )
         
     | 
| 537 | 
         
            -
             
     | 
| 538 | 
         
            -
                    if query_length == key_length:
         
     | 
| 539 | 
         
            -
                        query = IndexFirstAxis.apply(
         
     | 
| 540 | 
         
            -
                            query.reshape(batch_size * key_length, self.num_heads, self.head_dim), indices_k
         
     | 
| 541 | 
         
            -
                        )
         
     | 
| 542 | 
         
            -
                        cu_seqlens_q = cu_seqlens_k
         
     | 
| 543 | 
         
            -
                        max_seqlen_q = max_seqlen_k
         
     | 
| 544 | 
         
            -
                        indices_q = indices_k
         
     | 
| 545 | 
         
            -
                    elif query_length == 1:
         
     | 
| 546 | 
         
            -
                        max_seqlen_q = 1
         
     | 
| 547 | 
         
            -
                        cu_seqlens_q = torch.arange(
         
     | 
| 548 | 
         
            -
                            batch_size + 1, dtype=torch.int32, device=query.device
         
     | 
| 549 | 
         
            -
                        )  # There is a memcpy here, that is very bad.
         
     | 
| 550 | 
         
            -
                        indices_q = cu_seqlens_q[:-1]
         
     | 
| 551 | 
         
            -
                        query = query.squeeze(1)
         
     | 
| 552 | 
         
            -
                    else:
         
     | 
| 553 | 
         
            -
                        # The -q_len: slice assumes left padding.
         
     | 
| 554 | 
         
            -
                        attention_mask = attention_mask[:, -query_length:]
         
     | 
| 555 | 
         
            -
                        query, indices_q, cu_seqlens_q, max_seqlen_q = unpad_input(query, attention_mask)
         
     | 
| 556 | 
         
            -
             
     | 
| 557 | 
         
            -
                    # ==========================================================================================
         
     | 
| 558 | 
         
            -
                    # query -> (total_q, num_heads, head_dim)
         
     | 
| 559 | 
         
            -
                    # key -> (total_q, num_heads, head_dim)
         
     | 
| 560 | 
         
            -
                    # value -> (total_q, num_heads, head_dim)
         
     | 
| 561 | 
         
            -
                    # ==========================================================================================
         
     | 
| 562 | 
         
            -
             
     | 
| 563 | 
         
            -
                    attn_output = flash_attn_varlen_func(
         
     | 
| 564 | 
         
            -
                        query,
         
     | 
| 565 | 
         
            -
                        key,
         
     | 
| 566 | 
         
            -
                        value,
         
     | 
| 567 | 
         
            -
                        cu_seqlens_q=cu_seqlens_q,
         
     | 
| 568 | 
         
            -
                        cu_seqlens_k=cu_seqlens_k,
         
     | 
| 569 | 
         
            -
                        max_seqlen_q=max_seqlen_q,
         
     | 
| 570 | 
         
            -
                        max_seqlen_k=max_seqlen_k,
         
     | 
| 571 | 
         
            -
                        dropout_p=self.attn_pdrop if self.training else 0,
         
     | 
| 572 | 
         
            -
                        softmax_scale=self.attention_multiplier if self.scale_attn_weights else 1,
         
     | 
| 573 | 
         
            -
                        causal=self.causal,
         
     | 
| 574 | 
         
            -
                    )
         
     | 
| 575 | 
         
            -
             
     | 
| 576 | 
         
            -
                    # ==========================================================================================
         
     | 
| 577 | 
         
            -
                    # attn_output -> (total_q, num_heads, head_dim)
         
     | 
| 578 | 
         
            -
                    # ==========================================================================================
         
     | 
| 579 | 
         
            -
             
     | 
| 580 | 
         
            -
                    attn_output = pad_input(attn_output, indices_q, batch_size, query_length)
         
     | 
| 581 | 
         
            -
                    attn_output = attn_output.view(batch_size, query_length, -1)
         
     | 
| 582 | 
         
            -
             
     | 
| 583 | 
         
            -
                    # ==========================================================================================
         
     | 
| 584 | 
         
            -
                    # attn_output -> (batch_size, query_length, num_heads * head_dim)
         
     | 
| 585 | 
         
            -
                    # ==========================================================================================
         
     | 
| 586 | 
         
            -
             
     | 
| 587 | 
         
            -
                    attn_output = self.c_proj(attn_output)
         
     | 
| 588 | 
         
            -
                    attn_output = self.resid_dropout(attn_output)
         
     | 
| 589 | 
         
            -
             
     | 
| 590 | 
         
            -
                    return attn_output
         
     | 
| 591 | 
         
            -
             
     | 
| 592 | 
         
            -
             
     | 
| 593 | 
         
            -
            _ATTENTION_MODULES = {
         
     | 
| 594 | 
         
            -
                "eager": GraniteAttention,
         
     | 
| 595 | 
         
            -
                "sdpa": GraniteSDPA,
         
     | 
| 596 | 
         
            -
                "flash_attention_2": GraniteFlashAttention2,
         
     | 
| 597 | 
         
            -
            }
         
     | 
| 598 | 
         
            -
             
     | 
| 599 | 
         
            -
             
     | 
| 600 | 
         
            -
            def get_attention_module(
         
     | 
| 601 | 
         
            -
                config: GraniteConfig, causal: bool, attention_implementation: str, layer_idx: int
         
     | 
| 602 | 
         
            -
            ) -> GraniteAttention:
         
     | 
| 603 | 
         
            -
                if attention_implementation in _ATTENTION_MODULES:
         
     | 
| 604 | 
         
            -
                    return _ATTENTION_MODULES[attention_implementation](config, causal=causal, layer_idx=layer_idx)
         
     | 
| 605 | 
         
            -
                raise ValueError(f"unexpected `attention_implementation` {attention_implementation}")
         
     | 
| 606 | 
         
            -
             
     | 
| 607 | 
         
            -
             
     | 
| 608 | 
         
            -
            ##################################################
         
     | 
| 609 | 
         
            -
            # position embeddings
         
     | 
| 610 | 
         
            -
             
     | 
| 611 | 
         
            -
             
     | 
| 612 | 
         
            -
            class Alibi(nn.Module):
         
     | 
| 613 | 
         
            -
                def __init__(self, num_heads: int) -> None:
         
     | 
| 614 | 
         
            -
                    super().__init__()
         
     | 
| 615 | 
         
            -
                    self.num_heads = num_heads
         
     | 
| 616 | 
         
            -
             
     | 
| 617 | 
         
            -
                    self.reset_parameters()
         
     | 
| 618 | 
         
            -
             
     | 
| 619 | 
         
            -
                def forward(
         
     | 
| 620 | 
         
            -
                    self, attention_mask: torch.Tensor, batch_size: int, key_length: int, device: torch.device, dtype: torch.dtype
         
     | 
| 621 | 
         
            -
                ) -> torch.Tensor:
         
     | 
| 622 | 
         
            -
                    """
         
     | 
| 623 | 
         
            -
                    Link to paper: https://arxiv.org/abs/2108.12409 Alibi tensor is not causal as the original paper mentions, it
         
     | 
| 624 | 
         
            -
                    relies on a translation invariance of softmax for quick implementation: with l being a tensor, and a fixed value
         
     | 
| 625 | 
         
            -
                    `softmax(l+a) = softmax(l)`. Based on
         
     | 
| 626 | 
         
            -
                    https://github.com/ofirpress/attention_with_linear_biases/blob/a35aaca144e0eb6b789dfcb46784c4b8e31b7983/fairseq/models/transformer.py#L742
         
     | 
| 627 | 
         
            -
                    TODO @thomasw21 this doesn't work as nicely due to the masking strategy, and so masking varies slightly.
         
