Upload 16 files
Browse files- adapter_config.json +29 -0
- adapter_model.safetensors +3 -0
- added_tokens.json +6 -0
- configuration_granite_speech.py +126 -0
- feature_extraction_granite_speech.py +118 -0
- generation_config.json +7 -0
- merges.txt +0 -0
- model.safetensors.index.json +762 -0
- modeling_granite_speech.py +1393 -0
- preprocessor_config.json +1 -0
- processing_granite_speech.py +158 -0
- special_tokens_map.json +35 -0
- tokenizer.json +0 -0
- tokenizer_config.json +207 -0
- vocab.json +0 -0
    	
        adapter_config.json
    ADDED
    
    | @@ -0,0 +1,29 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            {
         | 
| 2 | 
            +
                "alpha_pattern": {},
         | 
| 3 | 
            +
                "auto_mapping": null,
         | 
| 4 | 
            +
                "base_model_name_or_path": "ibm-granite/granite-speech-3.2-8b",
         | 
| 5 | 
            +
                "bias": "none",
         | 
| 6 | 
            +
                "fan_in_fan_out": false,
         | 
| 7 | 
            +
                "inference_mode": true,
         | 
| 8 | 
            +
                "init_lora_weights": true,
         | 
| 9 | 
            +
                "layer_replication": null,
         | 
| 10 | 
            +
                "layers_pattern": null,
         | 
| 11 | 
            +
                "layers_to_transform": null,
         | 
| 12 | 
            +
                "loftq_config": {},
         | 
| 13 | 
            +
                "lora_alpha": 32,
         | 
| 14 | 
            +
                "lora_dropout": 0.0,
         | 
| 15 | 
            +
                "megatron_config": null,
         | 
| 16 | 
            +
                "megatron_core": "megatron.core",
         | 
| 17 | 
            +
                "modules_to_save": null,
         | 
| 18 | 
            +
                "peft_type": "LORA",
         | 
| 19 | 
            +
                "r": 64,
         | 
| 20 | 
            +
                "rank_pattern": {},
         | 
| 21 | 
            +
                "revision": null,
         | 
| 22 | 
            +
                "target_modules": [
         | 
| 23 | 
            +
                    "q_proj",
         | 
| 24 | 
            +
                    "v_proj"
         | 
| 25 | 
            +
                ],
         | 
| 26 | 
            +
                "task_type": "CAUSAL_LM",
         | 
| 27 | 
            +
                "use_dora": false,
         | 
| 28 | 
            +
                "use_rslora": false
         | 
| 29 | 
            +
            }
         | 
    	
        adapter_model.safetensors
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:e5795a9e05dcf02b82e6e3c934ac68b7e5c1522bdc9c7c86fb7a61f846d5adf7
         | 
| 3 | 
            +
            size 68178800
         | 
    	
        added_tokens.json
    ADDED
    
    | @@ -0,0 +1,6 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            {
         | 
| 2 | 
            +
              "<|audio|>": 49155,
         | 
| 3 | 
            +
              "<|end_of_role|>": 49153,
         | 
| 4 | 
            +
              "<|start_of_role|>": 49152,
         | 
| 5 | 
            +
              "<|tool_call|>": 49154
         | 
| 6 | 
            +
            }
         | 
    	
