|  | import math | 
					
						
						|  | from dataclasses import dataclass | 
					
						
						|  | from typing import List, Optional, Tuple, Union | 
					
						
						|  |  | 
					
						
						|  | import torch | 
					
						
						|  | import torch.nn.functional as F | 
					
						
						|  | import torch.utils.checkpoint | 
					
						
						|  | from torch import einsum, nn | 
					
						
						|  |  | 
					
						
						|  | from transformers.activations import ACT2FN | 
					
						
						|  | from transformers.generation import GenerationMixin | 
					
						
						|  | from transformers.modeling_outputs import ( | 
					
						
						|  | BaseModelOutputWithPastAndCrossAttentions, | 
					
						
						|  | BaseModelOutputWithPoolingAndCrossAttentions, | 
					
						
						|  | ModelOutput, | 
					
						
						|  | ) | 
					
						
						|  | from transformers.modeling_utils import PreTrainedModel | 
					
						
						|  | from transformers.models.auto import AutoModelForCausalLM | 
					
						
						|  | from transformers.pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer | 
					
						
						|  | from transformers.utils import ( | 
					
						
						|  | add_start_docstrings, | 
					
						
						|  | add_start_docstrings_to_model_forward, | 
					
						
						|  | is_peft_available, | 
					
						
						|  | logging, | 
					
						
						|  | replace_return_docstrings, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | from .configuration_granite_speech import ( | 
					
						
						|  | GraniteSpeechConfig, | 
					
						
						|  | GraniteSpeechEncoderConfig, | 
					
						
						|  | GraniteSpeechProjectorConfig, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | logger = logging.get_logger(__name__) | 
					
						
						|  |  | 
					
						
						|  | _CONFIG_FOR_DOC = "GraniteSpeechConfig" | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | @dataclass | 
					
						
						|  | class GraniteSpeechCausalLMOutputWithPast(ModelOutput): | 
					
						
						|  | """ | 
					
						
						|  | Base class for LlavaNext causal language model (or autoregressive) outputs. | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided): | 
					
						
						|  | Language modeling loss (for next-token prediction). | 
					
						
						|  | logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`): | 
					
						
						|  | Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). | 
					
						
						|  | past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): | 
					
						
						|  | Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape | 
					
						
						|  | `(batch_size, num_heads, sequence_length, embed_size_per_head)`) | 
					
						
						|  |  | 
					
						
						|  | Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see | 
					
						
						|  | `past_key_values` input) to speed up sequential decoding. | 
					
						
						|  | hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): | 
					
						
						|  | Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + | 
					
						
						|  | one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. | 
					
						
						|  |  | 
					
						
						|  | Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. | 
					
						
						|  | attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): | 
					
						
						|  | Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, | 
					
						
						|  | sequence_length)`. | 
					
						
						|  |  | 
					
						
						|  | Attentions weights after the attention softmax, used to compute the weighted average in the self-attention | 
					
						
						|  | heads. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | loss: Optional[torch.FloatTensor] = None | 
					
						
						|  | logits: torch.FloatTensor = None | 
					
						
						|  | past_key_values: Optional[List[torch.FloatTensor]] = None | 
					
						
						|  | hidden_states: Optional[Tuple[torch.FloatTensor]] = None | 
					
						
						|  | attentions: Optional[Tuple[torch.FloatTensor]] = None | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class GraniteSpeechQFormerMultiHeadAttention(nn.Module): | 
					
						
						|  | def __init__(self, config, is_cross_attention=False): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.config = config | 
					
						
						|  | if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"): | 
					
						
						|  | raise ValueError( | 
					
						
						|  | "The hidden size (%d) is not a multiple of the number of attention heads (%d)" | 
					
						
						|  | % (config.hidden_size, config.num_attention_heads) | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | self.num_attention_heads = config.num_attention_heads | 
					
						
						|  | self.attention_head_size = int(config.hidden_size / config.num_attention_heads) | 
					
						
						|  | self.all_head_size = self.num_attention_heads * self.attention_head_size | 
					
						
						|  |  | 
					
						
						|  | self.query = nn.Linear(config.hidden_size, self.all_head_size) | 
					
						
						|  | if is_cross_attention: | 
					
						
						|  | self.key = nn.Linear(config.encoder_hidden_size, self.all_head_size) | 
					
						
						|  | self.value = nn.Linear(config.encoder_hidden_size, self.all_head_size) | 
					
						
						|  | else: | 
					
						
						|  | self.key = nn.Linear(config.hidden_size, self.all_head_size) | 
					
						
						|  | self.value = nn.Linear(config.hidden_size, self.all_head_size) | 
					
						
						|  |  | 
					
						
						|  | self.dropout = nn.Dropout(config.attention_probs_dropout_prob) | 
					
						
						|  | self.position_embedding_type = getattr(config, "position_embedding_type", "absolute") | 
					
						
						|  | if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query": | 
					
						
						|  | self.max_position_embeddings = config.max_position_embeddings | 
					
						
						|  | self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size) | 
					
						
						|  | self.save_attention = False | 
					
						
						|  |  | 
					
						
						|  | def save_attn_gradients(self, attn_gradients): | 
					
						
						|  | self.attn_gradients = attn_gradients | 
					
						
						|  |  | 
					
						
						|  | def get_attn_gradients(self): | 
					
						
						|  | return self.attn_gradients | 
					
						
						|  |  | 
					
						
						|  | def save_attention_map(self, attention_map): | 
					
						
						|  | self.attention_map = attention_map | 
					
						
						|  |  | 
					
						
						|  | def get_attention_map(self): | 
					
						
						|  | return self.attention_map | 
					
						
						|  |  | 
					
						
						|  | def transpose_for_scores(self, x): | 
					
						
						|  | new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) | 
					
						
						|  | x = x.view(*new_x_shape) | 
					
						
						|  | return x.permute(0, 2, 1, 3) | 
					
						
						|  |  | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | hidden_states, | 
					
						
						|  | attention_mask=None, | 
					
						
						|  | head_mask=None, | 
					
						
						|  | encoder_hidden_states=None, | 
					
						
						|  | encoder_attention_mask=None, | 
					
						
						|  | past_key_value=None, | 
					
						
						|  | output_attentions=False, | 
					
						
						|  | ): | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | is_cross_attention = encoder_hidden_states is not None | 
					
						
						|  |  | 
					
						
						|  | if is_cross_attention: | 
					
						
						|  | key_layer = self.transpose_for_scores(self.key(encoder_hidden_states)) | 
					
						
						|  | value_layer = self.transpose_for_scores(self.value(encoder_hidden_states)) | 
					
						
						|  | attention_mask = encoder_attention_mask | 
					
						
						|  | elif past_key_value is not None: | 
					
						
						|  | key_layer = self.transpose_for_scores(self.key(hidden_states)) | 
					
						
						|  | value_layer = self.transpose_for_scores(self.value(hidden_states)) | 
					
						
						|  | key_layer = torch.cat([past_key_value[0], key_layer], dim=2) | 
					
						
						|  | value_layer = torch.cat([past_key_value[1], value_layer], dim=2) | 
					
						
						|  | else: | 
					
						
						|  | key_layer = self.transpose_for_scores(self.key(hidden_states)) | 
					
						
						|  | value_layer = self.transpose_for_scores(self.value(hidden_states)) | 
					
						
						|  |  | 
					
						
						|  | mixed_query_layer = self.query(hidden_states) | 
					
						
						|  |  | 
					
						
						|  | query_layer = self.transpose_for_scores(mixed_query_layer) | 
					
						
						|  |  | 
					
						
						|  | past_key_value = (key_layer, value_layer) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) | 
					
						
						|  |  | 
					
						
						|  | if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query": | 
					
						
						|  | seq_length = hidden_states.size()[1] | 
					
						
						|  | position_ids_l = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(-1, 1) | 
					
						
						|  | position_ids_r = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(1, -1) | 
					
						
						|  | distance = position_ids_l - position_ids_r | 
					
						
						|  | positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1) | 
					
						
						|  | positional_embedding = positional_embedding.to(dtype=query_layer.dtype) | 
					
						
						|  |  | 
					
						
						|  | if self.position_embedding_type == "relative_key": | 
					
						
						|  | relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding) | 
					
						
						|  | attention_scores = attention_scores + relative_position_scores | 
					
						
						|  | elif self.position_embedding_type == "relative_key_query": | 
					
						
						|  | relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding) | 
					
						
						|  | relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding) | 
					
						
						|  | attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key | 
					
						
						|  |  | 
					
						
						|  | attention_scores = attention_scores / math.sqrt(self.attention_head_size) | 
					
						
						|  |  | 
					
						
						|  | if attention_mask is not None: | 
					
						
						|  |  | 
					
						
						|  | attention_scores = attention_scores + attention_mask | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | attention_probs = nn.Softmax(dim=-1)(attention_scores) | 
					