     | 
| 628 | 
         
            -
             
     | 
| 629 | 
         
            -
                    Args:
         
     | 
| 630 | 
         
            -
                        attention_mask (torch.Tensor): attention_mask tensor of shape (`batch_size`, `key_length`)
         
     | 
| 631 | 
         
            -
                        num_heads (int): `num_heads` for the model
         
     | 
| 632 | 
         
            -
                        batch_size (int): `batch_size`
         
     | 
| 633 | 
         
            -
                        key_length (int): `key_length`
         
     | 
| 634 | 
         
            -
                        device (torch.device): device for the tensors
         
     | 
| 635 | 
         
            -
                        dtype (torch.dtype): dtype to use for the tensors
         
     | 
| 636 | 
         
            -
             
     | 
| 637 | 
         
            -
                    Returns:
         
     | 
| 638 | 
         
            -
                        torch.Tensor: alibi tensor of shape (`batch_size`, `num_heads`, `key_length`)
         
     | 
| 639 | 
         
            -
                    """
         
     | 
| 640 | 
         
            -
             
     | 
| 641 | 
         
            -
                    # Note: alibi will added to the attention bias that will be applied to the query, key product of attention
         
     | 
| 642 | 
         
            -
                    # => therefore alibi will have to be of shape (batch_size, num_heads, query_length, key_length)
         
     | 
| 643 | 
         
            -
                    # => here we set (batch_size=1, num_heads=num_heads, query_length=1, key_length=max_length)
         
     | 
| 644 | 
         
            -
                    # => the query_length dimension will then be broadcasted correctly
         
     | 
| 645 | 
         
            -
                    # This is more or less identical to T5's relative position bias:
         
     | 
| 646 | 
         
            -
                    # https://github.com/huggingface/transformers/blob/f681437203baa7671de3174b0fa583c349d9d5e1/src/transformers/models/t5/modeling_t5.py#L527
         
     | 
| 647 | 
         
            -
                    if attention_mask is None:
         
     | 
| 648 | 
         
            -
                        arange_tensor = (
         
     | 
| 649 | 
         
            -
                            torch.arange(key_length, device=device).unsqueeze(0).unsqueeze(0).expand(batch_size, -1, -1)
         
     | 
| 650 | 
         
            -
                        )
         
     | 
| 651 | 
         
            -
                    else:
         
     | 
| 652 | 
         
            -
                        arange_tensor = (attention_mask.cumsum(dim=-1) - 1).masked_fill_(attention_mask == 0, 0).unsqueeze(1)
         
     | 
| 653 | 
         
            -
             
     | 
| 654 | 
         
            -
                    alibi = self.slopes.unsqueeze(1) * arange_tensor
         
     | 
| 655 | 
         
            -
                    return alibi.to(dtype)
         
     | 
| 656 | 
         
            -
             
     | 
| 657 | 
         
            -
                def reset_parameters(self) -> None:
         
     | 
| 658 | 
         
            -
                    closest_power_of_2 = 2 ** math.floor(math.log2(self.num_heads))
         
     | 
| 659 | 
         
            -
                    base = torch.tensor(2 ** (-(2 ** -(math.log2(closest_power_of_2) - 3))), dtype=torch.float32)
         
     | 
| 660 | 
         
            -
                    powers = torch.arange(1, 1 + closest_power_of_2, dtype=torch.int32)
         
     | 
| 661 | 
         
            -
                    slopes = torch.pow(base, powers)
         
     | 
| 662 | 
         
            -
             
     | 
| 663 | 
         
            -
                    if closest_power_of_2 != self.num_heads:
         
     | 
| 664 | 
         
            -
                        extra_base = torch.tensor(2 ** (-(2 ** -(math.log2(2 * closest_power_of_2) - 3))), dtype=torch.float32)
         
     | 
| 665 | 
         
            -
                        num_remaining_heads = min(closest_power_of_2, self.num_heads - closest_power_of_2)
         
     | 
| 666 | 
         
            -
                        extra_powers = torch.arange(1, 1 + 2 * num_remaining_heads, 2, dtype=torch.int32)
         
     | 
| 667 | 
         
            -
                        slopes = torch.cat([slopes, torch.pow(extra_base, extra_powers)], dim=0)
         
     | 
| 668 | 
         
            -
             
     | 
| 669 | 
         
            -
                    self.register_buffer("slopes", slopes, persistent=False)
         
     | 
| 670 | 
         
            -
             
     | 
| 671 | 
         
            -
             
     | 
| 672 | 
         
            -
            class RoPE(nn.Module):
         
     | 
| 673 | 
         
            -
                def __init__(
         
     | 
| 674 | 
         
            -
                    self,
         
     | 
| 675 | 
         
            -
                    head_dim: int,
         
     | 
| 676 | 
         
            -
                    max_position_embeddings: int = 2048,
         
     | 
| 677 | 
         
            -
                    base: int = 10000,
         
     | 
| 678 | 
         
            -
                ) -> None:
         
     | 
| 679 | 
         
            -
                    super().__init__()
         
     | 
| 680 | 
         
            -
             
     | 
| 681 | 
         
            -
                    self.head_dim = head_dim
         
     | 
| 682 | 
         
            -
                    self.max_position_embeddings = max_position_embeddings
         
     | 
| 683 | 
         
            -
                    self.base = base
         
     | 
| 684 | 
         
            -
                    self.mscale = 1
         
     | 
| 685 | 
         
            -
             
     | 
| 686 | 
         
            -
                    self.reset_parameters()
         
     | 
| 687 | 
         
            -
             
     | 
| 688 | 
         
            -
                def forward(self, seq_len: int, dtype: torch.dtype, device: torch.device) -> Tuple[torch.Tensor, torch.Tensor]:
         
     | 
| 689 | 
         
            -
                    if seq_len > self.max_seq_len_cached:
         
     | 
| 690 | 
         
            -
                        self._set_cos_sin_cache(seq_len=seq_len, device=device, dtype=dtype)
         
     | 
| 691 | 
         
            -
             
     | 
| 692 | 
         
            -
                    cos = self.cos_cached[:seq_len].to(dtype)
         
     | 
| 693 | 
         
            -
                    sin = self.sin_cached[:seq_len].to(dtype)
         
     | 
| 694 | 
         
            -
             
     | 
| 695 | 
         
            -
                    return cos, sin
         
     | 
| 696 | 
         
            -
             
     | 
| 697 | 
         
            -
                def reset_parameters(self) -> None:
         
     | 
| 698 | 
         
            -
                    inv_freq = 1.0 / (self.base ** (torch.arange(0, self.head_dim, 2).float() / self.head_dim))
         
     | 
| 699 | 
         
            -
                    self.register_buffer("inv_freq", inv_freq, persistent=False)
         
     | 
| 700 | 
         
            -
             
     | 
| 701 | 
         
            -
                    # Build here to make `torch.jit.trace` work.
         
     | 
| 702 | 
         
            -
                    self._set_cos_sin_cache(
         
     | 
| 703 | 
         
            -
                        seq_len=self.max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype()
         
     | 
| 704 | 
         
            -
                    )
         
     | 
| 705 | 
         
            -
             
     | 
| 706 | 
         
            -
                @torch.no_grad()
         
     | 
| 707 | 
         
            -
                def _set_cos_sin_cache(self, seq_len: int, device: torch.device, dtype: torch.dtype) -> None:
         
     | 
| 708 | 
         
            -
                    self.max_seq_len_cached = seq_len
         
     | 
| 709 | 
         
            -
                    t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
         
     | 
| 710 | 
         
            -
             
     | 
| 711 | 
         
            -
                    freqs = torch.outer(t, self.inv_freq)
         
     | 
| 712 | 
         
            -
                    # Different from paper, but it uses a different permutation in order to obtain the same calculation
         
     | 
| 713 | 
         
            -
                    emb = torch.cat((freqs, freqs), dim=-1)
         
     | 
| 714 | 
         
            -
             
     | 
| 715 | 
         
            -
                    self.register_buffer("cos_cached", (emb.cos() * self.mscale).to(dtype), persistent=False)
         
     | 
| 716 | 
         
            -
                    self.register_buffer("sin_cached", (emb.sin() * self.mscale).to(dtype), persistent=False)
         
     | 
| 717 | 
         
            -
             
     | 
| 718 | 
         
            -
             
     | 
| 719 | 
         
            -
            def apply_rotary_pos_emb(x: torch.Tensor, cos_sin: Tuple[torch.Tensor, torch.Tensor]) -> torch.Tensor:
         
     | 
| 720 | 
         
            -
                cos, sin = cos_sin
         
     | 
| 721 | 
         
            -
                x = (x * cos) + (_rotate_half(x) * sin)
         
     | 
| 722 | 
         
            -
                return x
         
     | 
| 723 | 
         
            -
             
     | 
| 724 | 
         
            -
             
     | 
| 725 | 
         
            -
            def _rotate_half(x: torch.Tensor) -> torch.Tensor:
         
     | 
| 726 | 
         
            -
                x1, x2 = torch.chunk(x, 2, dim=-1)
         
     | 
| 727 | 
         
            -
                return torch.cat((-x2, x1), dim=-1)
         
     | 
| 728 | 
         
            -
             
     | 
| 729 | 
         
            -
             
     | 
| 730 | 
         
            -
            ##################################################
         
     | 
| 731 | 
         
            -
            # MLP
         
     | 
| 732 | 
         
            -
             
     | 
| 733 | 
         
            -
             
     | 
| 734 | 
         
            -
            class GraniteMLP(nn.Module):
         
     | 
| 735 | 
         
            -
                def __init__(self, config: GraniteConfig) -> None:
         
     | 
| 736 | 
         
            -
                    super().__init__()
         