        configuration_granite_speech.py
    ADDED
    
    | @@ -0,0 +1,126 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            from transformers.configuration_utils import PretrainedConfig
         | 
| 2 | 
            +
            from transformers.models.auto import CONFIG_MAPPING, AutoConfig
         | 
| 3 | 
            +
             | 
| 4 | 
            +
             | 
| 5 | 
            +
            class GraniteSpeechEncoderConfig(PretrainedConfig):
         | 
| 6 | 
            +
                model_type = "granite_speech_encoder"
         | 
| 7 | 
            +
             | 
| 8 | 
            +
                def __init__(
         | 
| 9 | 
            +
                    self,
         | 
| 10 | 
            +
                    input_dim=160,
         | 
| 11 | 
            +
                    num_layers=10,
         | 
| 12 | 
            +
                    hidden_dim=1024,
         | 
| 13 | 
            +
                    feedforward_mult=4,
         | 
| 14 | 
            +
                    num_heads=8,
         | 
| 15 | 
            +
                    dim_head=128,
         | 
| 16 | 
            +
                    output_dim=42,
         | 
| 17 | 
            +
                    context_size=200,
         | 
| 18 | 
            +
                    dropout=0.1,
         | 
| 19 | 
            +
                    conv_kernel_size=15,
         | 
| 20 | 
            +
                    conv_expansion_factor=2,
         | 
| 21 | 
            +
                    **kwargs,
         | 
| 22 | 
            +
                ):
         | 
| 23 | 
            +
                    super().__init__(**kwargs)
         | 
| 24 | 
            +
                    self.input_dim = input_dim
         | 
| 25 | 
            +
                    self.num_layers = num_layers
         | 
| 26 | 
            +
                    self.hidden_dim = hidden_dim
         | 
| 27 | 
            +
                    self.feedforward_mult = feedforward_mult
         | 
| 28 | 
            +
                    self.num_heads = num_heads
         | 
| 29 | 
            +
                    self.dim_head = dim_head
         | 
| 30 | 
            +
                    self.output_dim = output_dim
         | 
| 31 | 
            +
                    self.context_size = context_size
         | 
| 32 | 
            +
                    self.dropout = dropout
         | 
| 33 | 
            +
                    self.conv_kernel_size = conv_kernel_size
         | 
| 34 | 
            +
                    self.conv_expansion_factor = conv_expansion_factor
         | 
| 35 | 
            +
             | 
| 36 | 
            +
             | 
| 37 | 
            +
            ## adapted from transformers.models.blip.configuration_blip_2.Blip2VisionConfig
         | 
| 38 | 
            +
            class GraniteSpeechProjectorConfig(PretrainedConfig):
         | 
| 39 | 
            +
                model_type = "granite_speech_qformer"
         | 
| 40 | 
            +
             | 
| 41 | 
            +
                def __init__(
         | 
| 42 | 
            +
                    self,
         | 
| 43 | 
            +
                    llm_dim=4096,
         | 
| 44 | 
            +
                    downsample_rate=5,
         | 
| 45 | 
            +
                    window_size=15,
         | 
| 46 | 
            +
                    hidden_size=1024,
         | 
| 47 | 
            +
                    num_attention_heads=16,
         | 
| 48 | 
            +
                    intermediate_size=4096,
         | 
| 49 | 
            +
                    num_hidden_layers=2,
         | 
| 50 | 
            +
                    encoder_hidden_size=1024,
         | 
| 51 | 
            +
                    cross_attention_frequency=1,
         | 
| 52 | 
            +
                    max_position_embeddings=2048,
         | 
| 53 | 
            +
                    hidden_act="gelu",
         | 
| 54 | 
            +
                    hidden_dropout_prob=0.1,
         | 
| 55 | 
            +
                    attention_probs_dropout_prob=0.1,
         | 
| 56 | 
            +
                    initializer_range=0.02,
         | 
| 57 | 
            +
                    layer_norm_eps=1e-12,
         | 
| 58 | 
            +
                    pad_token_id=0,
         | 
| 59 | 
            +
                    position_embedding_type="absolute",
         | 
| 60 | 
            +
                    use_qformer_text_input=False,
         | 
| 61 | 
            +
                    **kwargs,
         | 
| 62 | 
            +
                ):
         | 
| 63 | 
            +
                    super().__init__(pad_token_id=pad_token_id, **kwargs)
         | 
| 64 | 
            +
                    self.hidden_size = hidden_size
         | 
| 65 | 
            +
                    self.num_hidden_layers = num_hidden_layers
         | 
| 66 | 
            +
                    self.num_attention_heads = num_attention_heads
         | 
| 67 | 
            +
                    self.hidden_act = hidden_act
         | 
| 68 | 
            +
                    self.intermediate_size = intermediate_size
         | 
| 69 | 
            +
                    self.hidden_dropout_prob = hidden_dropout_prob
         | 
| 70 | 
            +
                    self.attention_probs_dropout_prob = attention_probs_dropout_prob
         | 
| 71 | 
            +
                    self.max_position_embeddings = max_position_embeddings
         | 
| 72 | 
            +
                    self.initializer_range = initializer_range
         | 
| 73 | 
            +
                    self.layer_norm_eps = layer_norm_eps
         | 
| 74 | 
            +
                    self.position_embedding_type = position_embedding_type
         | 
| 75 | 
            +
                    self.cross_attention_frequency = cross_attention_frequency
         | 
| 76 | 
            +
                    self.encoder_hidden_size = encoder_hidden_size
         | 
| 77 | 
            +
                    self.use_qformer_text_input = use_qformer_text_input
         | 
| 78 | 
            +
                    self.downsample_rate = downsample_rate
         | 
| 79 | 
            +
                    self.window_size = window_size
         | 
| 80 | 
            +
                    self.llm_dim = llm_dim
         | 
| 81 | 
            +
             | 
| 82 | 
            +
             | 
| 83 | 
            +
            class GraniteSpeechConfig(PretrainedConfig):
         | 
| 84 | 
            +
                model_type = "granite_speech"
         | 
| 85 | 
            +
                sub_configs = {
         | 
| 86 | 
            +
                    "text_config": AutoConfig,
         | 
| 87 | 
            +
                    "encoder_config": GraniteSpeechEncoderConfig,
         | 
| 88 | 
            +
                    "projector_config": GraniteSpeechProjectorConfig,
         | 
| 89 | 
            +
                }
         | 
| 90 | 
            +
             | 
| 91 | 
            +
                def __init__(
         | 
| 92 | 
            +
                    self,
         | 
| 93 | 
            +
                    encoder_config=None,
         | 
| 94 | 
            +
                    text_config=None,
         | 
| 95 | 
            +
                    projector_config=None,
         | 
| 96 | 
            +
                    audio_token_index=49155,
         | 
| 97 | 
            +
                    initializer_range=0.02,
         | 
| 98 | 
            +
                    has_lora_adapter=True,
         | 
| 99 | 
            +
                    **kwargs,
         | 
| 100 | 
            +
                ):
         | 
| 101 | 
            +
                    if isinstance(text_config, dict):
         | 
| 102 | 
            +
                        text_config["model_type"] = text_config["model_type"] if "model_type" in text_config else "granite"
         | 
| 103 | 
            +
                        text_config = CONFIG_MAPPING[text_config["model_type"]](**text_config)
         | 
| 104 | 
            +
                    elif text_config is None:
         | 
| 105 | 
            +
                        text_config = CONFIG_MAPPING["granite"]()
         | 
| 106 | 
            +
             | 
| 107 | 
            +
                    if isinstance(projector_config, dict):
         | 
| 108 | 
            +
                        # TODO - In the future, we should make this generic.
         | 
| 109 | 
            +
                        projector_config = GraniteSpeechProjectorConfig(**projector_config)
         | 
| 110 | 
            +
                    elif projector_config is None:
         | 
| 111 | 
            +
                        projector_config = GraniteSpeechProjectorConfig()
         | 
| 112 | 
            +
             | 
| 113 | 
            +
                    if not isinstance(encoder_config, GraniteSpeechEncoderConfig):
         | 
| 114 | 
            +
                        encoder_config = {} if encoder_config is None else encoder_config
         | 
| 115 | 
            +
                        encoder_config = GraniteSpeechEncoderConfig(**encoder_config)
         | 
| 116 | 
            +
             | 
| 117 | 
            +
                    self.text_config = text_config
         | 
| 118 | 
            +
                    self.encoder_config = encoder_config
         | 
| 119 | 
            +
                    self.projector_config = projector_config
         | 
| 120 | 
            +
                    self.audio_token_index = audio_token_index
         | 
| 121 | 
            +
                    self.initializer_range = initializer_range
         | 
| 122 | 
            +
                    self.has_lora_adapter = has_lora_adapter
         | 
| 123 | 
            +
                    super().__init__(**kwargs)
         | 
| 124 | 
            +
             | 
| 125 | 
            +
             | 
| 126 | 
            +
            __all__ = ["GraniteSpeechEncoderConfig", "GraniteSpeechProjectorConfig", "GraniteSpeechConfig"]
         | 
    	