						
						|  |  | 
					
						
						|  | if is_cross_attention and self.save_attention: | 
					
						
						|  | self.save_attention_map(attention_probs) | 
					
						
						|  | attention_probs.register_hook(self.save_attn_gradients) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | attention_probs_dropped = self.dropout(attention_probs) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if head_mask is not None: | 
					
						
						|  | attention_probs_dropped = attention_probs_dropped * head_mask | 
					
						
						|  |  | 
					
						
						|  | context_layer = torch.matmul(attention_probs_dropped, value_layer) | 
					
						
						|  |  | 
					
						
						|  | context_layer = context_layer.permute(0, 2, 1, 3).contiguous() | 
					
						
						|  | new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) | 
					
						
						|  | context_layer = context_layer.view(*new_context_layer_shape) | 
					
						
						|  |  | 
					
						
						|  | outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) | 
					
						
						|  |  | 
					
						
						|  | outputs = outputs + (past_key_value,) | 
					
						
						|  | return outputs | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class GraniteSpeechQFormerSelfOutput(nn.Module): | 
					
						
						|  | def __init__(self, config): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.dense = nn.Linear(config.hidden_size, config.hidden_size) | 
					
						
						|  | self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) | 
					
						
						|  | self.dropout = nn.Dropout(config.hidden_dropout_prob) | 
					
						
						|  |  | 
					
						
						|  | def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: | 
					
						
						|  | hidden_states = self.dense(hidden_states) | 
					
						
						|  | hidden_states = self.dropout(hidden_states) | 
					
						
						|  | hidden_states = self.LayerNorm(hidden_states + input_tensor) | 
					
						
						|  | return hidden_states | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class GraniteSpeechQFormerAttention(nn.Module): | 
					
						
						|  | def __init__(self, config, is_cross_attention=False): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.attention = GraniteSpeechQFormerMultiHeadAttention(config, is_cross_attention) | 
					
						
						|  | self.output = GraniteSpeechQFormerSelfOutput(config) | 
					
						
						|  | self.pruned_heads = set() | 
					
						
						|  |  | 
					
						
						|  | def prune_heads(self, heads): | 
					
						
						|  | if len(heads) == 0: | 
					
						
						|  | return | 
					
						
						|  | heads, index = find_pruneable_heads_and_indices( | 
					
						
						|  | heads, self.attention.num_attention_heads, self.attention.attention_head_size, self.pruned_heads | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.attention.query = prune_linear_layer(self.attention.query, index) | 
					
						
						|  | self.attention.key = prune_linear_layer(self.attention.key, index) | 
					
						
						|  | self.attention.value = prune_linear_layer(self.attention.value, index) | 
					
						
						|  | self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.attention.num_attention_heads = self.attention.num_attention_heads - len(heads) | 
					
						
						|  | self.attention.all_head_size = self.attention.attention_head_size * self.attention.num_attention_heads | 
					
						
						|  | self.pruned_heads = self.pruned_heads.union(heads) | 
					
						
						|  |  | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | hidden_states: torch.Tensor, | 
					
						
						|  | attention_mask: Optional[torch.FloatTensor] = None, | 
					
						
						|  | head_mask: Optional[torch.FloatTensor] = None, | 
					
						
						|  | encoder_hidden_states: Optional[torch.FloatTensor] = None, | 
					
						
						|  | encoder_attention_mask: Optional[torch.FloatTensor] = None, | 
					
						
						|  | past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, | 
					
						
						|  | output_attentions: Optional[bool] = False, | 
					
						
						|  | ) -> Tuple[torch.Tensor]: | 
					
						
						|  | self_outputs = self.attention( | 
					
						
						|  | hidden_states, | 
					
						
						|  | attention_mask, | 
					
						
						|  | head_mask, | 
					
						
						|  | encoder_hidden_states, | 
					
						
						|  | encoder_attention_mask, | 
					
						
						|  | past_key_value, | 
					
						
						|  | output_attentions, | 
					
						
						|  | ) | 
					
						
						|  | attention_output = self.output(self_outputs[0], hidden_states) | 
					
						
						|  | outputs = (attention_output,) + self_outputs[1:] | 
					
						
						|  | return outputs | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class GraniteSpeechQFormerIntermediate(nn.Module): | 
					
						
						|  | def __init__(self, config): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.dense = nn.Linear(config.hidden_size, config.intermediate_size) | 
					
						
						|  | if isinstance(config.hidden_act, str): | 
					
						
						|  | self.intermediate_act_fn = ACT2FN[config.hidden_act] | 
					
						
						|  | else: | 
					
						
						|  | self.intermediate_act_fn = config.hidden_act | 
					
						
						|  |  | 
					
						
						|  | def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: | 
					
						
						|  | hidden_states = self.dense(hidden_states) | 
					
						
						|  | hidden_states = self.intermediate_act_fn(hidden_states) | 
					
						
						|  | return hidden_states | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class GraniteSpeechQFormerOutput(nn.Module): | 
					
						
						|  | def __init__(self, config): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.dense = nn.Linear(config.intermediate_size, config.hidden_size) | 
					
						
						|  | self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) | 
					
						
						|  | self.dropout = nn.Dropout(config.hidden_dropout_prob) | 
					
						
						|  |  | 
					
						
						|  | def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: | 
					
						
						|  | hidden_states = self.dense(hidden_states) | 
					
						
						|  | hidden_states = self.dropout(hidden_states) | 
					
						
						|  | hidden_states = self.LayerNorm(hidden_states + input_tensor) | 
					
						
						|  | return hidden_states | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class GraniteSpeechQFormerLayer(nn.Module): | 
					
						
						|  | def __init__(self, config, layer_idx): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.chunk_size_feed_forward = config.chunk_size_feed_forward | 
					
						
						|  | self.seq_len_dim = 1 | 
					
						
						|  | self.attention = GraniteSpeechQFormerAttention(config) | 
					
						
						|  |  | 
					
						
						|  | self.layer_idx = layer_idx | 
					
						
						|  |  | 
					
						
						|  | if layer_idx % config.cross_attention_frequency == 0: | 
					
						
						|  | self.crossattention = GraniteSpeechQFormerAttention(config, is_cross_attention=True) | 
					
						
						|  | self.has_cross_attention = True | 
					
						
						|  | else: | 
					
						
						|  | self.has_cross_attention = False | 
					
						
						|  |  | 
					
						
						|  | if config.use_qformer_text_input: | 
					
						
						|  | self.intermediate = GraniteSpeechQFormerIntermediate(config) | 
					
						
						|  | self.output = GraniteSpeechQFormerOutput(config) | 
					
						
						|  |  | 
					
						
						|  | self.intermediate_query = GraniteSpeechQFormerIntermediate(config) | 
					
						
						|  | self.output_query = GraniteSpeechQFormerOutput(config) | 
					
						
						|  |  | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | hidden_states, | 
					
						
						|  | attention_mask=None, | 
					
						
						|  | head_mask=None, | 
					
						
						|  | encoder_hidden_states=None, | 
					
						
						|  | encoder_attention_mask=None, | 
					
						
						|  | past_key_value=None, | 
					
						
						|  | output_attentions=False, | 
					
						
						|  | query_length=0, | 
					
						
						|  | ): | 
					
						
						|  |  | 
					
						
						|  | self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None | 
					
						
						|  | self_attention_outputs = self.attention( | 
					
						
						|  | hidden_states, | 
					
						
						|  | attention_mask, | 
					
						
						|  | head_mask, | 
					
						
						|  | output_attentions=output_attentions, | 
					
						
						|  | past_key_value=self_attn_past_key_value, | 
					
						
						|  | ) | 
					
						
						|  | attention_output = self_attention_outputs[0] | 
					
						
						|  | outputs = self_attention_outputs[1:-1] | 
					
						
						|  |  | 
					
						
						|  | present_key_value = self_attention_outputs[-1] | 
					
						
						|  |  | 
					
						
						|  | if query_length > 0: | 
					
						
						|  | query_attention_output = attention_output[:, :query_length, :] | 
					
						
						|  |  | 
					
						
						|  | if self.has_cross_attention: | 
					
						
						|  | if encoder_hidden_states is None: | 
					
						
						|  | raise ValueError("encoder_hidden_states must be given for cross-attention layers") | 
					