     | 
| 737 | 
         
            -
             
     | 
| 738 | 
         
            -
                    hidden_size = config.n_embd
         
     | 
| 739 | 
         
            -
                    intermediate_size = config.n_inner
         
     | 
| 740 | 
         
            -
                    activation_function = config.activation_function
         
     | 
| 741 | 
         
            -
                    add_bias = config.add_bias
         
     | 
| 742 | 
         
            -
                    residual_dropout = config.resid_pdrop
         
     | 
| 743 | 
         
            -
             
     | 
| 744 | 
         
            -
                    self.c_fc = nn.Linear(
         
     | 
| 745 | 
         
            -
                        hidden_size,
         
     | 
| 746 | 
         
            -
                        2 * intermediate_size if is_glu(activation_function) else intermediate_size,
         
     | 
| 747 | 
         
            -
                        bias=add_bias,
         
     | 
| 748 | 
         
            -
                    )
         
     | 
| 749 | 
         
            -
                    self.act = get_activation_function(activation_function)
         
     | 
| 750 | 
         
            -
                    self.c_proj = nn.Linear(intermediate_size, hidden_size, bias=add_bias)
         
     | 
| 751 | 
         
            -
                    self.dropout = nn.Identity() if residual_dropout == 0 else nn.Dropout(residual_dropout)
         
     | 
| 752 | 
         
            -
             
     | 
| 753 | 
         
            -
                def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
         
     | 
| 754 | 
         
            -
                    hidden_states = self.c_fc(hidden_states)
         
     | 
| 755 | 
         
            -
                    hidden_states = self.act(hidden_states)
         
     | 
| 756 | 
         
            -
                    hidden_states = self.c_proj(hidden_states)
         
     | 
| 757 | 
         
            -
                    hidden_states = self.dropout(hidden_states)
         
     | 
| 758 | 
         
            -
                    return hidden_states
         
     | 
| 759 | 
         
            -
             
     | 
| 760 | 
         
            -
             
     | 
| 761 | 
         
            -
            ##################################################
         
     | 
| 762 | 
         
            -
            # transformer layer
         
     | 
| 763 | 
         
            -
             
     | 
| 764 | 
         
            -
             
     | 
| 765 | 
         
            -
            class GraniteBlock(nn.Module):
         
     | 
| 766 | 
         
            -
                def __init__(
         
     | 
| 767 | 
         
            -
                    self,
         
     | 
| 768 | 
         
            -
                    config: GraniteConfig,
         
     | 
| 769 | 
         
            -
                    attention_implementation: str,
         
     | 
| 770 | 
         
            -
                    layer_idx: Optional[int] = None,
         
     | 
| 771 | 
         
            -
                ) -> None:
         
     | 
| 772 | 
         
            -
                    super().__init__()
         
     | 
| 773 | 
         
            -
             
     | 
| 774 | 
         
            -
                    hidden_size = config.hidden_size
         
     | 
| 775 | 
         
            -
                    self.inner_dim = config.n_inner
         
     | 
| 776 | 
         
            -
                    self.layer_idx = layer_idx
         
     | 
| 777 | 
         
            -
             
     | 
| 778 | 
         
            -
                    self.ln_1 = get_normalization_function(
         
     | 
| 779 | 
         
            -
                        config.normalization_function,
         
     | 
| 780 | 
         
            -
                        hidden_size,
         
     | 
| 781 | 
         
            -
                        eps=config.layer_norm_epsilon,
         
     | 
| 782 | 
         
            -
                    )
         
     | 
| 783 | 
         
            -
                    self.attn = get_attention_module(config, True, attention_implementation, layer_idx)
         
     | 
| 784 | 
         
            -
                    self.ln_2 = get_normalization_function(
         
     | 
| 785 | 
         
            -
                        config.normalization_function,
         
     | 
| 786 | 
         
            -
                        hidden_size,
         
     | 
| 787 | 
         
            -
                        eps=config.layer_norm_epsilon,
         
     | 
| 788 | 
         
            -
                    )
         
     | 
| 789 | 
         
            -
                    self.mlp = GraniteMLP(config)
         
     | 
| 790 | 
         
            -
             
     | 
| 791 | 
         
            -
                def forward(
         
     | 
| 792 | 
         
            -
                    self,
         
     | 
| 793 | 
         
            -
                    hidden_states: torch.Tensor,
         
     | 
| 794 | 
         
            -
                    past_key_values: Optional[DynamicCache] = None,
         
     | 
| 795 | 
         
            -
                    attention_mask: Optional[torch.Tensor] = None,
         
     | 
| 796 | 
         
            -
                    rope_cos_sin: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
         
     | 
| 797 | 
         
            -
                ) -> torch.Tensor:
         
     | 
| 798 | 
         
            -
                    residual = hidden_states
         
     | 
| 799 | 
         
            -
                    hidden_states = self.ln_1(hidden_states)
         
     | 
| 800 | 
         
            -
             
     | 
| 801 | 
         
            -
                    attn_output = self.attn(
         
     | 
| 802 | 
         
            -
                        hidden_states,
         
     | 
| 803 | 
         
            -
                        past_key_values=past_key_values,
         
     | 
| 804 | 
         
            -
                        attention_mask=attention_mask,
         
     | 
| 805 | 
         
            -
                        rope_cos_sin=rope_cos_sin,
         
     | 
| 806 | 
         
            -
                    )
         
     | 
| 807 | 
         
            -
             
     | 
| 808 | 
         
            -
                    # residual connection
         
     | 
| 809 | 
         
            -
                    hidden_states = attn_output + residual
         
     | 
| 810 | 
         
            -
             
     | 
| 811 | 
         
            -
                    residual = hidden_states
         
     | 
| 812 | 
         
            -
                    hidden_states = self.ln_2(hidden_states)
         
     | 
| 813 | 
         
            -
             
     | 
| 814 | 
         
            -
                    feed_forward_hidden_states = self.mlp(hidden_states)
         
     | 
| 815 | 
         
            -
             
     | 
| 816 | 
         
            -
                    # residual connection
         
     | 
| 817 | 
         
            -
                    hidden_states = residual + feed_forward_hidden_states
         
     | 
| 818 | 
         
            -
             
     | 
| 819 | 
         
            -
                    return hidden_states
         
     | 
| 820 | 
         
            -
             
     | 
| 821 | 
         
            -
             
     | 
| 822 | 
         
            -
            ##################################################
         
     | 
| 823 | 
         
            -
            # model classes
         
     | 
| 824 | 
         
            -
             
     | 
| 825 | 
         
            -
             
     | 
| 826 | 
         
            -
            class GranitePreTrainedModel(PreTrainedModel):
         
     | 
| 827 | 
         
            -
                """
         
     | 
| 828 | 
         
            -
                An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
         
     | 
| 829 | 
         
            -
                models.
         
     | 
| 830 | 
         
            -
                """
         
     | 
| 831 | 
         
            -
             
     | 
| 832 | 
         
            -
                config_class = GraniteConfig
         
     | 
| 833 | 
         
            -
                base_model_prefix = "transformer"
         
     | 
| 834 | 
         
            -
                causal = True
         
     | 
| 835 | 
         
            -
                _no_split_modules = ["GraniteBlock"]
         
     | 
| 836 | 
         
            -
                _skip_keys_device_placement = "past_key_values"
         
     | 
| 837 | 
         
            -
                _supports_sdpa = True
         
     | 
| 838 | 
         
            -
                _supports_flash_attn_2 = True
         
     | 
| 839 | 
         
            -
             
     | 
| 840 | 
         
            -
                def __init__(self, config: GraniteConfig, *inputs, **kwargs):
         
     | 
| 841 | 
         
            -
                    super().__init__(config, *inputs, **kwargs)
         
     | 
| 842 | 
         
            -
             
     | 
| 843 | 
         
            -
                    self.attention_implementation = self.config._attn_implementation
         
     | 
| 844 | 
         
            -
                    self._use_eager_attention = self.attention_implementation == "eager"
         
     | 
| 845 | 
         
            -
                    self._use_sdpa = self.attention_implementation == "sdpa"
         
     | 
| 846 | 
         
            -
                    self._use_flash_attention_2 = self.attention_implementation == "flash_attention_2"
         
     | 
| 847 | 
         
            -
             
     | 
| 848 | 
         
            -
                    self.initializer_range = config.initializer_range
         
     | 
| 849 | 
         
            -
             
     | 
| 850 | 
         
            -
                def _init_weights(self, module: nn.Module) -> None:
         
     | 
| 851 | 
         
            -
                    if isinstance(module, (nn.LayerNorm, RMSNorm, Alibi, RoPE)):
         
     | 
| 852 | 
         
            -
                        module.reset_parameters()
         
     | 
| 853 | 
         
            -
                    elif isinstance(module, nn.Linear):
         