        feature_extraction_granite_speech.py
    ADDED
    
    | @@ -0,0 +1,118 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # coding=utf-8
         | 
| 2 | 
            +
            # Copyright 2025 The HuggingFace Inc. team.
         | 
| 3 | 
            +
            #
         | 
| 4 | 
            +
            # Licensed under the Apache License, Version 2.0 (the "License");
         | 
| 5 | 
            +
            # you may not use this file except in compliance with the License.
         | 
| 6 | 
            +
            # You may obtain a copy of the License at
         | 
| 7 | 
            +
            #
         | 
| 8 | 
            +
            #     http://www.apache.org/licenses/LICENSE-2.0
         | 
| 9 | 
            +
            #
         | 
| 10 | 
            +
            # Unless required by applicable law or agreed to in writing, software
         | 
| 11 | 
            +
            # distributed under the License is distributed on an "AS IS" BASIS,
         | 
| 12 | 
            +
            # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
         | 
| 13 | 
            +
            # See the License for the specific language governing permissions and
         | 
| 14 | 
            +
            # limitations under the License.
         | 
| 15 | 
            +
            """
         | 
| 16 | 
            +
            Feature extractor class for Speech Granite
         | 
| 17 | 
            +
            """
         | 
| 18 | 
            +
             | 
| 19 | 
            +
            import math
         | 
| 20 | 
            +
            from typing import List, Optional
         | 
| 21 | 
            +
             | 
| 22 | 
            +
            from transformers.feature_extraction_utils import BatchFeature, FeatureExtractionMixin
         | 
| 23 | 
            +
            from transformers.utils import is_torch_available, is_torchaudio_available, logging
         | 
| 24 | 
            +
             | 
| 25 | 
            +
             | 
| 26 | 
            +
            logger = logging.get_logger(__name__)
         | 
| 27 | 
            +
             | 
| 28 | 
            +
            if is_torch_available():
         | 
| 29 | 
            +
                import torch
         | 
| 30 | 
            +
             | 
| 31 | 
            +
            if is_torchaudio_available():
         | 
| 32 | 
            +
                import torchaudio
         | 
| 33 | 
            +
             | 
| 34 | 
            +
             | 
| 35 | 
            +
            class GraniteSpeechFeatureExtractor(FeatureExtractionMixin):
         | 
| 36 | 
            +
                model_input_names = ["input_features"]
         | 
| 37 | 
            +
             | 
| 38 | 
            +
                def __init__(
         | 
| 39 | 
            +
                    self,
         | 
| 40 | 
            +
                    sampling_rate=16000,
         | 
| 41 | 
            +
                    n_fft=512,
         | 
| 42 | 
            +
                    win_length=400,
         | 
| 43 | 
            +
                    hop_length=160,
         | 
| 44 | 
            +
                    n_mels=80,
         | 
| 45 | 
            +
                    projector_window_size=15,
         | 
| 46 | 
            +
                    projector_downsample_rate=5,
         | 
| 47 | 
            +
                    **kwargs,
         | 
| 48 | 
            +
                ):
         | 
| 49 | 
            +
                    super().__init__(**kwargs)
         | 
| 50 | 
            +
                    self.melspec_kwargs = {
         | 
| 51 | 
            +
                        "sample_rate": sampling_rate,
         | 
| 52 | 
            +
                        "n_fft": n_fft,
         | 
| 53 | 
            +
                        "win_length": win_length,
         | 
| 54 | 
            +
                        "hop_length": hop_length,
         | 
| 55 | 
            +
                        "n_mels": n_mels,
         | 
| 56 | 
            +
                    }
         | 
| 57 | 
            +
                    # HACK - for now, lazily initialize the mel spectrogram transform;
         | 
| 58 | 
            +
                    # the feature extractor mixin explodes otherwise because
         | 
| 59 | 
            +
                    # it tries to log the feature extractor, and the melspectrogram
         | 
| 60 | 
            +
                    # transform isn't json serializable...
         | 
| 61 | 
            +
                    self.melspec = None
         | 
| 62 | 
            +
                    self.projector_window_size = projector_window_size
         | 
| 63 | 
            +
                    self.projector_downsample_rate = projector_downsample_rate
         | 
| 64 | 
            +
             | 
| 65 | 
            +
                def _ensure_melspec_transform_is_initialized(self):
         | 
| 66 | 
            +
                    if self.melspec is None:
         | 
| 67 | 
            +
                        self.melspec = torchaudio.transforms.MelSpectrogram(**self.melspec_kwargs)
         | 
| 68 | 
            +
             | 
| 69 | 
            +
                def __call__(
         | 
| 70 | 
            +
                    self,
         | 
| 71 | 
            +
                    x: torch.Tensor,
         | 
| 72 | 
            +
                    device: Optional[str] = "cpu",
         | 
| 73 | 
            +
                ) -> BatchFeature:
         | 
| 74 | 
            +
                    # TODO there is probably a better way to do both of these things...
         | 
| 75 | 
            +
                    self._ensure_melspec_transform_is_initialized()
         | 
| 76 | 
            +
                    if device is not None:
         | 
| 77 | 
            +
                        melspec = self.melspec.to(device)
         | 
| 78 | 
            +
                        x = x.to(device)
         | 
| 79 | 
            +
                    else:
         | 
| 80 | 
            +
                        melspec = self.melspec
         | 
| 81 | 
            +
             | 
| 82 | 
            +
                    B, _ = x.shape
         | 
| 83 | 
            +
                    with torch.no_grad():
         | 
| 84 | 
            +
                        mel = melspec(x.float())
         | 
| 85 | 
            +
                        logmel = mel.transpose(-1, -2).clip_(min=1e-10).log10_()
         | 
| 86 | 
            +
                        mx = logmel.amax(dim=(-2, -1), keepdim=True)
         | 
| 87 | 
            +
                        logmel = torch.maximum(logmel, mx - 8.0).div_(4).add_(1)
         | 
| 88 | 
            +
                        if logmel.shape[1] % 2 == 1:
         | 
| 89 | 
            +
                            logmel = logmel[:, :-1]  # remove last frame if odd
         | 
| 90 | 
            +
                        x = logmel.reshape(B, -1, 2 * logmel.shape[-1])  # stacking and skipping by 2
         | 
| 91 | 
            +
             | 
| 92 | 
            +
                    if x.device != "cpu":
         | 
| 93 | 
            +
                        return x.detach().cpu()
         | 
| 94 | 
            +
                    return x
         | 
| 95 | 
            +
             | 
| 96 | 
            +
                def _get_num_audio_features(self, audio_lengths: List[int]) -> List[int]:
         | 
| 97 | 
            +
                    """
         | 
| 98 | 
            +
                    Gets the (variable length) variable length number of features
         | 
| 99 | 
            +
                    (i.e., projector output) for the sequences being considered.
         | 
| 100 | 
            +
                    """
         | 
| 101 | 
            +
                    hop_length = self.melspec_kwargs["hop_length"]
         | 
| 102 | 
            +
                    effective_window_size = self.projector_window_size // self.projector_downsample_rate
         | 
| 103 | 
            +
             | 
| 104 | 
            +
                    projector_lengths = []
         | 
| 105 | 
            +
                    for raw_length in audio_lengths:
         | 
| 106 | 
            +
                        # mel sequence length computation
         | 
| 107 | 
            +
                        mel_length = raw_length // hop_length + 1
         | 
| 108 | 
            +
                        # encoder frame takes two mel features
         | 
| 109 | 
            +
                        encoder_length = mel_length // 2
         | 
| 110 | 
            +
                        nblocks = math.ceil(encoder_length / self.projector_window_size)
         | 
| 111 | 
            +
                        # projector output length
         | 
| 112 | 
            +
                        projector_length = nblocks * effective_window_size
         | 
| 113 | 
            +
                        projector_lengths.append(projector_length)
         | 
| 114 | 
            +
             | 
| 115 | 
            +
                    return projector_lengths
         | 
| 116 | 
            +
             | 
| 117 | 
            +
             | 
| 118 | 
            +
            __all__ = ["GraniteSpeechFeatureExtractor"]
         | 
    	