						
						|  | cross_attention_outputs = self.crossattention( | 
					
						
						|  | query_attention_output, | 
					
						
						|  | attention_mask, | 
					
						
						|  | head_mask, | 
					
						
						|  | encoder_hidden_states, | 
					
						
						|  | encoder_attention_mask, | 
					
						
						|  | output_attentions=output_attentions, | 
					
						
						|  | ) | 
					
						
						|  | query_attention_output = cross_attention_outputs[0] | 
					
						
						|  |  | 
					
						
						|  | outputs = outputs + cross_attention_outputs[1:-1] | 
					
						
						|  |  | 
					
						
						|  | layer_output = apply_chunking_to_forward( | 
					
						
						|  | self.feed_forward_chunk_query, | 
					
						
						|  | self.chunk_size_feed_forward, | 
					
						
						|  | self.seq_len_dim, | 
					
						
						|  | query_attention_output, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if attention_output.shape[1] > query_length: | 
					
						
						|  | layer_output_text = apply_chunking_to_forward( | 
					
						
						|  | self.feed_forward_chunk, | 
					
						
						|  | self.chunk_size_feed_forward, | 
					
						
						|  | self.seq_len_dim, | 
					
						
						|  | attention_output[:, query_length:, :], | 
					
						
						|  | ) | 
					
						
						|  | layer_output = torch.cat([layer_output, layer_output_text], dim=1) | 
					
						
						|  | else: | 
					
						
						|  | layer_output = apply_chunking_to_forward( | 
					
						
						|  | self.feed_forward_chunk, | 
					
						
						|  | self.chunk_size_feed_forward, | 
					
						
						|  | self.seq_len_dim, | 
					
						
						|  | attention_output, | 
					
						
						|  | ) | 
					
						
						|  | outputs = (layer_output,) + outputs | 
					
						
						|  |  | 
					
						
						|  | outputs = outputs + (present_key_value,) | 
					
						
						|  |  | 
					
						
						|  | return outputs | 
					
						
						|  |  | 
					
						
						|  | def feed_forward_chunk(self, attention_output): | 
					
						
						|  | intermediate_output = self.intermediate(attention_output) | 
					
						
						|  | layer_output = self.output(intermediate_output, attention_output) | 
					
						
						|  | return layer_output | 
					
						
						|  |  | 
					
						
						|  | def feed_forward_chunk_query(self, attention_output): | 
					
						
						|  | intermediate_output = self.intermediate_query(attention_output) | 
					
						
						|  | layer_output = self.output_query(intermediate_output, attention_output) | 
					
						
						|  | return layer_output | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class GraniteSpeechQFormerEncoder(nn.Module): | 
					
						
						|  | def __init__(self, config): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.config = config | 
					
						
						|  | self.layer = nn.ModuleList( | 
					
						
						|  | [GraniteSpeechQFormerLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] | 
					
						
						|  | ) | 
					
						
						|  | self.gradient_checkpointing = False | 
					
						
						|  |  | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | hidden_states, | 
					
						
						|  | attention_mask=None, | 
					
						
						|  | head_mask=None, | 
					
						
						|  | encoder_hidden_states=None, | 
					
						
						|  | encoder_attention_mask=None, | 
					
						
						|  | past_key_values=None, | 
					
						
						|  | use_cache=None, | 
					
						
						|  | output_attentions=False, | 
					
						
						|  | output_hidden_states=False, | 
					
						
						|  | return_dict=True, | 
					
						
						|  | query_length=0, | 
					
						
						|  | ): | 
					
						
						|  | all_hidden_states = () if output_hidden_states else None | 
					
						
						|  | all_self_attentions = () if output_attentions else None | 
					
						
						|  | all_cross_attentions = () if output_attentions else None | 
					
						
						|  |  | 
					
						
						|  | next_decoder_cache = () if use_cache else None | 
					
						
						|  |  | 
					
						
						|  | for i in range(self.config.num_hidden_layers): | 
					
						
						|  | layer_module = self.layer[i] | 
					
						
						|  | if output_hidden_states: | 
					
						
						|  | all_hidden_states = all_hidden_states + (hidden_states,) | 
					
						
						|  |  | 
					
						
						|  | layer_head_mask = head_mask[i] if head_mask is not None else None | 
					
						
						|  | past_key_value = past_key_values[i] if past_key_values is not None else None | 
					
						
						|  |  | 
					
						
						|  | if getattr(self.config, "gradient_checkpointing", False) and self.training: | 
					
						
						|  | if use_cache: | 
					
						
						|  | logger.warning( | 
					
						
						|  | "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." | 
					
						
						|  | ) | 
					
						
						|  | use_cache = False | 
					
						
						|  | layer_outputs = self._gradient_checkpointing_func( | 
					
						
						|  | layer_module.__call__, | 
					
						
						|  | hidden_states, | 
					
						
						|  | attention_mask, | 
					
						
						|  | layer_head_mask, | 
					
						
						|  | encoder_hidden_states, | 
					
						
						|  | encoder_attention_mask, | 
					
						
						|  | ) | 
					
						
						|  | else: | 
					
						
						|  | layer_outputs = layer_module( | 
					
						
						|  | hidden_states, | 
					
						
						|  | attention_mask, | 
					
						
						|  | layer_head_mask, | 
					
						
						|  | encoder_hidden_states, | 
					
						
						|  | encoder_attention_mask, | 
					
						
						|  | past_key_value, | 
					
						
						|  | output_attentions, | 
					
						
						|  | query_length, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | hidden_states = layer_outputs[0] | 
					
						
						|  | if use_cache: | 
					
						
						|  | next_decoder_cache += (layer_outputs[-1],) | 
					
						
						|  | if output_attentions: | 
					
						
						|  | all_self_attentions = all_self_attentions + (layer_outputs[1],) | 
					
						
						|  | if layer_module.has_cross_attention: | 
					
						
						|  | all_cross_attentions = all_cross_attentions + (layer_outputs[2],) | 
					
						
						|  |  | 
					
						
						|  | if output_hidden_states: | 
					
						
						|  | all_hidden_states = all_hidden_states + (hidden_states,) | 
					
						
						|  |  | 
					
						
						|  | if not return_dict: | 
					
						
						|  | return tuple( | 
					
						
						|  | v | 
					
						
						|  | for v in [ | 
					
						
						|  | hidden_states, | 
					
						
						|  | next_decoder_cache, | 
					
						
						|  | all_hidden_states, | 
					
						
						|  | all_self_attentions, | 
					
						
						|  | all_cross_attentions, | 
					
						
						|  | ] | 
					
						
						|  | if v is not None | 
					
						
						|  | ) | 
					
						
						|  | return BaseModelOutputWithPastAndCrossAttentions( | 
					
						
						|  | last_hidden_state=hidden_states, | 
					
						
						|  | past_key_values=next_decoder_cache, | 
					
						
						|  | hidden_states=all_hidden_states, | 
					
						
						|  | attentions=all_self_attentions, | 
					
						
						|  | cross_attentions=all_cross_attentions, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class GraniteSpeechEncoderProjectorPreTrainedModel(PreTrainedModel): | 
					
						
						|  | """ | 
					
						
						|  | An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained | 
					
						
						|  | models. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | config_class = GraniteSpeechProjectorConfig | 
					
						
						|  | base_model_prefix = "qformer" | 
					
						
						|  | supports_gradient_checkpointing = True | 
					
						
						|  |  | 
					
						
						|  | _no_split_modules = [ | 
					
						
						|  | "GraniteSpeechQFormerMultiHeadAttention", | 
					
						
						|  | "T5Block", | 
					
						
						|  | "OPTDecoderLayer", | 
					
						
						|  | ] | 
					
						
						|  | _skip_keys_device_placement = "past_key_values" | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def _init_weights(self, module): | 
					
						
						|  | """Initialize the weights""" | 
					
						
						|  | factor = self.config.initializer_range | 
					
						
						|  | if isinstance(module, nn.Conv2d) or isinstance(module, nn.Embedding) or isinstance(module, nn.Linear): | 
					