     | 
| 854 | 
         
            -
                        nn.init.normal_(module.weight, mean=0, std=self.initializer_range)
         
     | 
| 855 | 
         
            -
                        if module.bias is not None:
         
     | 
| 856 | 
         
            -
                            module.bias.zero_()
         
     | 
| 857 | 
         
            -
                    elif isinstance(module, nn.Embedding):
         
     | 
| 858 | 
         
            -
                        nn.init.normal_(module.weight, mean=0, std=self.initializer_range)
         
     | 
| 859 | 
         
            -
                        if module.padding_idx is not None:
         
     | 
| 860 | 
         
            -
                            module.weight[module.padding_idx].zero_()
         
     | 
| 861 | 
         
            -
             
     | 
| 862 | 
         
            -
             
     | 
| 863 | 
         
            -
            class GraniteModel(GranitePreTrainedModel):
         
     | 
| 864 | 
         
            -
                _keys_to_ignore_on_load_missing = ["attn.masked_bias"]
         
     | 
| 865 | 
         
            -
                mask_value = None
         
     | 
| 866 | 
         
            -
             
     | 
| 867 | 
         
            -
                def __init__(self, config: GraniteConfig, **kwargs) -> None:
         
     | 
| 868 | 
         
            -
                    super().__init__(config, **kwargs)
         
     | 
| 869 | 
         
            -
             
     | 
| 870 | 
         
            -
                    self.attention_head_type = AttentionHeadType(config.attention_head_type)
         
     | 
| 871 | 
         
            -
                    self.embed_dim = config.hidden_size
         
     | 
| 872 | 
         
            -
                    self.num_heads = config.num_attention_heads
         
     | 
| 873 | 
         
            -
                    self.num_key_value_heads = config.num_key_value_heads
         
     | 
| 874 | 
         
            -
             
     | 
| 875 | 
         
            -
                    assert (
         
     | 
| 876 | 
         
            -
                        self.embed_dim % self.num_heads == 0
         
     | 
| 877 | 
         
            -
                    ), f"`embed_dim` ({self.embed_dim}) must be divisible by `num_heads` ({self.num_heads})"
         
     | 
| 878 | 
         
            -
             
     | 
| 879 | 
         
            -
                    self.head_dim = self.embed_dim // self.num_heads
         
     | 
| 880 | 
         
            -
             
     | 
| 881 | 
         
            -
                    self.wte = nn.Embedding(config.vocab_size, self.embed_dim)
         
     | 
| 882 | 
         
            -
             
     | 
| 883 | 
         
            -
                    self.drop = nn.Identity() if config.embd_pdrop == 0 else nn.Dropout(config.embd_pdrop)
         
     | 
| 884 | 
         
            -
                    self.h = nn.ModuleList(
         
     | 
| 885 | 
         
            -
                        [GraniteBlock(config, self.attention_implementation, layer_idx=i) for i in range(config.num_hidden_layers)]
         
     | 
| 886 | 
         
            -
                    )
         
     | 
| 887 | 
         
            -
                    self.ln_f = get_normalization_function(
         
     | 
| 888 | 
         
            -
                        config.normalization_function,
         
     | 
| 889 | 
         
            -
                        self.embed_dim,
         
     | 
| 890 | 
         
            -
                        eps=config.layer_norm_epsilon,
         
     | 
| 891 | 
         
            -
                    )
         
     | 
| 892 | 
         
            -
             
     | 
| 893 | 
         
            -
                    self.position_embedding_type = PositionEmbeddingType(config.position_embedding_type)
         
     | 
| 894 | 
         
            -
             
     | 
| 895 | 
         
            -
                    if self.position_embedding_type == PositionEmbeddingType.learned_absolute:
         
     | 
| 896 | 
         
            -
                        self.wpe = nn.Embedding(config.n_positions, self.embed_dim)
         
     | 
| 897 | 
         
            -
                    elif self.position_embedding_type == PositionEmbeddingType.alibi:
         
     | 
| 898 | 
         
            -
                        assert not self._use_flash_attention_2, "alibi is not implemented with FlashAttention"
         
     | 
| 899 | 
         
            -
             
     | 
| 900 | 
         
            -
                        self.alibi = Alibi(self.num_heads)
         
     | 
| 901 | 
         
            -
                    elif self.position_embedding_type == PositionEmbeddingType.rope:
         
     | 
| 902 | 
         
            -
                        self.rope = RoPE(self.head_dim, max_position_embeddings=config.n_positions, base=config.rope_theta)
         
     | 
| 903 | 
         
            -
                    else:
         
     | 
| 904 | 
         
            -
                        raise NotImplementedError()
         
     | 
| 905 | 
         
            -
             
     | 
| 906 | 
         
            -
                    # Initialize weights and apply final processing
         
     | 
| 907 | 
         
            -
                    self.post_init()
         
     | 
| 908 | 
         
            -
             
     | 
| 909 | 
         
            -
                def get_input_embeddings(self) -> nn.Embedding:
         
     | 
| 910 | 
         
            -
                    return self.wte
         
     | 
| 911 | 
         
            -
             
     | 
| 912 | 
         
            -
                def set_input_embeddings(self, new_embeddings: nn.Embedding) -> None:
         
     | 
| 913 | 
         
            -
                    self.wte = new_embeddings
         
     | 
| 914 | 
         
            -
             
     | 
| 915 | 
         
            -
                def forward(
         
     | 
| 916 | 
         
            -
                    self,
         
     | 
| 917 | 
         
            -
                    input_ids: Optional[torch.Tensor] = None,
         
     | 
| 918 | 
         
            -
                    past_key_values: Optional[DynamicCache] = None,
         
     | 
| 919 | 
         
            -
                    attention_mask: Optional[torch.Tensor] = None,
         
     | 
| 920 | 
         
            -
                    token_type_ids: Optional[torch.Tensor] = None,
         
     | 
| 921 | 
         
            -
                    position_ids: Optional[torch.Tensor] = None,
         
     | 
| 922 | 
         
            -
                    inputs_embeds: Optional[torch.Tensor] = None,
         
     | 
| 923 | 
         
            -
                    use_cache: Optional[bool] = None,
         
     | 
| 924 | 
         
            -
                    output_hidden_states: Optional[bool] = None,
         
     | 
| 925 | 
         
            -
                    return_dict: Optional[bool] = None,
         
     | 
| 926 | 
         
            -
                ) -> Union[Tuple, BaseModelOutputWithPastAndCrossAttentions]:
         
     | 
| 927 | 
         
            -
                    (
         
     | 
| 928 | 
         
            -
                        output_hidden_states,
         
     | 
| 929 | 
         
            -
                        use_cache,
         
     | 
| 930 | 
         
            -
                        return_dict,
         
     | 
| 931 | 
         
            -
                        input_shape,
         
     | 
| 932 | 
         
            -
                        hidden_states,
         
     | 
| 933 | 
         
            -
                        attention_mask,
         
     | 
| 934 | 
         
            -
                        position_ids,
         
     | 
| 935 | 
         
            -
                        rope_cos_sin,
         
     | 
| 936 | 
         
            -
                        past_key_values,
         
     | 
| 937 | 
         
            -
                    ) = self._prepare_a_bunch_of_stuff(
         
     | 
| 938 | 
         
            -
                        input_ids=input_ids,
         
     | 
| 939 | 
         
            -
                        past_key_values=past_key_values,
         
     | 
| 940 | 
         
            -
                        attention_mask=attention_mask,
         
     | 
| 941 | 
         
            -
                        token_type_ids=token_type_ids,
         
     | 
| 942 | 
         
            -
                        position_ids=position_ids,
         
     | 
| 943 | 
         
            -
                        inputs_embeds=inputs_embeds,
         
     | 
| 944 | 
         
            -
                        use_cache=use_cache,
         
     | 
| 945 | 
         
            -
                        output_hidden_states=output_hidden_states,
         
     | 
| 946 | 
         
            -
                        return_dict=return_dict,
         
     | 
| 947 | 
         
            -
                    )
         
     | 
| 948 | 
         
            -
             
     | 
| 949 | 
         
            -
                    # ==========================================================================================
         
     | 
| 950 | 
         
            -
                    # flash:
         
     | 
| 951 | 
         
            -
                    #     attention_mask -> (batch_size, key_length)
         
     | 
| 952 | 
         
            -
                    # else:
         
     | 
| 953 | 
         
            -
                    #     attention_mask -> (batch_size, 1, query_length, key_length)
         
     | 
| 954 | 
         
            -
                    # ==========================================================================================
         
     | 
| 955 | 
         
            -
             
     | 
| 956 | 
         
            -
                    output_shape = input_shape + (hidden_states.size(-1),)
         
     | 
| 957 | 
         
            -
             
     | 
| 958 | 
         
            -
                    past_key_values = DynamicCache() if use_cache and past_key_values is None else past_key_values
         