        generation_config.json
    ADDED
    
    | @@ -0,0 +1,7 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            {
         | 
| 2 | 
            +
              "_from_model_config": true,
         | 
| 3 | 
            +
              "bos_token_id": 0,
         | 
| 4 | 
            +
              "eos_token_id": 0,
         | 
| 5 | 
            +
              "pad_token_id": 0,
         | 
| 6 | 
            +
              "transformers_version": "4.50.0.dev0"
         | 
| 7 | 
            +
            }
         | 
    	
        merges.txt
    ADDED
    
    | The diff for this file is too large to render. 
		See raw diff | 
|  | 
    	
        model.safetensors.index.json
    ADDED
    
    | @@ -0,0 +1,762 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            {
         | 
| 2 | 
            +
              "metadata": {
         | 
| 3 | 
            +
                "total_size": 16966988452
         | 
| 4 | 
            +
              },
         | 
| 5 | 
            +
              "weight_map": {
         | 
| 6 | 
            +
                "encoder.out.bias": "model-00009-of-00009.safetensors",
         | 
| 7 | 
            +
                "encoder.out.weight": "model-00009-of-00009.safetensors",
         | 
| 8 | 
            +
                "encoder.out_mid.bias": "model-00009-of-00009.safetensors",
         | 
| 9 | 
            +
                "encoder.out_mid.weight": "model-00009-of-00009.safetensors",
         | 
| 10 | 
            +
                "encoder.rnn_tr.0.bias": "model-00009-of-00009.safetensors",
         | 
| 11 | 
            +
                "encoder.rnn_tr.0.weight": "model-00009-of-00009.safetensors",
         | 
| 12 | 
            +
                "encoder.rnn_tr.1.attn.fn.rel_pos_emb.weight": "model-00009-of-00009.safetensors",
         | 
| 13 | 
            +
                "encoder.rnn_tr.1.attn.fn.to_kv.weight": "model-00009-of-00009.safetensors",
         | 
| 14 | 
            +
                "encoder.rnn_tr.1.attn.fn.to_out.bias": "model-00009-of-00009.safetensors",
         | 
| 15 | 
            +
                "encoder.rnn_tr.1.attn.fn.to_out.weight": "model-00009-of-00009.safetensors",
         | 
| 16 | 
            +
                "encoder.rnn_tr.1.attn.fn.to_q.weight": "model-00009-of-00009.safetensors",
         | 
| 17 | 
            +
                "encoder.rnn_tr.1.attn.norm.bias": "model-00009-of-00009.safetensors",
         | 
| 18 | 
            +
                "encoder.rnn_tr.1.attn.norm.weight": "model-00009-of-00009.safetensors",
         | 
| 19 | 
            +
                "encoder.rnn_tr.1.conv.net.0.bias": "model-00009-of-00009.safetensors",
         | 
| 20 | 
            +
                "encoder.rnn_tr.1.conv.net.0.weight": "model-00009-of-00009.safetensors",
         | 
| 21 | 
            +
                "encoder.rnn_tr.1.conv.net.2.bias": "model-00009-of-00009.safetensors",
         | 
| 22 | 
            +
                "encoder.rnn_tr.1.conv.net.2.weight": "model-00009-of-00009.safetensors",
         | 
| 23 | 
            +
                "encoder.rnn_tr.1.conv.net.4.conv.weight": "model-00009-of-00009.safetensors",
         | 
| 24 | 
            +
                "encoder.rnn_tr.1.conv.net.5.bias": "model-00009-of-00009.safetensors",
         | 
| 25 | 
            +
                "encoder.rnn_tr.1.conv.net.5.num_batches_tracked": "model-00009-of-00009.safetensors",
         | 
| 26 | 
            +
                "encoder.rnn_tr.1.conv.net.5.running_mean": "model-00009-of-00009.safetensors",
         | 
| 27 | 
            +
                "encoder.rnn_tr.1.conv.net.5.running_var": "model-00009-of-00009.safetensors",
         | 
| 28 | 
            +
                "encoder.rnn_tr.1.conv.net.5.weight": "model-00009-of-00009.safetensors",
         | 
| 29 | 
            +
                "encoder.rnn_tr.1.conv.net.7.bias": "model-00009-of-00009.safetensors",
         | 
| 30 | 
            +
                "encoder.rnn_tr.1.conv.net.7.weight": "model-00009-of-00009.safetensors",
         | 
| 31 | 
            +
                "encoder.rnn_tr.1.ff1.fn.fn.net.0.bias": "model-00009-of-00009.safetensors",
         | 
| 32 | 
            +
                "encoder.rnn_tr.1.ff1.fn.fn.net.0.weight": "model-00009-of-00009.safetensors",
         | 
| 33 | 
            +
                "encoder.rnn_tr.1.ff1.fn.fn.net.3.bias": "model-00009-of-00009.safetensors",
         | 
| 34 | 
            +
                "encoder.rnn_tr.1.ff1.fn.fn.net.3.weight": "model-00009-of-00009.safetensors",
         | 
| 35 | 
            +
                "encoder.rnn_tr.1.ff1.fn.norm.bias": "model-00009-of-00009.safetensors",
         | 
| 36 | 
            +
                "encoder.rnn_tr.1.ff1.fn.norm.weight": "model-00009-of-00009.safetensors",
         | 
| 37 | 
            +