						
						|  | module.weight.data.normal_(mean=0.0, std=factor) | 
					
						
						|  | if hasattr(module, "bias") and module.bias is not None: | 
					
						
						|  | module.bias.data.zero_() | 
					
						
						|  |  | 
					
						
						|  | elif isinstance(module, nn.LayerNorm): | 
					
						
						|  | module.bias.data.zero_() | 
					
						
						|  | module.weight.data.fill_(1.0) | 
					
						
						|  | elif isinstance(module, nn.Linear) and module.bias is not None: | 
					
						
						|  | module.bias.data.zero_() | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class GraniteSpeechQFormerModel(GraniteSpeechEncoderProjectorPreTrainedModel): | 
					
						
						|  | """ | 
					
						
						|  | Querying Transformer (Q-Former), used in GraniteSpeech. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, config: GraniteSpeechProjectorConfig): | 
					
						
						|  | super().__init__(config) | 
					
						
						|  | self.config = config | 
					
						
						|  |  | 
					
						
						|  | self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) | 
					
						
						|  | self.dropout = nn.Dropout(config.hidden_dropout_prob) | 
					
						
						|  |  | 
					
						
						|  | self.encoder = GraniteSpeechQFormerEncoder(config) | 
					
						
						|  |  | 
					
						
						|  | self.post_init() | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def get_input_embeddings(self): | 
					
						
						|  | return self.embeddings.word_embeddings | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def set_input_embeddings(self, value): | 
					
						
						|  | self.embeddings.word_embeddings = value | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def _prune_heads(self, heads_to_prune): | 
					
						
						|  | """ | 
					
						
						|  | Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base | 
					
						
						|  | class PreTrainedModel | 
					
						
						|  | """ | 
					
						
						|  | for layer, heads in heads_to_prune.items(): | 
					
						
						|  | self.encoder.layer[layer].attention.prune_heads(heads) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def get_extended_attention_mask( | 
					
						
						|  | self, | 
					
						
						|  | attention_mask: torch.Tensor, | 
					
						
						|  | input_shape: Tuple[int], | 
					
						
						|  | device: torch.device, | 
					
						
						|  | has_query: bool = False, | 
					
						
						|  | ) -> torch.Tensor: | 
					
						
						|  | """ | 
					
						
						|  | Makes broadcastable attention and causal masks so that future and masked tokens are ignored. | 
					
						
						|  |  | 
					
						
						|  | Arguments: | 
					
						
						|  | attention_mask (`torch.Tensor`): | 
					
						
						|  | Mask with ones indicating tokens to attend to, zeros for tokens to ignore. | 
					
						
						|  | input_shape (`Tuple[int]`): | 
					
						
						|  | The shape of the input to the model. | 
					
						
						|  | device (`torch.device`): | 
					
						
						|  | The device of the input to the model. | 
					
						
						|  |  | 
					
						
						|  | Returns: | 
					
						
						|  | `torch.Tensor` The extended attention mask, with a the same dtype as `attention_mask.dtype`. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if attention_mask.dim() == 3: | 
					
						
						|  | extended_attention_mask = attention_mask[:, None, :, :] | 
					
						
						|  | elif attention_mask.dim() == 2: | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | extended_attention_mask = attention_mask[:, None, None, :] | 
					
						
						|  | else: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | "Wrong shape for input_ids (shape {}) or attention_mask (shape {})".format( | 
					
						
						|  | input_shape, attention_mask.shape | 
					
						
						|  | ) | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | extended_attention_mask = extended_attention_mask.to(dtype=self.dtype) | 
					
						
						|  | extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0 | 
					
						
						|  | return extended_attention_mask | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | query_embeds: torch.FloatTensor, | 
					
						
						|  | query_length: Optional[int] = None, | 
					
						
						|  | attention_mask: Optional[torch.FloatTensor] = None, | 
					
						
						|  | head_mask: Optional[torch.FloatTensor] = None, | 
					
						
						|  | encoder_hidden_states: Optional[torch.FloatTensor] = None, | 
					
						
						|  | encoder_attention_mask: Optional[torch.FloatTensor] = None, | 
					
						
						|  | past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, | 
					
						
						|  | use_cache: Optional[bool] = None, | 
					
						
						|  | output_attentions: Optional[bool] = None, | 
					
						
						|  | output_hidden_states: Optional[bool] = None, | 
					
						
						|  | return_dict: Optional[bool] = None, | 
					
						
						|  | ) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPoolingAndCrossAttentions]: | 
					
						
						|  | r""" | 
					
						
						|  | encoder_hidden_states  (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, `optional`): | 
					
						
						|  | Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if | 
					
						
						|  | the model is configured as a decoder. | 
					
						
						|  | encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, `optional`): | 
					
						
						|  | Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in | 
					
						
						|  | the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`: | 
					
						
						|  | - 1 for tokens that are **not masked**, | 
					
						
						|  | - 0 for tokens that are **masked**. | 
					
						
						|  | past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of: | 
					
						
						|  | shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): Contains precomputed key and | 
					
						
						|  | value hidden states of the attention blocks. Can be used to speed up decoding. If `past_key_values` are | 
					
						
						|  | used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key | 
					
						
						|  | value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape | 
					
						
						|  | `(batch_size, sequence_length)`. | 
					
						
						|  | use_cache (`bool`, `optional`): | 
					
						
						|  | If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see | 
					
						
						|  | `past_key_values`). | 
					
						
						|  | """ | 
					
						
						|  | output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | 
					
						
						|  | output_hidden_states = ( | 
					
						
						|  | output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | 
					
						
						|  | ) | 
					
						
						|  | return_dict = return_dict if return_dict is not None else self.config.use_return_dict | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | past_key_values_length = ( | 
					
						
						|  | past_key_values[0][0].shape[2] - self.config.query_length if past_key_values is not None else 0 | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | query_length = ( | 
					
						
						|  | query_length if query_length is not None else query_embeds.shape[1] if query_embeds is not None else 0 | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | embedding_output = self.layernorm(query_embeds) | 
					
						
						|  | embedding_output = self.dropout(embedding_output) | 
					
						
						|  |  | 
					
						
						|  | input_shape = embedding_output.size()[:-1] | 
					
						
						|  | batch_size, seq_length = input_shape | 
					
						
						|  | device = embedding_output.device | 
					
						
						|  |  | 
					
						
						|  | if attention_mask is None: | 
					
						
						|  | attention_mask = torch.ones(((batch_size, seq_length + past_key_values_length)), device=device) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | extended_attention_mask = self.get_extended_attention_mask(attention_mask, input_shape, device) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if encoder_hidden_states is not None: | 
					
						
						|  | if isinstance(encoder_hidden_states, list): | 
					
						
						|  | encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states[0].size() | 
					
						
						|  | else: | 
					
						
						|  | encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size() | 
					
						
						|  | encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length) | 
					
						
						|  |  | 
					
						
						|  | if isinstance(encoder_attention_mask, list): | 
					
						
						|  | encoder_extended_attention_mask = [self.invert_attention_mask(mask) for mask in encoder_attention_mask] | 
					
						
						|  | elif encoder_attention_mask is None: | 
					
						
						|  | encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device) | 
					
						
						|  | encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask) | 
					
						
						|  | else: | 
					
						
						|  | encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask) | 
					
						
						|  | else: | 
					
						
						|  | encoder_extended_attention_mask = None | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) | 
					
						
						|  |  | 
					
						
						|  | encoder_outputs = self.encoder( | 
					
						
						|  | embedding_output, | 
					
						
						|  | attention_mask=extended_attention_mask, | 
					
						
						|  | head_mask=head_mask, | 
					
						
						|  | encoder_hidden_states=encoder_hidden_states, | 
					
						
						|  | encoder_attention_mask=encoder_extended_attention_mask, | 
					
						
						|  | past_key_values=past_key_values, | 
					
						
						|  | use_cache=use_cache, | 
					
						
						|  | output_attentions=output_attentions, | 
					
						
						|  | output_hidden_states=output_hidden_states, | 
					
						
						|  | return_dict=return_dict, | 
					
						
						|  | query_length=query_length, | 
					
						
						|  | ) | 
					
						
						|  | sequence_output = encoder_outputs[0] | 
					
						
						|  | pooled_output = sequence_output[:, 0, :] | 
					
						
						|  |  | 
					
						
						|  | if not return_dict: | 
					
						
						|  | return (sequence_output, pooled_output) + encoder_outputs[1:] | 
					
						
						|  |  | 
					
						
						|  | return BaseModelOutputWithPoolingAndCrossAttentions( | 
					
						
						|  | last_hidden_state=sequence_output, | 
					
						
						|  | pooler_output=pooled_output, | 
					
						
						|  | past_key_values=encoder_outputs.past_key_values, | 
					
						
						|  | hidden_states=encoder_outputs.hidden_states, | 
					
						
						|  | attentions=encoder_outputs.attentions, | 
					
						
						|  | cross_attentions=encoder_outputs.cross_attentions, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class GraniteSpeechEncoderProjectorQFormer(nn.Module): | 
					