     | 
| 959 | 
         
            -
                    all_hidden_states = () if output_hidden_states else None
         
     | 
| 960 | 
         
            -
                    for block in self.h:
         
     | 
| 961 | 
         
            -
                        if output_hidden_states:
         
     | 
| 962 | 
         
            -
                            all_hidden_states += (hidden_states,)
         
     | 
| 963 | 
         
            -
             
     | 
| 964 | 
         
            -
                        hidden_states = block(
         
     | 
| 965 | 
         
            -
                            hidden_states,
         
     | 
| 966 | 
         
            -
                            past_key_values=past_key_values,
         
     | 
| 967 | 
         
            -
                            attention_mask=attention_mask,
         
     | 
| 968 | 
         
            -
                            rope_cos_sin=rope_cos_sin,
         
     | 
| 969 | 
         
            -
                        )
         
     | 
| 970 | 
         
            -
             
     | 
| 971 | 
         
            -
                    hidden_states = self.ln_f(hidden_states)
         
     | 
| 972 | 
         
            -
             
     | 
| 973 | 
         
            -
                    hidden_states = hidden_states.view(output_shape)
         
     | 
| 974 | 
         
            -
                    # Add last hidden state
         
     | 
| 975 | 
         
            -
                    if output_hidden_states:
         
     | 
| 976 | 
         
            -
                        all_hidden_states += (hidden_states,)
         
     | 
| 977 | 
         
            -
             
     | 
| 978 | 
         
            -
                    if not return_dict:
         
     | 
| 979 | 
         
            -
                        return tuple(v for v in [hidden_states, past_key_values, all_hidden_states] if v is not None)
         
     | 
| 980 | 
         
            -
             
     | 
| 981 | 
         
            -
                    return BaseModelOutputWithPastAndCrossAttentions(
         
     | 
| 982 | 
         
            -
                        last_hidden_state=hidden_states,
         
     | 
| 983 | 
         
            -
                        past_key_values=past_key_values,
         
     | 
| 984 | 
         
            -
                        hidden_states=all_hidden_states,
         
     | 
| 985 | 
         
            -
                    )
         
     | 
| 986 | 
         
            -
             
     | 
| 987 | 
         
            -
                def _get_position_ids(
         
     | 
| 988 | 
         
            -
                    self, attention_mask: torch.Tensor, past_length: int, query_length: int, key_length: int, device: torch.device
         
     | 
| 989 | 
         
            -
                ) -> torch.Tensor:
         
     | 
| 990 | 
         
            -
                    if attention_mask is not None and len(attention_mask.shape) == 2:
         
     | 
| 991 | 
         
            -
                        # create position_ids on the fly for batch generation
         
     | 
| 992 | 
         
            -
                        position_ids = attention_mask.long().cumsum(-1) - 1
         
     | 
| 993 | 
         
            -
                        position_ids.masked_fill_(attention_mask == 0, 0)
         
     | 
| 994 | 
         
            -
                        if past_length > 0:
         
     | 
| 995 | 
         
            -
                            position_ids = position_ids[:, past_length:key_length:]
         
     | 
| 996 | 
         
            -
                    else:
         
     | 
| 997 | 
         
            -
                        position_ids = torch.arange(past_length, key_length, dtype=torch.long, device=device)
         
     | 
| 998 | 
         
            -
                        position_ids = position_ids.unsqueeze(0).view(-1, query_length)
         
     | 
| 999 | 
         
            -
             
     | 
| 1000 | 
         
            -
                    return position_ids
         
     | 
| 1001 | 
         
            -
             
     | 
| 1002 | 
         
            -
                def _get_alibi_bias(
         
     | 
| 1003 | 
         
            -
                    self,
         
     | 
| 1004 | 
         
            -
                    attention_mask: torch.Tensor,
         
     | 
| 1005 | 
         
            -
                    batch_size: int,
         
     | 
| 1006 | 
         
            -
                    query_length: int,
         
     | 
| 1007 | 
         
            -
                    key_length: int,
         
     | 
| 1008 | 
         
            -
                    device: torch.device,
         
     | 
| 1009 | 
         
            -
                    dtype: torch.dtype,
         
     | 
| 1010 | 
         
            -
                ) -> torch.Tensor:
         
     | 
| 1011 | 
         
            -
                    if self.position_embedding_type != PositionEmbeddingType.alibi:
         
     | 
| 1012 | 
         
            -
                        return None
         
     | 
| 1013 | 
         
            -
             
     | 
| 1014 | 
         
            -
                    alibi_bias = self.alibi(attention_mask, batch_size, key_length, device, dtype)
         
     | 
| 1015 | 
         
            -
             
     | 
| 1016 | 
         
            -
                    # ==========================================================================================
         
     | 
| 1017 | 
         
            -
                    # alibi_bias -> (batch_size, num_heads, key_length)
         
     | 
| 1018 | 
         
            -
                    # ==========================================================================================
         
     | 
| 1019 | 
         
            -
             
     | 
| 1020 | 
         
            -
                    alibi_bias = alibi_bias.unsqueeze(2)
         
     | 
| 1021 | 
         
            -
                    if query_length != 1:
         
     | 
| 1022 | 
         
            -
                        alibi_bias = alibi_bias.expand(-1, -1, query_length, -1)
         
     | 
| 1023 | 
         
            -
             
     | 
| 1024 | 
         
            -
                    # ==========================================================================================
         
     | 
| 1025 | 
         
            -
                    # alibi_bias -> (batch_size, num_heads, query_length, key_length)
         
     | 
| 1026 | 
         
            -
                    # ==========================================================================================
         
     | 
| 1027 | 
         
            -
             
     | 
| 1028 | 
         
            -
                    return alibi_bias
         
     | 
| 1029 | 
         
            -
             
     | 
| 1030 | 
         
            -
                def _get_rope_cos_sin(
         
     | 
| 1031 | 
         
            -
                    self, key_length: int, position_ids: torch.Tensor, dtype: torch.dtype, device: torch.device
         
     | 
| 1032 | 
         
            -
                ) -> Optional[Tuple[torch.Tensor, torch.Tensor]]:
         
     | 
| 1033 | 
         
            -
                    if self.position_embedding_type == PositionEmbeddingType.rope:
         
     | 
| 1034 | 
         
            -
                        cos, sin = self.rope(key_length, dtype=dtype, device=device)
         
     | 
| 1035 | 
         
            -
                        cos = cos[position_ids].unsqueeze(1)
         
     | 
| 1036 | 
         
            -
                        sin = sin[position_ids].unsqueeze(1)
         
     | 
| 1037 | 
         
            -
                        return cos, sin
         
     | 
| 1038 | 
         
            -
             
     | 
| 1039 | 
         
            -
                def _prepare_causal_attention_mask(
         
     | 
| 1040 | 
         
            -
                    self, attention_mask: torch.Tensor, batch_size: int, query_length: int, key_length: int, device: torch.device
         
     | 
| 1041 | 
         
            -
                ) -> torch.Tensor:
         
     | 
| 1042 | 
         
            -
                    past_length = key_length - query_length
         
     | 
| 1043 | 
         
            -
             
     | 
| 1044 | 
         
            -
                    # ==========================================================================================
         
     | 
| 1045 | 
         
            -
                    # attention_mask -> (batch_size, key_length)
         
     | 
| 1046 | 
         
            -
                    # ==========================================================================================
         
     | 
| 1047 | 
         
            -
             
     | 
| 1048 | 
         
            -
                    if query_length > 1:
         
     | 
| 1049 | 
         
            -
                        # (query_length, key_length)
         
     | 
| 1050 | 
         
            -
                        causal_mask = torch.empty((query_length, key_length), dtype=torch.bool, device=device)
         
     | 
| 1051 | 
         
            -
                        causal_mask[:, past_length:] = torch.tril(
         
     | 
| 1052 | 
         
            -
                            torch.ones(query_length, query_length, dtype=torch.bool, device=device)
         
     | 
| 1053 | 
         
            -
                        )
         
     | 
| 1054 | 
         
            -
             
     | 
| 1055 | 
         
            -
                        if past_length > 0:
         
     | 
| 1056 | 
         
            -
                            causal_mask[:, :past_length] = True
         
     | 
| 1057 | 
         
            -
             
     | 
| 1058 | 
         
            -
                        # (query_length, key_length) -> (1, query_length, key_length)
         
     | 
| 1059 | 
         
            -
                        causal_mask = causal_mask.unsqueeze(0)
         
     | 
| 1060 | 
         
            -
             
     | 
| 1061 | 
         
            -
                        if attention_mask is None:
         
     | 
| 1062 | 
         
            -
                            # (1, query_length, key_length) -> (batch_size, query_length, key_length)
         