                "encoder.rnn_tr.1.ff2.fn.fn.net.0.bias": "model-00009-of-00009.safetensors",
         | 
| 38 | 
            +
                "encoder.rnn_tr.1.ff2.fn.fn.net.0.weight": "model-00009-of-00009.safetensors",
         | 
| 39 | 
            +
                "encoder.rnn_tr.1.ff2.fn.fn.net.3.bias": "model-00009-of-00009.safetensors",
         | 
| 40 | 
            +
                "encoder.rnn_tr.1.ff2.fn.fn.net.3.weight": "model-00009-of-00009.safetensors",
         | 
| 41 | 
            +
                "encoder.rnn_tr.1.ff2.fn.norm.bias": "model-00009-of-00009.safetensors",
         | 
| 42 | 
            +
                "encoder.rnn_tr.1.ff2.fn.norm.weight": "model-00009-of-00009.safetensors",
         | 
| 43 | 
            +
                "encoder.rnn_tr.1.post_norm.bias": "model-00009-of-00009.safetensors",
         | 
| 44 | 
            +
                "encoder.rnn_tr.1.post_norm.weight": "model-00009-of-00009.safetensors",
         | 
| 45 | 
            +
                "encoder.rnn_tr.10.attn.fn.rel_pos_emb.weight": "model-00009-of-00009.safetensors",
         | 
| 46 | 
            +
                "encoder.rnn_tr.10.attn.fn.to_kv.weight": "model-00009-of-00009.safetensors",
         | 
| 47 | 
            +
                "encoder.rnn_tr.10.attn.fn.to_out.bias": "model-00009-of-00009.safetensors",
         | 
| 48 | 
            +
                "encoder.rnn_tr.10.attn.fn.to_out.weight": "model-00009-of-00009.safetensors",
         | 
| 49 | 
            +
                "encoder.rnn_tr.10.attn.fn.to_q.weight": "model-00009-of-00009.safetensors",
         | 
| 50 | 
            +
                "encoder.rnn_tr.10.attn.norm.bias": "model-00009-of-00009.safetensors",
         | 
| 51 | 
            +
                "encoder.rnn_tr.10.attn.norm.weight": "model-00009-of-00009.safetensors",
         | 
| 52 | 
            +
                "encoder.rnn_tr.10.conv.net.0.bias": "model-00009-of-00009.safetensors",
         | 
| 53 | 
            +
                "encoder.rnn_tr.10.conv.net.0.weight": "model-00009-of-00009.safetensors",
         | 
| 54 | 
            +
                "encoder.rnn_tr.10.conv.net.2.bias": "model-00009-of-00009.safetensors",
         | 
| 55 | 
            +
                "encoder.rnn_tr.10.conv.net.2.weight": "model-00009-of-00009.safetensors",
         | 
| 56 | 
            +
                "encoder.rnn_tr.10.conv.net.4.conv.weight": "model-00009-of-00009.safetensors",
         | 
| 57 | 
            +
                "encoder.rnn_tr.10.conv.net.5.bias": "model-00009-of-00009.safetensors",
         | 
| 58 | 
            +
                "encoder.rnn_tr.10.conv.net.5.num_batches_tracked": "model-00009-of-00009.safetensors",
         | 
| 59 | 
            +
                "encoder.rnn_tr.10.conv.net.5.running_mean": "model-00009-of-00009.safetensors",
         | 
| 60 | 
            +
                "encoder.rnn_tr.10.conv.net.5.running_var": "model-00009-of-00009.safetensors",
         | 
| 61 | 
            +
                "encoder.rnn_tr.10.conv.net.5.weight": "model-00009-of-00009.safetensors",
         | 
| 62 | 
            +
                "encoder.rnn_tr.10.conv.net.7.bias": "model-00009-of-00009.safetensors",
         | 
| 63 | 
            +
                "encoder.rnn_tr.10.conv.net.7.weight": "model-00009-of-00009.safetensors",
         | 
| 64 | 
            +
                "encoder.rnn_tr.10.ff1.fn.fn.net.0.bias": "model-00009-of-00009.safetensors",
         | 
| 65 | 
            +
                "encoder.rnn_tr.10.ff1.fn.fn.net.0.weight": "model-00009-of-00009.safetensors",
         | 
| 66 | 
            +
                "encoder.rnn_tr.10.ff1.fn.fn.net.3.bias": "model-00009-of-00009.safetensors",
         | 
| 67 | 
            +
                "encoder.rnn_tr.10.ff1.fn.fn.net.3.weight": "model-00009-of-00009.safetensors",
         | 
| 68 | 
            +
                "encoder.rnn_tr.10.ff1.fn.norm.bias": "model-00009-of-00009.safetensors",
         | 
| 69 | 
            +
                "encoder.rnn_tr.10.ff1.fn.norm.weight": "model-00009-of-00009.safetensors",
         | 
| 70 | 
            +
                "encoder.rnn_tr.10.ff2.fn.fn.net.0.bias": "model-00009-of-00009.safetensors",
         | 
| 71 | 
            +
                "encoder.rnn_tr.10.ff2.fn.fn.net.0.weight": "model-00009-of-00009.safetensors",
         | 
| 72 | 
            +
                "encoder.rnn_tr.10.ff2.fn.fn.net.3.bias": "model-00009-of-00009.safetensors",
         | 
| 73 | 
            +
                "encoder.rnn_tr.10.ff2.fn.fn.net.3.weight": "model-00009-of-00009.safetensors",
         | 
| 74 | 
            +
                "encoder.rnn_tr.10.ff2.fn.norm.bias": "model-00009-of-00009.safetensors",
         | 
| 75 | 
            +
                "encoder.rnn_tr.10.ff2.fn.norm.weight": "model-00009-of-00009.safetensors",