						
						|  | def __init__(self, config: GraniteSpeechProjectorConfig): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.hidden_size = config.hidden_size | 
					
						
						|  | self.ds_rate = config.downsample_rate | 
					
						
						|  | self.window_size = config.window_size | 
					
						
						|  | self.num_queries = self.window_size // self.ds_rate | 
					
						
						|  | self.query = nn.Parameter(torch.zeros(1, self.num_queries, config.hidden_size)) | 
					
						
						|  | self.query.data.normal_(mean=0.0, std=1.0) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.qformer = GraniteSpeechQFormerModel(config) | 
					
						
						|  | self.linear = nn.Linear(config.hidden_size, config.llm_dim) | 
					
						
						|  |  | 
					
						
						|  | def forward(self, x, atts): | 
					
						
						|  | batch_size, seq_len, dim = x.size() | 
					
						
						|  | nblocks = math.ceil(seq_len / self.window_size) | 
					
						
						|  | pad = nblocks * self.window_size - seq_len | 
					
						
						|  | x = nn.functional.pad(x, (0, 0, 0, pad), "constant", 0) | 
					
						
						|  | x = x.view(batch_size * nblocks, self.window_size, dim) | 
					
						
						|  |  | 
					
						
						|  | query_output = self.qformer( | 
					
						
						|  | query_embeds=self.query.data, | 
					
						
						|  | encoder_hidden_states=x, | 
					
						
						|  | encoder_attention_mask=atts, | 
					
						
						|  | return_dict=True, | 
					
						
						|  | ) | 
					
						
						|  | query_proj = self.linear( | 
					
						
						|  | query_output.last_hidden_state.view(batch_size, nblocks * self.window_size // self.ds_rate, -1) | 
					
						
						|  | ) | 
					
						
						|  | return query_proj | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class GraniteSpeechCTCModel(nn.Module): | 
					
						
						|  | def __init__(self, config: GraniteSpeechEncoderConfig): | 
					
						
						|  | super(GraniteSpeechCTCModel, self).__init__() | 
					
						
						|  |  | 
					
						
						|  | self.rnn_tr = nn.ModuleList( | 
					
						
						|  | [nn.Linear(config.input_dim, config.hidden_dim, bias=True)] | 
					
						
						|  | + [ | 
					
						
						|  | GraniteSpeechConformerBlock( | 
					
						
						|  | dim=config.hidden_dim, | 
					
						
						|  | dim_head=config.dim_head, | 
					
						
						|  | heads=config.num_heads, | 
					
						
						|  | ff_mult=config.feedforward_mult, | 
					
						
						|  | conv_expansion_factor=config.conv_expansion_factor, | 
					
						
						|  | conv_kernel_size=config.conv_kernel_size, | 
					
						
						|  | context_size=config.context_size, | 
					
						
						|  | attn_dropout=config.dropout, | 
					
						
						|  | ff_dropout=config.dropout, | 
					
						
						|  | conv_dropout=config.dropout, | 
					
						
						|  | ) | 
					
						
						|  | for layer_idx in range(config.num_layers) | 
					
						
						|  | ] | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | self.out = nn.Linear(config.hidden_dim, config.output_dim, bias=True) | 
					
						
						|  | self.out_mid = nn.Linear(config.output_dim, config.hidden_dim, bias=True) | 
					
						
						|  | self.context_size = config.context_size | 
					
						
						|  | self.input_dim = config.input_dim | 
					
						
						|  | self.num_layers = config.num_layers | 
					
						
						|  | self.hidden_dim = config.hidden_dim | 
					
						
						|  | self.output_dim = config.output_dim | 
					
						
						|  |  | 
					
						
						|  | def forward(self, x: torch.Tensor): | 
					
						
						|  | x = self.rnn_tr[0](x) | 
					
						
						|  | for idx, layer in enumerate(self.rnn_tr[1:], start=1): | 
					
						
						|  | x = layer(x, self.context_size) | 
					
						
						|  | if idx == self.num_layers // 2: | 
					
						
						|  | x_mid = x.clone() | 
					
						
						|  | x_mid = self.out(x_mid) | 
					
						
						|  | x += self.out_mid(nn.Softmax(dim=-1)(x_mid)) | 
					
						
						|  | return x | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class GraniteSpeechConformerPermute(nn.Module): | 
					
						
						|  | def __init__(self, dims): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.dims = dims | 
					
						
						|  |  | 
					
						
						|  | def forward(self, x): | 
					
						
						|  | x = x.permute(self.dims) | 
					
						
						|  | return x | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class GraniteSpeechConformerDepthWiseConv1d(nn.Module): | 
					
						
						|  | def __init__(self, chan_in, chan_out, kernel_size, padding): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.padding = padding | 
					
						
						|  | self.conv = nn.Conv1d(chan_in, chan_out, kernel_size, groups=chan_in, bias=False) | 
					
						
						|  |  | 
					
						
						|  | def forward(self, x): | 
					
						
						|  | x = F.pad(x, self.padding) | 
					
						
						|  | return self.conv(x) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class GraniteSpeechConformerScale(nn.Module): | 
					
						
						|  | def __init__(self, scale, fn): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.fn = fn | 
					
						
						|  | self.scale = scale | 
					
						
						|  |  | 
					
						
						|  | def forward(self, x, **kwargs): | 
					
						
						|  | return self.fn(x, **kwargs) * self.scale | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class GraniteSpeechConformerPreNorm(nn.Module): | 
					
						
						|  | def __init__(self, dim, fn): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.fn = fn | 
					
						
						|  | self.norm = nn.LayerNorm(dim) | 
					
						
						|  |  | 
					
						
						|  | def forward(self, x, **kwargs): | 
					
						
						|  | x = self.norm(x) | 
					
						
						|  | return self.fn(x, **kwargs) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class GraniteSpeechConformerPreNormAttn(nn.Module): | 
					
						
						|  | def __init__(self, dim, fn): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.fn = fn | 
					
						
						|  | self.norm = nn.LayerNorm(dim) | 
					
						
						|  |  | 
					
						
						|  | def forward(self, x, context_size, **kwargs): | 
					
						
						|  | x = self.norm(x) | 
					
						
						|  | return self.fn(x, context_size, **kwargs) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class GraniteSpeechConformerAttention(nn.Module): | 
					
						
						|  | def __init__( | 
					
						
						|  | self, | 
					
						
						|  | dim, | 
					
						
						|  | heads=8, | 
					
						
						|  | dim_head=64, | 
					
						
						|  | dropout=0.0, | 
					
						
						|  | context_size=200, | 
					
						
						|  | max_pos_emb=512, | 
					
						
						|  | ): | 
					
						
						|  | super().__init__() | 
					
						
						|  | inner_dim = dim_head * heads | 
					
						
						|  | self.heads = heads | 
					
						
						|  | self.dim_head = dim_head | 
					
						
						|  | self.scale = dim_head**-0.5 | 
					
						
						|  | self.to_q = nn.Linear(dim, inner_dim, bias=False) | 
					
						
						|  | self.to_kv = nn.Linear(dim, inner_dim * 2, bias=False) | 
					
						
						|  | self.to_out = nn.Linear(inner_dim, dim) | 
					
						
						|  |  | 
					
						
						|  | self.max_pos_emb = max_pos_emb | 
					
						
						|  | self.rel_pos_emb = nn.Embedding(2 * max_pos_emb + 1, dim_head) | 
					
						
						|  |  | 
					
						
						|  | self.dropout = nn.Dropout(dropout) | 
					
						
						|  |  | 
					
						
						|  | def forward(self, x, context_size): | 
					
						
						|  | device, h, max_pos_emb = x.device, self.heads, self.max_pos_emb | 
					
						
						|  | bs, n, d = x.shape | 
					
						
						|  | assert context_size > 0 and context_size <= max_pos_emb | 
					
						
						|  |  | 
					
						
						|  | nb = math.ceil(n / context_size) | 
					
						
						|  | nr = n % context_size | 
					
						
						|  | if nr > 0: | 
					
						
						|  |  | 
					
						
						|  | x = torch.nn.functional.pad(x, (0, 0, 0, context_size - nr)) | 
					
						
						|  |  | 
					
						
						|  | q, k, v = (self.to_q(x), *self.to_kv(x).chunk(2, dim=-1)) | 
					
						
						|  | q, k, v = [t.reshape(bs, nb, context_size, h, -1).transpose(2, 3) for t in (q, k, v)] | 
					