     | 
| 1063 | 
         
            -
                            causal_mask = causal_mask.expand(batch_size, -1, -1)
         
     | 
| 1064 | 
         
            -
                        else:
         
     | 
| 1065 | 
         
            -
                            # (1, query_length, key_length) & (batch_size, 1, key_length) -> (batch_size, query_length, key_length)
         
     | 
| 1066 | 
         
            -
                            causal_mask = causal_mask & attention_mask.unsqueeze(1).to(torch.bool)
         
     | 
| 1067 | 
         
            -
                    else:
         
     | 
| 1068 | 
         
            -
                        if attention_mask is None:
         
     | 
| 1069 | 
         
            -
                            # (batch_size, query_length, key_length)
         
     | 
| 1070 | 
         
            -
                            causal_mask = torch.ones(batch_size, query_length, key_length, dtype=torch.bool, device=device)
         
     | 
| 1071 | 
         
            -
                        else:
         
     | 
| 1072 | 
         
            -
                            # (batch_size, query_length, key_length)
         
     | 
| 1073 | 
         
            -
                            causal_mask = attention_mask.unsqueeze(1).to(dtype=torch.bool, device=device)
         
     | 
| 1074 | 
         
            -
             
     | 
| 1075 | 
         
            -
                    # ==========================================================================================
         
     | 
| 1076 | 
         
            -
                    # attention_mask -> (batch_size, query_length, key_length)
         
     | 
| 1077 | 
         
            -
                    # ==========================================================================================
         
     | 
| 1078 | 
         
            -
             
     | 
| 1079 | 
         
            -
                    causal_mask = causal_mask.unsqueeze(1)
         
     | 
| 1080 | 
         
            -
             
     | 
| 1081 | 
         
            -
                    # ==========================================================================================
         
     | 
| 1082 | 
         
            -
                    # attention_mask -> (batch_size, 1, query_length, key_length)
         
     | 
| 1083 | 
         
            -
                    # ==========================================================================================
         
     | 
| 1084 | 
         
            -
             
     | 
| 1085 | 
         
            -
                    return causal_mask
         
     | 
| 1086 | 
         
            -
             
     | 
| 1087 | 
         
            -
                def _get_initial_hidden_state(
         
     | 
| 1088 | 
         
            -
                    self,
         
     | 
| 1089 | 
         
            -
                    input_ids: torch.Tensor,
         
     | 
| 1090 | 
         
            -
                    inputs_embeds: torch.Tensor,
         
     | 
| 1091 | 
         
            -
                    position_ids: torch.Tensor,
         
     | 
| 1092 | 
         
            -
                    token_type_ids: torch.Tensor,
         
     | 
| 1093 | 
         
            -
                ) -> torch.Tensor:
         
     | 
| 1094 | 
         
            -
                    if inputs_embeds is None:
         
     | 
| 1095 | 
         
            -
                        inputs_embeds = self.wte(input_ids)
         
     | 
| 1096 | 
         
            -
             
     | 
| 1097 | 
         
            -
                    if self.position_embedding_type == PositionEmbeddingType.learned_absolute:
         
     | 
| 1098 | 
         
            -
                        inputs_embeds = inputs_embeds + self.wpe(position_ids)
         
     | 
| 1099 | 
         
            -
             
     | 
| 1100 | 
         
            -
                    if token_type_ids is not None:
         
     | 
| 1101 | 
         
            -
                        inputs_embeds = inputs_embeds + self.wte(token_type_ids)
         
     | 
| 1102 | 
         
            -
             
     | 
| 1103 | 
         
            -
                    inputs_embeds = self.drop(inputs_embeds)
         
     | 
| 1104 | 
         
            -
             
     | 
| 1105 | 
         
            -
                    return inputs_embeds
         
     | 
| 1106 | 
         
            -
             
     | 
| 1107 | 
         
            -
                def _prepare_a_bunch_of_stuff(
         
     | 
| 1108 | 
         
            -
                    self,
         
     | 
| 1109 | 
         
            -
                    input_ids: torch.Tensor,
         
     | 
| 1110 | 
         
            -
                    past_key_values: DynamicCache,
         
     | 
| 1111 | 
         
            -
                    attention_mask: torch.Tensor,
         
     | 
| 1112 | 
         
            -
                    token_type_ids: torch.Tensor,
         
     | 
| 1113 | 
         
            -
                    position_ids: torch.Tensor,
         
     | 
| 1114 | 
         
            -
                    inputs_embeds: torch.Tensor,
         
     | 
| 1115 | 
         
            -
                    use_cache: bool,
         
     | 
| 1116 | 
         
            -
                    output_hidden_states: bool,
         
     | 
| 1117 | 
         
            -
                    return_dict: bool,
         
     | 
| 1118 | 
         
            -
                ) -> Tuple[
         
     | 
| 1119 | 
         
            -
                    bool,
         
     | 
| 1120 | 
         
            -
                    bool,
         
     | 
| 1121 | 
         
            -
                    bool,
         
     | 
| 1122 | 
         
            -
                    torch.Size,
         
     | 
| 1123 | 
         
            -
                    torch.Tensor,
         
     | 
| 1124 | 
         
            -
                    torch.Tensor,
         
     | 
| 1125 | 
         
            -
                    torch.Tensor,
         
     | 
| 1126 | 
         
            -
                    Optional[Tuple[torch.Tensor, torch.Tensor]],
         
     | 
| 1127 | 
         
            -
                    DynamicCache,
         
     | 
| 1128 | 
         
            -
                ]:
         
     | 
| 1129 | 
         
            -
                    output_hidden_states = (
         
     | 
| 1130 | 
         
            -
                        output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
         
     | 
| 1131 | 
         
            -
                    )
         
     | 
| 1132 | 
         
            -
             
     | 
| 1133 | 
         
            -
                    use_cache = self.config.use_cache if use_cache is None else use_cache
         
     | 
| 1134 | 
         
            -
                    return_dict = return_dict if return_dict is not None else self.config.use_return_dict
         
     | 
| 1135 | 
         
            -
             
     | 
| 1136 | 
         
            -
                    if input_ids is not None and inputs_embeds is not None:
         
     | 
| 1137 | 
         
            -
                        raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
         
     | 
| 1138 | 
         
            -
                    elif input_ids is not None:
         
     | 
| 1139 | 
         
            -
                        input_shape = input_ids.size()
         
     | 
| 1140 | 
         
            -
                    elif inputs_embeds is not None:
         
     | 
| 1141 | 
         
            -
                        # TODO special handling for padding free transformer needed here if we support inputs_embeds argument
         
     | 
| 1142 | 
         
            -
                        input_shape = inputs_embeds.size()[:-1]
         
     | 
| 1143 | 
         
            -
                    else:
         
     | 
| 1144 | 
         
            -
                        raise ValueError("You have to specify either input_ids or inputs_embeds")
         
     | 
| 1145 | 
         
            -
             
     | 
| 1146 | 
         
            -
                    batch_size = input_shape[0]
         
     | 
| 1147 | 
         
            -
                    device = input_ids.device if input_ids is not None else inputs_embeds.device
         
     | 
| 1148 | 
         
            -
             
     | 
| 1149 | 
         
            -
                    if self.position_embedding_type == PositionEmbeddingType.alibi:
         
     | 
| 1150 | 
         
            -
                        if position_ids is not None:
         
     | 
| 1151 | 
         
            -
                            warnings.warn("`position_ids` have no functionality with Alibi.", FutureWarning)
         
     | 
| 1152 | 
         
            -
             
     | 
| 1153 | 
         
            -
                    if token_type_ids is not None:
         
     | 
| 1154 | 
         
            -
                        token_type_ids = token_type_ids.view(-1, input_shape[-1])
         
     | 
| 1155 | 
         
            -
             
     | 
| 1156 | 
         
            -
                    # ==========================================================================================
         
     | 
| 1157 | 
         
            -
                    # input_ids -> (batch_size, query_length)
         
     | 
| 1158 | 
         
            -
                    # attention_mask -> None or (batch_size, key_length)
         
     | 
| 1159 | 
         
            -
                    # position_ids -> None or (batch_size, key_length)
         
     | 
| 1160 | 
         
            -
                    # ==========================================================================================
         
     | 
| 1161 | 
         
            -
             
     | 
| 1162 | 
         
            -
                    past_length = 0 if past_key_values is None else past_key_values.get_seq_length()
         
     | 
| 1163 | 
         
            -
                    query_length = input_shape[-1]
         
     | 
| 1164 | 
         
            -
                    key_length = past_length + query_length
         
     | 
| 1165 | 
         
            -
             
     | 
| 1166 | 
         
            -
                    if position_ids is None:
         
     | 
| 1167 | 
         
            -
                        position_ids = self._get_position_ids(attention_mask, past_length, query_length, key_length, device)
         