         | 
| 76 | 
            +
                "encoder.rnn_tr.10.post_norm.bias": "model-00009-of-00009.safetensors",
         | 
| 77 | 
            +
                "encoder.rnn_tr.10.post_norm.weight": "model-00009-of-00009.safetensors",
         | 
| 78 | 
            +
                "encoder.rnn_tr.2.attn.fn.rel_pos_emb.weight": "model-00009-of-00009.safetensors",
         | 
| 79 | 
            +
                "encoder.rnn_tr.2.attn.fn.to_kv.weight": "model-00009-of-00009.safetensors",
         | 
| 80 | 
            +
                "encoder.rnn_tr.2.attn.fn.to_out.bias": "model-00009-of-00009.safetensors",
         | 
| 81 | 
            +
                "encoder.rnn_tr.2.attn.fn.to_out.weight": "model-00009-of-00009.safetensors",
         | 
| 82 | 
            +
                "encoder.rnn_tr.2.attn.fn.to_q.weight": "model-00009-of-00009.safetensors",
         | 
| 83 | 
            +
                "encoder.rnn_tr.2.attn.norm.bias": "model-00009-of-00009.safetensors",
         | 
| 84 | 
            +
                "encoder.rnn_tr.2.attn.norm.weight": "model-00009-of-00009.safetensors",
         | 
| 85 | 
            +
                "encoder.rnn_tr.2.conv.net.0.bias": "model-00009-of-00009.safetensors",
         | 
| 86 | 
            +
                "encoder.rnn_tr.2.conv.net.0.weight": "model-00009-of-00009.safetensors",
         | 
| 87 | 
            +
                "encoder.rnn_tr.2.conv.net.2.bias": "model-00009-of-00009.safetensors",
         | 
| 88 | 
            +
                "encoder.rnn_tr.2.conv.net.2.weight": "model-00009-of-00009.safetensors",
         | 
| 89 | 
            +
                "encoder.rnn_tr.2.conv.net.4.conv.weight": "model-00009-of-00009.safetensors",
         | 
| 90 | 
            +
                "encoder.rnn_tr.2.conv.net.5.bias": "model-00009-of-00009.safetensors",
         | 
| 91 | 
            +
                "encoder.rnn_tr.2.conv.net.5.num_batches_tracked": "model-00009-of-00009.safetensors",
         | 
| 92 | 
            +
                "encoder.rnn_tr.2.conv.net.5.running_mean": "model-00009-of-00009.safetensors",
         | 
| 93 | 
            +
                "encoder.rnn_tr.2.conv.net.5.running_var": "model-00009-of-00009.safetensors",
         | 
| 94 | 
            +
                "encoder.rnn_tr.2.conv.net.5.weight": "model-00009-of-00009.safetensors",
         | 
| 95 | 
            +
                "encoder.rnn_tr.2.conv.net.7.bias": "model-00009-of-00009.safetensors",
         | 
| 96 | 
            +
                "encoder.rnn_tr.2.conv.net.7.weight": "model-00009-of-00009.safetensors",
         | 
| 97 | 
            +
                "encoder.rnn_tr.2.ff1.fn.fn.net.0.bias": "model-00009-of-00009.safetensors",
         | 
| 98 | 
            +
                "encoder.rnn_tr.2.ff1.fn.fn.net.0.weight": "model-00009-of-00009.safetensors",
         | 
| 99 | 
            +
                "encoder.rnn_tr.2.ff1.fn.fn.net.3.bias": "model-00009-of-00009.safetensors",
         | 
| 100 | 
            +
                "encoder.rnn_tr.2.ff1.fn.fn.net.3.weight": "model-00009-of-00009.safetensors",
         | 
| 101 | 
            +
                "encoder.rnn_tr.2.ff1.fn.norm.bias": "model-00009-of-00009.safetensors",
         | 
| 102 | 
            +
                "encoder.rnn_tr.2.ff1.fn.norm.weight": "model-00009-of-00009.safetensors",
         | 
| 103 | 
            +
                "encoder.rnn_tr.2.ff2.fn.fn.net.0.bias": "model-00009-of-00009.safetensors",
         | 
| 104 | 
            +
                "encoder.rnn_tr.2.ff2.fn.fn.net.0.weight": "model-00009-of-00009.safetensors",
         | 
| 105 | 
            +
                "encoder.rnn_tr.2.ff2.fn.fn.net.3.bias": "model-00009-of-00009.safetensors",
         | 
| 106 | 
            +
                "encoder.rnn_tr.2.ff2.fn.fn.net.3.weight": "model-00009-of-00009.safetensors",
         | 
| 107 | 
            +
                "encoder.rnn_tr.2.ff2.fn.norm.bias": "model-00009-of-00009.safetensors",
         | 
| 108 | 
            +
                "encoder.rnn_tr.2.ff2.fn.norm.weight": "model-00009-of-00009.safetensors",
         | 
| 109 | 
            +
                "encoder.rnn_tr.2.post_norm.bias": "model-00009-of-00009.safetensors",
         | 
| 110 | 
            +
                "encoder.rnn_tr.2.post_norm.weight": "model-00009-of-00009.safetensors",
         | 
| 111 | 
            +
                "encoder.rnn_tr.3.attn.fn.rel_pos_emb.weight": "model-00009-of-00009.safetensors",
         | 
| 112 | 
            +
                "encoder.rnn_tr.3.attn.fn.to_kv.weight": "model-00009-of-00009.safetensors",
         | 
| 113 | 
            +
                "encoder.rnn_tr.3.attn.fn.to_out.bias": "model-00009-of-00009.safetensors",
         | 
| 114 | 
            +
                "encoder.rnn_tr.3.attn.fn.to_out.weight": "model-00009-of-00009.safetensors",