						
						|  |  | 
					
						
						|  | dots = einsum("b m h i d, b m h j d -> b m h i j", q, k) * self.scale | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | seq = torch.arange(context_size, device=device) | 
					
						
						|  | dist = seq.view(-1, 1) - seq.view(1, -1) | 
					
						
						|  | dist = torch.clamp(dist, -context_size, context_size) + max_pos_emb | 
					
						
						|  | rel_pos_emb = self.rel_pos_emb(dist).to(q) | 
					
						
						|  | pos_attn = einsum("b m h c d, c r d -> b m h c r", q, rel_pos_emb) * self.scale | 
					
						
						|  | dots = dots + pos_attn | 
					
						
						|  |  | 
					
						
						|  | if nr > 0: | 
					
						
						|  |  | 
					
						
						|  | mask = torch.ones(context_size, context_size, dtype=bool, device=device) | 
					
						
						|  | mask[:nr, :nr] = 0 | 
					
						
						|  | mask_value = -torch.finfo(dots.dtype).max | 
					
						
						|  | dots[:, -1, :].masked_fill_(mask, mask_value) | 
					
						
						|  |  | 
					
						
						|  | attn = dots.softmax(dim=-1) | 
					
						
						|  |  | 
					
						
						|  | out = einsum("b m h i j, b m h j d -> b m h i d", attn, v) | 
					
						
						|  | out = out.transpose(2, 3).reshape(bs, x.shape[1], -1) | 
					
						
						|  | out = self.to_out(out[:, :n, :]) | 
					
						
						|  | return self.dropout(out) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class GraniteSpeechConformerFeedForward(nn.Module): | 
					
						
						|  | def __init__(self, dim, mult=4, dropout=0.0): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.net = nn.Sequential( | 
					
						
						|  | nn.Linear(dim, dim * mult), nn.SiLU(), nn.Dropout(dropout), nn.Linear(dim * mult, dim), nn.Dropout(dropout) | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | def forward(self, x): | 
					
						
						|  | return self.net(x) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class GraniteSpeechConformerConvModule(nn.Module): | 
					
						
						|  | def __init__(self, dim, causal=False, expansion_factor=2, kernel_size=31, dropout=0.0): | 
					
						
						|  | super().__init__() | 
					
						
						|  |  | 
					
						
						|  | inner_dim = dim * expansion_factor | 
					
						
						|  | padding = self.calc_same_padding(kernel_size) if not causal else (kernel_size - 1, 0) | 
					
						
						|  |  | 
					
						
						|  | self.net = nn.Sequential( | 
					
						
						|  | nn.LayerNorm(dim), | 
					
						
						|  | GraniteSpeechConformerPermute(dims=(0, 2, 1)), | 
					
						
						|  | nn.Conv1d(dim, inner_dim * 2, 1), | 
					
						
						|  | nn.GLU(dim=1), | 
					
						
						|  | GraniteSpeechConformerDepthWiseConv1d(inner_dim, inner_dim, kernel_size=kernel_size, padding=padding), | 
					
						
						|  | nn.BatchNorm1d(inner_dim) if not causal else nn.Identity(), | 
					
						
						|  | nn.SiLU(), | 
					
						
						|  | nn.Conv1d(inner_dim, dim, 1), | 
					
						
						|  | GraniteSpeechConformerPermute(dims=(0, 2, 1)), | 
					
						
						|  | nn.Dropout(dropout), | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | def forward(self, x): | 
					
						
						|  | return self.net(x) | 
					
						
						|  |  | 
					
						
						|  | @staticmethod | 
					
						
						|  | def calc_same_padding(kernel_size: int): | 
					
						
						|  | pad = kernel_size // 2 | 
					
						
						|  | return (pad, pad - (kernel_size + 1) % 2) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class GraniteSpeechConformerBlock(nn.Module): | 
					
						
						|  | def __init__( | 
					
						
						|  | self, | 
					
						
						|  | *, | 
					
						
						|  | dim, | 
					
						
						|  | dim_head=64, | 
					
						
						|  | heads=8, | 
					
						
						|  | ff_mult=2, | 
					
						
						|  | conv_expansion_factor=2, | 
					
						
						|  | conv_kernel_size=31, | 
					
						
						|  | context_size=-1, | 
					
						
						|  | attn_dropout=0.0, | 
					
						
						|  | ff_dropout=0.0, | 
					
						
						|  | conv_dropout=0.0, | 
					
						
						|  | ): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.ff1 = GraniteSpeechConformerFeedForward(dim=dim, mult=ff_mult, dropout=ff_dropout) | 
					
						
						|  | self.attn = GraniteSpeechConformerAttention( | 
					
						
						|  | dim=dim, | 
					
						
						|  | dim_head=dim_head, | 
					
						
						|  | heads=heads, | 
					
						
						|  | dropout=attn_dropout, | 
					
						
						|  | context_size=context_size, | 
					
						
						|  | ) | 
					
						
						|  | self.conv = GraniteSpeechConformerConvModule( | 
					
						
						|  | dim=dim, | 
					
						
						|  | causal=False, | 
					
						
						|  | expansion_factor=conv_expansion_factor, | 
					
						
						|  | kernel_size=conv_kernel_size, | 
					
						
						|  | dropout=conv_dropout, | 
					
						
						|  | ) | 
					
						
						|  | self.ff2 = GraniteSpeechConformerFeedForward(dim=dim, mult=ff_mult, dropout=ff_dropout) | 
					
						
						|  |  | 
					
						
						|  | self.attn = GraniteSpeechConformerPreNormAttn(dim, self.attn) | 
					
						
						|  | self.ff1 = GraniteSpeechConformerScale(0.5, GraniteSpeechConformerPreNorm(dim, self.ff1)) | 
					
						
						|  | self.ff2 = GraniteSpeechConformerScale(0.5, GraniteSpeechConformerPreNorm(dim, self.ff2)) | 
					
						
						|  |  | 
					
						
						|  | self.post_norm = nn.LayerNorm(dim) | 
					
						
						|  |  | 
					
						
						|  | def forward(self, x, context_size): | 
					
						
						|  | x = self.ff1(x) + x | 
					
						
						|  | x = self.attn(x, context_size) + x | 
					
						
						|  | x = self.conv(x) + x | 
					
						
						|  | x = self.ff2(x) + x | 
					
						
						|  | x = self.post_norm(x) | 
					
						
						|  | return x | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | GRANITE_SPEECH_START_DOCSTRING = r""" | 
					
						
						|  | This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the | 
					
						
						|  | library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads | 
					
						
						|  | etc.) | 
					
						
						|  |  | 
					
						
						|  | This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. | 
					
						
						|  | Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage | 
					
						
						|  | and behavior. | 
					
						
						|  |  | 
					
						
						|  | Parameters: | 
					
						
						|  | config (`GraniteSpeechConfig`): | 
					
						
						|  | Model configuration class with all the parameters of the model. Initializing with a config file does not | 
					
						
						|  | load the weights associated with the model, only the configuration. Check out the | 
					
						
						|  | [`~PreTrainedModel.from_pretrained`] method to load the model weights. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | @add_start_docstrings( | 
					
						
						|  | "The bare Granite Speech Model outputting raw hidden-states without any specific head on top.", | 
					
						
						|  | GRANITE_SPEECH_START_DOCSTRING, | 
					
						
						|  | ) | 
					
						
						|  | class GraniteSpeechPreTrainedModel(PreTrainedModel): | 
					
						
						|  | config_class = GraniteSpeechConfig | 
					
						
						|  | _supports_cache_class = True | 
					
						
						|  | _supports_flash_attn_2 = True | 
					
						
						|  | _supports_sdpa = True | 
					
						
						|  |  | 
					
						
						|  | def _init_weights(self, module): | 
					
						
						|  | std = self.config.initializer_range | 
					
						
						|  | if isinstance(module, (nn.Linear, nn.Conv1d)): | 
					
						
						|  | module.weight.data.normal_(mean=0.0, std=std) | 
					
						
						|  | if module.bias is not None: | 
					
						
						|  | module.bias.data.zero_() | 
					
						
						|  | elif isinstance(module, nn.Embedding): | 
					
						
						|  | module.weight.data.normal_(mean=0.0, std=std) | 
					
						
						|  | if module.padding_idx is not None: | 
					
						
						|  | module.weight.data[module.padding_idx].zero_() | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | GRANITE_SPEECH_INPUTS_DOCSTRING = r""" | 
					