     | 
| 1168 | 
         
            -
             
     | 
| 1169 | 
         
            -
                    # ==========================================================================================
         
     | 
| 1170 | 
         
            -
                    # input_ids -> (batch_size, query_length)
         
     | 
| 1171 | 
         
            -
                    # attention_mask -> None or (batch_size, key_length)
         
     | 
| 1172 | 
         
            -
                    # position_ids -> (batch_size, query_length)
         
     | 
| 1173 | 
         
            -
                    # ==========================================================================================
         
     | 
| 1174 | 
         
            -
             
     | 
| 1175 | 
         
            -
                    hidden_states = self._get_initial_hidden_state(input_ids, inputs_embeds, position_ids, token_type_ids)
         
     | 
| 1176 | 
         
            -
             
     | 
| 1177 | 
         
            -
                    # ==========================================================================================
         
     | 
| 1178 | 
         
            -
                    # hidden_states -> (batch_size, query_length, num_heads * head_dim)
         
     | 
| 1179 | 
         
            -
                    # ==========================================================================================
         
     | 
| 1180 | 
         
            -
             
     | 
| 1181 | 
         
            -
                    alibi_bias = self._get_alibi_bias(
         
     | 
| 1182 | 
         
            -
                        attention_mask, batch_size, query_length, key_length, device, hidden_states.dtype
         
     | 
| 1183 | 
         
            -
                    )
         
     | 
| 1184 | 
         
            -
             
     | 
| 1185 | 
         
            -
                    # ==========================================================================================
         
     | 
| 1186 | 
         
            -
                    # alibi_bias -> (batch_size, num_heads, query_length, key_length)
         
     | 
| 1187 | 
         
            -
                    # ==========================================================================================
         
     | 
| 1188 | 
         
            -
             
     | 
| 1189 | 
         
            -
                    rope_cos_sin = self._get_rope_cos_sin(
         
     | 
| 1190 | 
         
            -
                        key_length, position_ids, dtype=hidden_states.dtype, device=hidden_states.device
         
     | 
| 1191 | 
         
            -
                    )
         
     | 
| 1192 | 
         
            -
             
     | 
| 1193 | 
         
            -
                    # ==========================================================================================
         
     | 
| 1194 | 
         
            -
                    # rope_cos_sin -> 2 * (key_length, head_dim)
         
     | 
| 1195 | 
         
            -
                    # ==========================================================================================
         
     | 
| 1196 | 
         
            -
             
     | 
| 1197 | 
         
            -
                    # prepare causal mask only if not using flash attention
         
     | 
| 1198 | 
         
            -
                    if self._use_flash_attention_2:
         
     | 
| 1199 | 
         
            -
                        if attention_mask is None:
         
     | 
| 1200 | 
         
            -
                            attention_mask = torch.ones_like(input_ids)
         
     | 
| 1201 | 
         
            -
                    elif self._use_sdpa:
         
     | 
| 1202 | 
         
            -
                        # we use the causal/non-causal argument of SDPA for attention in this case
         
     | 
| 1203 | 
         
            -
                        if attention_mask is not None:
         
     | 
| 1204 | 
         
            -
                            attention_mask = self._prepare_causal_attention_mask(
         
     | 
| 1205 | 
         
            -
                                attention_mask, batch_size, query_length, key_length, device
         
     | 
| 1206 | 
         
            -
                            )
         
     | 
| 1207 | 
         
            -
             
     | 
| 1208 | 
         
            -
                            attention_mask = torch.where(
         
     | 
| 1209 | 
         
            -
                                attention_mask,
         
     | 
| 1210 | 
         
            -
                                ~attention_mask if alibi_bias is None else alibi_bias,
         
     | 
| 1211 | 
         
            -
                                self._get_mask_value(attention_mask.device, hidden_states.dtype),
         
     | 
| 1212 | 
         
            -
                            )
         
     | 
| 1213 | 
         
            -
                    else:
         
     | 
| 1214 | 
         
            -
                        attention_mask = self._prepare_causal_attention_mask(
         
     | 
| 1215 | 
         
            -
                            attention_mask, batch_size, query_length, key_length, device
         
     | 
| 1216 | 
         
            -
                        )
         
     | 
| 1217 | 
         
            -
             
     | 
| 1218 | 
         
            -
                        attention_mask = torch.where(
         
     | 
| 1219 | 
         
            -
                            attention_mask,
         
     | 
| 1220 | 
         
            -
                            ~attention_mask if alibi_bias is None else alibi_bias,
         
     | 
| 1221 | 
         
            -
                            self._get_mask_value(attention_mask.device, hidden_states.dtype),
         
     | 
| 1222 | 
         
            -
                        )
         
     | 
| 1223 | 
         
            -
             
     | 
| 1224 | 
         
            -
                    return (
         
     | 
| 1225 | 
         
            -
                        output_hidden_states,
         
     | 
| 1226 | 
         
            -
                        use_cache,
         
     | 
| 1227 | 
         
            -
                        return_dict,
         
     | 
| 1228 | 
         
            -
                        input_shape,
         
     | 
| 1229 | 
         
            -
                        hidden_states,
         
     | 
| 1230 | 
         
            -
                        attention_mask,
         
     | 
| 1231 | 
         
            -
                        position_ids,
         
     | 
| 1232 | 
         
            -
                        rope_cos_sin,
         
     | 
| 1233 | 
         
            -
                        past_key_values,
         
     | 
| 1234 | 
         
            -
                    )
         
     | 
| 1235 | 
         
            -
             
     | 
| 1236 | 
         
            -
                def _get_mask_value(self, device: torch.device, dtype: torch.dtype) -> torch.Tensor:
         
     | 
| 1237 | 
         
            -
                    # torch.where expects a tensor. We use a cache to avoid recreating it every time.
         
     | 
| 1238 | 
         
            -
                    if self.mask_value is None or self.mask_value.dtype != dtype or self.mask_value.device != device:
         
     | 
| 1239 | 
         
            -
                        self.mask_value = torch.full([], torch.finfo(torch.float16).min, dtype=dtype, device=device)
         
     | 
| 1240 | 
         
            -
                    return self.mask_value
         
     | 
| 1241 | 
         
            -
             
     | 
| 1242 | 
         
            -
             
     | 
| 1243 | 
         
            -
            class GraniteForCausalLM(GranitePreTrainedModel):
         
     | 
| 1244 | 
         
            -
                _keys_to_ignore_on_load_missing = ["lm_head.weight"]
         
     | 
| 1245 | 
         
            -
             
     | 
| 1246 | 
         
            -
                def __init__(self, config: GraniteConfig, **kwargs) -> None:
         
     | 
| 1247 | 
         
            -
                    super().__init__(config, **kwargs)
         
     | 
| 1248 | 
         
            -
                    self.transformer = GraniteModel(config, **kwargs)
         
     | 
| 1249 | 
         
            -
                    self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
         
     | 
| 1250 | 
         
            -
             
     | 
| 1251 | 
         
            -
                    # Initialize weights and apply final processing
         
     | 
| 1252 | 
         
            -
                    self.post_init()
         
     | 
| 1253 | 
         
            -
             
     | 
| 1254 | 
         
            -
                def get_input_embeddings(self) -> nn.Embedding:
         
     | 
| 1255 | 
         
            -
                    return self.transformer.wte
         
     | 
| 1256 | 
         
            -
             
     | 
| 1257 | 
         
            -
                def set_input_embeddings(self, value: nn.Embedding) -> None:
         
     | 
| 1258 | 
         
            -
                    self.transformer.wte = value
         
     | 
| 1259 | 
         
            -
             
     | 
| 1260 | 
         
            -
                def get_output_embeddings(self) -> nn.Linear:
         
     | 
| 1261 | 
         
            -
                    return self.lm_head
         
     | 
| 1262 | 
         
            -
             
     | 
| 1263 | 
         
            -
                def set_output_embeddings(self, new_embeddings: nn.Linear) -> None:
         
     | 
| 1264 | 
         
            -
                    self.lm_head = new_embeddings
         
     | 
| 1265 | 
         
            -
             
     | 
| 1266 | 
         
            -
                # FIXME typing
         
     | 
| 1267 | 
         
            -
                def prepare_inputs_for_generation(
         
     | 
| 1268 | 
         
            -
                    self,
         
     | 
| 1269 | 
         
            -
                    input_ids: torch.Tensor,
         
     | 
| 1270 | 
         
            -
                    past_key_values: Optional[DynamicCache] = None,
         
     | 
| 1271 | 
         
            -
                    inputs_embeds: Optional[torch.Tensor] = None,
         
     | 
| 1272 | 
         
            -
                    **kwargs,
         
     | 
| 1273 | 
         
            -
                ) -> dict:
         