         | 
| 115 | 
            +
                "encoder.rnn_tr.3.attn.fn.to_q.weight": "model-00009-of-00009.safetensors",
         | 
| 116 | 
            +
                "encoder.rnn_tr.3.attn.norm.bias": "model-00009-of-00009.safetensors",
         | 
| 117 | 
            +
                "encoder.rnn_tr.3.attn.norm.weight": "model-00009-of-00009.safetensors",
         | 
| 118 | 
            +
                "encoder.rnn_tr.3.conv.net.0.bias": "model-00009-of-00009.safetensors",
         | 
| 119 | 
            +
                "encoder.rnn_tr.3.conv.net.0.weight": "model-00009-of-00009.safetensors",
         | 
| 120 | 
            +
                "encoder.rnn_tr.3.conv.net.2.bias": "model-00009-of-00009.safetensors",
         | 
| 121 | 
            +
                "encoder.rnn_tr.3.conv.net.2.weight": "model-00009-of-00009.safetensors",
         | 
| 122 | 
            +
                "encoder.rnn_tr.3.conv.net.4.conv.weight": "model-00009-of-00009.safetensors",
         | 
| 123 | 
            +
                "encoder.rnn_tr.3.conv.net.5.bias": "model-00009-of-00009.safetensors",
         | 
| 124 | 
            +
                "encoder.rnn_tr.3.conv.net.5.num_batches_tracked": "model-00009-of-00009.safetensors",
         | 
| 125 | 
            +
                "encoder.rnn_tr.3.conv.net.5.running_mean": "model-00009-of-00009.safetensors",
         | 
| 126 | 
            +
                "encoder.rnn_tr.3.conv.net.5.running_var": "model-00009-of-00009.safetensors",
         | 
| 127 | 
            +
                "encoder.rnn_tr.3.conv.net.5.weight": "model-00009-of-00009.safetensors",
         | 
| 128 | 
            +
                "encoder.rnn_tr.3.conv.net.7.bias": "model-00009-of-00009.safetensors",
         | 
| 129 | 
            +
                "encoder.rnn_tr.3.conv.net.7.weight": "model-00009-of-00009.safetensors",
         | 
| 130 | 
            +
                "encoder.rnn_tr.3.ff1.fn.fn.net.0.bias": "model-00009-of-00009.safetensors",
         | 
| 131 | 
            +
                "encoder.rnn_tr.3.ff1.fn.fn.net.0.weight": "model-00009-of-00009.safetensors",
         | 
| 132 | 
            +
                "encoder.rnn_tr.3.ff1.fn.fn.net.3.bias": "model-00009-of-00009.safetensors",
         | 
| 133 | 
            +
                "encoder.rnn_tr.3.ff1.fn.fn.net.3.weight": "model-00009-of-00009.safetensors",
         | 
| 134 | 
            +
                "encoder.rnn_tr.3.ff1.fn.norm.bias": "model-00009-of-00009.safetensors",
         | 
| 135 | 
            +
                "encoder.rnn_tr.3.ff1.fn.norm.weight": "model-00009-of-00009.safetensors",
         | 
| 136 | 
            +
                "encoder.rnn_tr.3.ff2.fn.fn.net.0.bias": "model-00009-of-00009.safetensors",
         | 
| 137 | 
            +
                "encoder.rnn_tr.3.ff2.fn.fn.net.0.weight": "model-00009-of-00009.safetensors",
         | 
| 138 | 
            +
                "encoder.rnn_tr.3.ff2.fn.fn.net.3.bias": "model-00009-of-00009.safetensors",
         | 
| 139 | 
            +
                "encoder.rnn_tr.3.ff2.fn.fn.net.3.weight": "model-00009-of-00009.safetensors",
         | 
| 140 | 
            +
                "encoder.rnn_tr.3.ff2.fn.norm.bias": "model-00009-of-00009.safetensors",
         | 
| 141 | 
            +
                "encoder.rnn_tr.3.ff2.fn.norm.weight": "model-00009-of-00009.safetensors",
         | 
| 142 | 
            +
                "encoder.rnn_tr.3.post_norm.bias": "model-00009-of-00009.safetensors",
         | 
| 143 | 
            +
                "encoder.rnn_tr.3.post_norm.weight": "model-00009-of-00009.safetensors",
         | 
| 144 | 
            +
                "encoder.rnn_tr.4.attn.fn.rel_pos_emb.weight": "model-00009-of-00009.safetensors",
         | 
| 145 | 
            +
                "encoder.rnn_tr.4.attn.fn.to_kv.weight": "model-00009-of-00009.safetensors",
         | 
| 146 | 
            +
                "encoder.rnn_tr.4.attn.fn.to_out.bias": "model-00009-of-00009.safetensors",
         | 
| 147 | 
            +
                "encoder.rnn_tr.4.attn.fn.to_out.weight": "model-00009-of-00009.safetensors",
         | 
| 148 | 
            +
                "encoder.rnn_tr.4.attn.fn.to_q.weight": "model-00009-of-00009.safetensors",
         | 
| 149 | 
            +
                "encoder.rnn_tr.4.attn.norm.bias": "model-00009-of-00009.safetensors",
         | 
| 150 | 
            +
                "encoder.rnn_tr.4.attn.norm.weight": "model-00009-of-00009.safetensors",
         | 
| 151 | 
            +
                "encoder.rnn_tr.4.conv.net.0.bias": "model-00009-of-00009.safetensors",
         | 
| 152 | 
            +
                "encoder.rnn_tr.4.conv.net.0.weight": "model-00009-of-00009.safetensors",
         | 
| 153 | 
            +