						
						|  | Args: | 
					
						
						|  | input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): | 
					
						
						|  | Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide | 
					
						
						|  | it. | 
					
						
						|  |  | 
					
						
						|  | Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and | 
					
						
						|  | [`PreTrainedTokenizer.__call__`] for details. | 
					
						
						|  |  | 
					
						
						|  | [What are input IDs?](../glossary#input-ids) | 
					
						
						|  | input_features (`torch.FloatTensor` of shape `(batch_size, audio seq len, mel feat dim)): | 
					
						
						|  | The tensors corresponding to the input audios. input features can be obtained using | 
					
						
						|  | [`AutoFeatureExtractor`]. See [`GraniteSpeechFeatureExtractor.__call__`] for details. | 
					
						
						|  | [`GraniteSpeechProcessor`] uses [`GraniteSpeechFeatureExtractor`] for processing audio. | 
					
						
						|  | input_mask (`torch.Tensor`, *optional*) | 
					
						
						|  | Mask for extracted audio features that should should be ignored when creating the merged | 
					
						
						|  | multimodal representation (i.e., due to padding). | 
					
						
						|  | attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): | 
					
						
						|  | Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: | 
					
						
						|  |  | 
					
						
						|  | - 1 for tokens that are **not masked**, | 
					
						
						|  | - 0 for tokens that are **masked**. | 
					
						
						|  |  | 
					
						
						|  | [What are attention masks?](../glossary#attention-mask) | 
					
						
						|  |  | 
					
						
						|  | Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and | 
					
						
						|  | [`PreTrainedTokenizer.__call__`] for details. | 
					
						
						|  |  | 
					
						
						|  | If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see | 
					
						
						|  | `past_key_values`). | 
					
						
						|  |  | 
					
						
						|  | If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`] | 
					
						
						|  | and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more | 
					
						
						|  | information on the default strategy. | 
					
						
						|  |  | 
					
						
						|  | - 1 indicates the head is **not masked**, | 
					
						
						|  | - 0 indicates the head is **masked**. | 
					
						
						|  | position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): | 
					
						
						|  | Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, | 
					
						
						|  | config.n_positions - 1]`. [What are position IDs?](../glossary#position-ids) | 
					
						
						|  | past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): | 
					
						
						|  | Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape | 
					
						
						|  | `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape | 
					
						
						|  | `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. | 
					
						
						|  |  | 
					
						
						|  | Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention | 
					
						
						|  | blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. | 
					
						
						|  |  | 
					
						
						|  | If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that | 
					
						
						|  | don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all | 
					
						
						|  | `decoder_input_ids` of shape `(batch_size, sequence_length)`. | 
					
						
						|  | inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): | 
					
						
						|  | Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This | 
					
						
						|  | is useful if you want more control over how to convert `input_ids` indices into associated vectors than the | 
					
						
						|  | model's internal embedding lookup matrix. | 
					
						
						|  | use_cache (`bool`, *optional*): | 
					
						
						|  | If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see | 
					
						
						|  | `past_key_values`). | 
					
						
						|  | output_attentions (`bool`, *optional*): | 
					
						
						|  | Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned | 
					
						
						|  | tensors for more detail. | 
					
						
						|  | output_hidden_states (`bool`, *optional*): | 
					
						
						|  | Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for | 
					
						
						|  | more detail. | 
					
						
						|  | return_dict (`bool`, *optional*): | 
					
						
						|  | Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. | 
					
						
						|  | cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*): | 
					
						
						|  | Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`, | 
					
						
						|  | this tensor is not affected by padding. It is used to update the cache in the correct position and to infer | 
					
						
						|  | the complete sequence length. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | @add_start_docstrings( | 
					
						
						|  | """The Granite Speech model, which consists of an audio encoder, projector, and language model.""", | 
					
						
						|  | GRANITE_SPEECH_START_DOCSTRING, | 
					
						
						|  | ) | 
					
						
						|  | class GraniteSpeechForConditionalGeneration(GraniteSpeechPreTrainedModel, GenerationMixin): | 
					
						
						|  | def __init__(self, config: GraniteSpeechConfig): | 
					
						
						|  | super().__init__(config) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.language_model = AutoModelForCausalLM.from_config(config.text_config) | 
					
						
						|  |  | 
					
						
						|  | if self.language_model._tied_weights_keys is not None: | 
					
						
						|  | self._tied_weights_keys = [f"language_model.{k}" for k in self.language_model._tied_weights_keys] | 
					
						
						|  |  | 
					
						
						|  | self.encoder = GraniteSpeechCTCModel(config.encoder_config) | 
					
						
						|  | self.projector = GraniteSpeechEncoderProjectorQFormer(config.projector_config) | 
					
						
						|  |  | 
					
						
						|  | if config.has_lora_adapter and not is_peft_available(): | 
					
						
						|  | logger.warning( | 
					
						
						|  | "Config indicates that a lora adapter should be present, but " | 
					
						
						|  | "peft is not installed; this will cause the model to perform " | 
					
						
						|  | "incorrectly when audio inputs are provided. Please install " | 
					
						
						|  | "peft and reload the model!" | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | self.post_init() | 
					
						
						|  |  | 
					
						
						|  | def set_input_embeddings(self, value): | 
					
						
						|  | self.language_model.set_input_embeddings(value) | 
					
						
						|  |  | 
					
						
						|  | def set_output_embeddings(self, new_embeddings): | 
					
						
						|  | self.language_model.set_output_embeddings(new_embeddings) | 
					
						
						|  |  | 
					
						
						|  | def get_input_embeddings(self): | 
					
						
						|  | return self.language_model.get_input_embeddings() | 
					
						
						|  |  | 
					
						
						|  | def get_output_embeddings(self): | 
					
						
						|  | return self.language_model.get_output_embeddings() | 
					
						
						|  |  | 
					
						
						|  | def get_audio_features(self, input_features): | 
					
						
						|  | encoder_embeds = self.encoder(input_features) | 
					
						
						|  | projected_embeds = self.projector(encoder_embeds, None) | 
					
						
						|  | return projected_embeds | 
					
						
						|  |  | 
					
						
						|  | @add_start_docstrings_to_model_forward(GRANITE_SPEECH_INPUTS_DOCSTRING) | 
					
						
						|  | @replace_return_docstrings(output_type=GraniteSpeechCausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC) | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | input_ids: torch.LongTensor = None, | 
					
						
						|  | input_features: torch.FloatTensor = None, | 
					
						
						|  | input_features_mask: Optional[torch.Tensor] = None, | 
					
						
						|  | attention_mask: Optional[torch.Tensor] = None, | 
					
						
						|  | position_ids: Optional[torch.LongTensor] = None, | 
					
						
						|  | past_key_values: Optional[List[torch.FloatTensor]] = None, | 
					
						
						|  | inputs_embeds: Optional[torch.FloatTensor] = None, | 
					
						
						|  | labels: Optional[torch.LongTensor] = None, | 
					
						
						|  | use_cache: Optional[bool] = None, | 
					
						
						|  | output_attentions: Optional[bool] = None, | 
					
						
						|  | output_hidden_states: Optional[bool] = None, | 
					
						
						|  | return_dict: Optional[bool] = None, | 
					
						
						|  | cache_position: Optional[torch.LongTensor] = None, | 
					
						
						|  | logits_to_keep: Union[int, torch.Tensor] = 0, | 
					
						
						|  | **lm_kwargs, | 
					
						
						|  | ) -> Union[Tuple[torch.Tensor], GraniteSpeechCausalLMOutputWithPast]: | 
					
						
						|  | r""" | 
					
						
						|  | labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): | 
					
						
						|  | Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., | 
					
						
						|  | config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored | 
					
						
						|  | (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. | 
					
						
						|  |  | 
					
						
						|  | logits_to_keep (`int` or `torch.Tensor`, *optional*): | 
					
						
						|  | If an `int`, compute logits for the last `logits_to_keep` tokens. If `0`, calculate logits for all | 
					