     | 
| 1274 | 
         
            -
                    token_type_ids = kwargs.get("token_type_ids", None)
         
     | 
| 1275 | 
         
            -
                    # Omit tokens covered by past_key_values
         
     | 
| 1276 | 
         
            -
                    if past_key_values:
         
     | 
| 1277 | 
         
            -
                        past_length = past_key_values.get_seq_length()
         
     | 
| 1278 | 
         
            -
             
     | 
| 1279 | 
         
            -
                        # Some generation methods already pass only the last input ID
         
     | 
| 1280 | 
         
            -
                        if input_ids.shape[1] > past_length:
         
     | 
| 1281 | 
         
            -
                            remove_prefix_length = past_length
         
     | 
| 1282 | 
         
            -
                        else:
         
     | 
| 1283 | 
         
            -
                            # Default to old behavior: keep only final ID
         
     | 
| 1284 | 
         
            -
                            remove_prefix_length = input_ids.shape[1] - 1
         
     | 
| 1285 | 
         
            -
             
     | 
| 1286 | 
         
            -
                        input_ids = input_ids[:, remove_prefix_length:]
         
     | 
| 1287 | 
         
            -
                        if token_type_ids is not None:
         
     | 
| 1288 | 
         
            -
                            token_type_ids = token_type_ids[:, -input_ids.shape[1] :]
         
     | 
| 1289 | 
         
            -
             
     | 
| 1290 | 
         
            -
                    attention_mask = kwargs.get("attention_mask", None)
         
     | 
| 1291 | 
         
            -
                    position_ids = kwargs.get("position_ids", None)
         
     | 
| 1292 | 
         
            -
             
     | 
| 1293 | 
         
            -
                    if attention_mask is not None and position_ids is None:
         
     | 
| 1294 | 
         
            -
                        # create position_ids on the fly for batch generation
         
     | 
| 1295 | 
         
            -
                        position_ids = attention_mask.long().cumsum(-1) - 1
         
     | 
| 1296 | 
         
            -
                        position_ids.masked_fill_(attention_mask == 0, 0)
         
     | 
| 1297 | 
         
            -
                        if past_key_values:
         
     | 
| 1298 | 
         
            -
                            position_ids = position_ids[:, -input_ids.shape[1] :]
         
     | 
| 1299 | 
         
            -
                    else:
         
     | 
| 1300 | 
         
            -
                        position_ids = None
         
     | 
| 1301 | 
         
            -
             
     | 
| 1302 | 
         
            -
                    # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
         
     | 
| 1303 | 
         
            -
                    if inputs_embeds is not None and past_key_values is None:
         
     | 
| 1304 | 
         
            -
                        model_inputs = {"inputs_embeds": inputs_embeds}
         
     | 
| 1305 | 
         
            -
                    else:
         
     | 
| 1306 | 
         
            -
                        model_inputs = {"input_ids": input_ids}
         
     | 
| 1307 | 
         
            -
             
     | 
| 1308 | 
         
            -
                    model_inputs.update(
         
     | 
| 1309 | 
         
            -
                        {
         
     | 
| 1310 | 
         
            -
                            "past_key_values": past_key_values,
         
     | 
| 1311 | 
         
            -
                            "use_cache": kwargs.get("use_cache"),
         
     | 
| 1312 | 
         
            -
                            "position_ids": position_ids,
         
     | 
| 1313 | 
         
            -
                            "attention_mask": attention_mask,
         
     | 
| 1314 | 
         
            -
                            "token_type_ids": token_type_ids,
         
     | 
| 1315 | 
         
            -
                        }
         
     | 
| 1316 | 
         
            -
                    )
         
     | 
| 1317 | 
         
            -
                    return model_inputs
         
     | 
| 1318 | 
         
            -
             
     | 
| 1319 | 
         
            -
                def forward(
         
     | 
| 1320 | 
         
            -
                    self,
         
     | 
| 1321 | 
         
            -
                    input_ids: Optional[Union[torch.Tensor]] = None,
         
     | 
| 1322 | 
         
            -
                    past_key_values: Optional[DynamicCache] = None,
         
     | 
| 1323 | 
         
            -
                    attention_mask: Optional[torch.Tensor] = None,
         
     | 
| 1324 | 
         
            -
                    token_type_ids: Optional[Union[torch.Tensor]] = None,
         
     | 
| 1325 | 
         
            -
                    position_ids: Optional[Union[torch.Tensor]] = None,
         
     | 
| 1326 | 
         
            -
                    inputs_embeds: Optional[Union[torch.Tensor]] = None,
         
     | 
| 1327 | 
         
            -
                    labels: Optional[Union[torch.Tensor]] = None,
         
     | 
| 1328 | 
         
            -
                    use_cache: Optional[bool] = None,
         
     | 
| 1329 | 
         
            -
                    output_attentions: Optional[bool] = None,
         
     | 
| 1330 | 
         
            -
                    output_hidden_states: Optional[bool] = None,
         
     | 
| 1331 | 
         
            -
                    return_dict: Optional[bool] = None,
         
     | 
| 1332 | 
         
            -
                ) -> Union[Tuple, CausalLMOutputWithCrossAttentions]:
         
     | 
| 1333 | 
         
            -
                    return_dict = return_dict if return_dict is not None else self.config.use_return_dict
         
     | 
| 1334 | 
         
            -
             
     | 
| 1335 | 
         
            -
                    # ==========================================================================================
         
     | 
| 1336 | 
         
            -
                    # input_ids -> (batch_size, query_length)
         
     | 
| 1337 | 
         
            -
                    # attention_mask -> None or (batch_size, key_length)
         
     | 
| 1338 | 
         
            -
                    # position_ids -> None or (batch_size, key_length)
         
     | 
| 1339 | 
         
            -
                    # ==========================================================================================
         
     | 
| 1340 | 
         
            -
             
     | 
| 1341 | 
         
            -
                    transformer_outputs = self.transformer(
         
     | 
| 1342 | 
         
            -
                        input_ids,
         
     | 
| 1343 | 
         
            -
                        past_key_values=past_key_values,
         
     | 
| 1344 | 
         
            -
                        attention_mask=attention_mask,
         
     | 
| 1345 | 
         
            -
                        token_type_ids=token_type_ids,
         
     | 
| 1346 | 
         
            -
                        position_ids=position_ids,
         
     | 
| 1347 | 
         
            -
                        inputs_embeds=inputs_embeds,
         
     | 
| 1348 | 
         
            -
                        use_cache=use_cache,
         
     | 
| 1349 | 
         
            -
                        output_hidden_states=output_hidden_states,
         
     | 
| 1350 | 
         
            -
                        return_dict=return_dict,
         
     | 
| 1351 | 
         
            -
                    )
         
     | 
| 1352 | 
         
            -
                    hidden_states = transformer_outputs[0]
         
     | 
| 1353 | 
         
            -
             
     | 
| 1354 | 
         
            -
                    lm_logits = self.lm_head(hidden_states)
         
     | 
| 1355 | 
         
            -
             
     | 
| 1356 | 
         
            -
                    loss = None
         
     | 
| 1357 | 
         
            -
                    # Shift so that tokens < n predict n
         
     | 
| 1358 | 
         
            -
                    if labels is not None:
         
     | 
| 1359 | 
         
            -
                        shift_logits = lm_logits[..., :-1, :].contiguous()
         
     | 
| 1360 | 
         
            -
                        shift_labels = labels[..., 1:].contiguous().to(shift_logits.device)
         
     | 
| 1361 | 
         
            -
             
     | 
| 1362 | 
         
            -
                        # Flatten the tokens
         
     | 
| 1363 | 
         
            -
                        loss_fct = nn.CrossEntropyLoss()
         
     | 
| 1364 | 
         
            -
                        loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
         
     | 
| 1365 | 
         
            -
             
     | 
| 1366 | 
         
            -
                    if not return_dict:
         
     | 
| 1367 | 
         
            -
                        output = (lm_logits,) + transformer_outputs[1:]
         
     | 
| 1368 | 
         
            -
                        return ((loss,) + output) if loss is not None else output
         
     | 
| 1369 | 
         
            -
             
     | 
| 1370 | 
         
            -
                    return CausalLMOutputWithCrossAttentions(
         
     | 
| 1371 | 
         
            -
                        loss=loss,
         
     | 
| 1372 | 
         
            -
                        logits=lm_logits,
         
     | 
| 1373 | 
         
            -
                        past_key_values=transformer_outputs.past_key_values,
         
     | 
| 1374 | 
         
            -
                        hidden_states=transformer_outputs.hidden_states,
         
     | 
| 1375 | 
         
            -
                        attentions=transformer_outputs.attentions,
         
     | 
| 1376 | 
         
            -
                    )
         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         |