						
						|  | `input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that | 
					
						
						|  | token can save memory, which becomes pretty significant for long sequences or large vocabulary size. | 
					
						
						|  | If a `torch.Tensor`, must be 1D corresponding to the indices to keep in the sequence length dimension. | 
					
						
						|  | This is useful when using packed tensor format (single dimension for batch and sequence length). | 
					
						
						|  |  | 
					
						
						|  | Returns: | 
					
						
						|  |  | 
					
						
						|  | Example: | 
					
						
						|  |  | 
					
						
						|  | TODO - add example for usage. | 
					
						
						|  | """ | 
					
						
						|  | output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | 
					
						
						|  | output_hidden_states = ( | 
					
						
						|  | output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | 
					
						
						|  | ) | 
					
						
						|  | return_dict = return_dict if return_dict is not None else self.config.use_return_dict | 
					
						
						|  |  | 
					
						
						|  | if (input_ids is None) ^ (inputs_embeds is not None): | 
					
						
						|  | raise ValueError("You must specify exactly one of input_ids or inputs_embeds") | 
					
						
						|  |  | 
					
						
						|  | if input_features is not None and inputs_embeds is not None: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | "You cannot specify both input_features and inputs_embeds at the same time, and must specify either one" | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if inputs_embeds is None: | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | is_audio_idx = input_ids == self.config.audio_token_index | 
					
						
						|  | llm_input_ids = input_ids.clone() | 
					
						
						|  | llm_input_ids[is_audio_idx] = 0 | 
					
						
						|  | inputs_embeds = self.get_input_embeddings()(llm_input_ids) | 
					
						
						|  |  | 
					
						
						|  | if input_features is not None: | 
					
						
						|  | if input_features.dtype != self.dtype: | 
					
						
						|  | logger.warning(f"input features are casted to {self.dtype}") | 
					
						
						|  | input_features = input_features.to(self.dtype) | 
					
						
						|  |  | 
					
						
						|  | audio_features = self.get_audio_features(input_features) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | inputs_embeds = self.get_merged_audio_embeddings( | 
					
						
						|  | input_ids=input_ids, audio_features=audio_features, input_features_mask=input_features_mask | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | outputs = self.language_model( | 
					
						
						|  | attention_mask=attention_mask, | 
					
						
						|  | position_ids=position_ids, | 
					
						
						|  | past_key_values=past_key_values, | 
					
						
						|  | inputs_embeds=inputs_embeds, | 
					
						
						|  | use_cache=use_cache, | 
					
						
						|  | output_attentions=output_attentions, | 
					
						
						|  | output_hidden_states=output_hidden_states, | 
					
						
						|  | return_dict=return_dict, | 
					
						
						|  | cache_position=cache_position, | 
					
						
						|  | logits_to_keep=logits_to_keep, | 
					
						
						|  | **lm_kwargs, | 
					
						
						|  | ) | 
					
						
						|  | logits = outputs[0] | 
					
						
						|  |  | 
					
						
						|  | loss = None | 
					
						
						|  | if labels is not None: | 
					
						
						|  |  | 
					
						
						|  | if attention_mask is not None: | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | shift_attention_mask = attention_mask[:, -(logits.shape[1] - 1) :].to(logits.device) | 
					
						
						|  | shift_logits = logits[..., :-1, :][shift_attention_mask.to(logits.device) != 0].contiguous() | 
					
						
						|  | shift_labels = labels[..., 1:][shift_attention_mask.to(labels.device) != 0].contiguous() | 
					
						
						|  | else: | 
					
						
						|  | shift_logits = logits[..., :-1, :].contiguous() | 
					
						
						|  | shift_labels = labels[..., 1:].contiguous() | 
					
						
						|  |  | 
					
						
						|  | loss_fct = nn.CrossEntropyLoss() | 
					
						
						|  | loss = loss_fct( | 
					
						
						|  | shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1).to(shift_logits.device) | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if not return_dict: | 
					
						
						|  | output = (logits,) + outputs[1:] | 
					
						
						|  | return (loss,) + output if loss is not None else output | 
					
						
						|  |  | 
					
						
						|  | return GraniteSpeechCausalLMOutputWithPast( | 
					
						
						|  | loss=loss, | 
					
						
						|  | logits=logits, | 
					
						
						|  | past_key_values=outputs.past_key_values, | 
					
						
						|  | hidden_states=outputs.hidden_states, | 
					
						
						|  | attentions=outputs.attentions, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | def prepare_inputs_for_generation( | 
					
						
						|  | self, | 
					
						
						|  | input_ids, | 
					
						
						|  | past_key_values=None, | 
					
						
						|  | inputs_embeds=None, | 
					
						
						|  | input_features=None, | 
					
						
						|  | attention_mask=None, | 
					
						
						|  | cache_position=None, | 
					
						
						|  | logits_to_keep=None, | 
					
						
						|  | **kwargs, | 
					
						
						|  | ): | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | model_inputs = self.language_model.prepare_inputs_for_generation( | 
					
						
						|  | input_ids, | 
					
						
						|  | past_key_values=past_key_values, | 
					
						
						|  | inputs_embeds=inputs_embeds, | 
					
						
						|  | attention_mask=attention_mask, | 
					
						
						|  | cache_position=cache_position, | 
					
						
						|  | logits_to_keep=logits_to_keep, | 
					
						
						|  | **kwargs, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if cache_position[0] == 0: | 
					
						
						|  | model_inputs["input_features"] = input_features | 
					
						
						|  | return model_inputs | 
					
						
						|  |  | 
					
						
						|  | def get_merged_audio_embeddings(self, input_ids, audio_features, input_features_mask): | 
					
						
						|  | """ | 
					
						
						|  | Adds the audio token to the model's LLM vocabulary so that we can pass it | 
					
						
						|  | through the tokenizer; it's assumed that the embeddings corresponding to the | 
					
						
						|  | <|audio|> token will be clobbered with speech features. | 
					
						
						|  |  | 
					
						
						|  | TODO - This needs to be adapted to handle batches of variable length sequences | 
					
						
						|  | and potentially labels. | 
					
						
						|  | """ | 
					
						
						|  | is_audio_index = input_ids == self.config.audio_token_index | 
					
						
						|  | llm_input_ids = torch.where(is_audio_index, 0, input_ids) | 
					
						
						|  | inputs_embeds = self.language_model.get_input_embeddings()(llm_input_ids) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | special_audio_mask = is_audio_index.unsqueeze(-1) | 
					
						
						|  | audio_features = audio_features.to(inputs_embeds.device, inputs_embeds.dtype)[input_features_mask] | 
					
						
						|  | inputs_embeds = inputs_embeds.masked_scatter( | 
					
						
						|  | special_audio_mask, | 
					
						
						|  | audio_features, | 
					
						
						|  | ) | 
					
						
						|  | return inputs_embeds | 
					
						
						|  |  | 
					
						
						|  | def generate(self, *args, **kwargs): | 
					
						
						|  | """This model is expected to have a lora adapater, which is only | 
					
						
						|  | enabled when considering audio inputs. As such, we override generate | 
					
						
						|  | to conditionally enable / disable the lora adapter based on whether | 
					
						
						|  | or not any input features were provided. | 
					
						
						|  | """ | 
					
						
						|  | input_features = kwargs.pop("input_features", None) | 
					
						
						|  | if is_peft_available and self._hf_peft_config_loaded: | 
					
						
						|  | if input_features is not None: | 
					
						
						|  | self.enable_adapters() | 
					
						
						|  | else: | 
					
						
						|  | self.disable_adapters() | 
					
						
						|  | return super().generate(*args, input_features=input_features, **kwargs) | 
					
						
						|  |  | 
					
						
						|  | def save_pretrained(self, *args, **kwargs): | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if is_peft_available and self._hf_peft_config_loaded: | 
					
						
						|  | super().save_pretrained(*args, **kwargs) | 
					
						
						|  |  | 
					
						
						|  | self._hf_peft_config_loaded = False | 
					
						
						|  | super().save_pretrained(*args, **kwargs) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | __all__ = [ | 
					
						
						|  | "GraniteSpeechForConditionalGeneration", | 
					
						
						|  | "GraniteSpeechPreTrainedModel", | 
					
						
						|  | "GraniteSpeechEncoderProjectorPreTrainedModel", | 
					
						
						|  | "GraniteSpeechQFormerModel", | 
					
						
						|  | ] | 
					
						
						|  |  |