                "encoder.rnn_tr.4.conv.net.2.bias": "model-00009-of-00009.safetensors",
         | 
| 154 | 
            +
                "encoder.rnn_tr.4.conv.net.2.weight": "model-00009-of-00009.safetensors",
         | 
| 155 | 
            +
                "encoder.rnn_tr.4.conv.net.4.conv.weight": "model-00009-of-00009.safetensors",
         | 
| 156 | 
            +
                "encoder.rnn_tr.4.conv.net.5.bias": "model-00009-of-00009.safetensors",
         | 
| 157 | 
            +
                "encoder.rnn_tr.4.conv.net.5.num_batches_tracked": "model-00009-of-00009.safetensors",
         | 
| 158 | 
            +
                "encoder.rnn_tr.4.conv.net.5.running_mean": "model-00009-of-00009.safetensors",
         | 
| 159 | 
            +
                "encoder.rnn_tr.4.conv.net.5.running_var": "model-00009-of-00009.safetensors",
         | 
| 160 | 
            +
                "encoder.rnn_tr.4.conv.net.5.weight": "model-00009-of-00009.safetensors",
         | 
| 161 | 
            +
                "encoder.rnn_tr.4.conv.net.7.bias": "model-00009-of-00009.safetensors",
         | 
| 162 | 
            +
                "encoder.rnn_tr.4.conv.net.7.weight": "model-00009-of-00009.safetensors",
         | 
| 163 | 
            +
                "encoder.rnn_tr.4.ff1.fn.fn.net.0.bias": "model-00009-of-00009.safetensors",
         | 
| 164 | 
            +
                "encoder.rnn_tr.4.ff1.fn.fn.net.0.weight": "model-00009-of-00009.safetensors",
         | 
| 165 | 
            +
                "encoder.rnn_tr.4.ff1.fn.fn.net.3.bias": "model-00009-of-00009.safetensors",
         | 
| 166 | 
            +
                "encoder.rnn_tr.4.ff1.fn.fn.net.3.weight": "model-00009-of-00009.safetensors",
         | 
| 167 | 
            +
                "encoder.rnn_tr.4.ff1.fn.norm.bias": "model-00009-of-00009.safetensors",
         | 
| 168 | 
            +
                "encoder.rnn_tr.4.ff1.fn.norm.weight": "model-00009-of-00009.safetensors",
         | 
| 169 | 
            +
                "encoder.rnn_tr.4.ff2.fn.fn.net.0.bias": "model-00009-of-00009.safetensors",
         | 
| 170 | 
            +
                "encoder.rnn_tr.4.ff2.fn.fn.net.0.weight": "model-00009-of-00009.safetensors",
         | 
| 171 | 
            +
                "encoder.rnn_tr.4.ff2.fn.fn.net.3.bias": "model-00009-of-00009.safetensors",
         | 
| 172 | 
            +
                "encoder.rnn_tr.4.ff2.fn.fn.net.3.weight": "model-00009-of-00009.safetensors",
         | 
| 173 | 
            +
                "encoder.rnn_tr.4.ff2.fn.norm.bias": "model-00009-of-00009.safetensors",
         | 
| 174 | 
            +
                "encoder.rnn_tr.4.ff2.fn.norm.weight": "model-00009-of-00009.safetensors",
         | 
| 175 | 
            +
                "encoder.rnn_tr.4.post_norm.bias": "model-00009-of-00009.safetensors",
         | 
| 176 | 
            +
                "encoder.rnn_tr.4.post_norm.weight": "model-00009-of-00009.safetensors",
         | 
| 177 | 
            +
                "encoder.rnn_tr.5.attn.fn.rel_pos_emb.weight": "model-00009-of-00009.safetensors",
         | 
| 178 | 
            +
                "encoder.rnn_tr.5.attn.fn.to_kv.weight": "model-00009-of-00009.safetensors",
         | 
| 179 | 
            +
                "encoder.rnn_tr.5.attn.fn.to_out.bias": "model-00009-of-00009.safetensors",
         | 
| 180 | 
            +
                "encoder.rnn_tr.5.attn.fn.to_out.weight": "model-00009-of-00009.safetensors",
         | 
| 181 | 
            +
                "encoder.rnn_tr.5.attn.fn.to_q.weight": "model-00009-of-00009.safetensors",
         | 
| 182 | 
            +
                "encoder.rnn_tr.5.attn.norm.bias": "model-00009-of-00009.safetensors",
         | 
| 183 | 
            +
                "encoder.rnn_tr.5.attn.norm.weight": "model-00009-of-00009.safetensors",
         | 
| 184 | 
            +
                "encoder.rnn_tr.5.conv.net.0.bias": "model-00009-of-00009.safetensors",
         | 
| 185 | 
            +
                "encoder.rnn_tr.5.conv.net.0.weight": "model-00009-of-00009.safetensors",
         | 
| 186 | 
            +
                "encoder.rnn_tr.5.conv.net.2.bias": "model-00009-of-00009.safetensors",
         | 
| 187 | 
            +
                "encoder.rnn_tr.5.conv.net.2.weight": "model-00009-of-00009.safetensors",
         | 
| 188 | 
            +
                "encoder.rnn_tr.5.conv.net.4.conv.weight": "model-00009-of-00009.safetensors",
         | 
| 189 | 
            +
                "encoder.rnn_tr.5.conv.net.5.bias": "model-00009-of-00009.safetensors",
         | 
| 190 | 
            +
                "encoder.rnn_tr.5.conv.net.5.num_batches_tracked": "model-00009-of-00009.safetensors",
         | 
| 191 | 
            +
                "encoder.rnn_tr.5.conv.net.5.running_mean": "model-00009-of-00009.safetensors",
         | 
| 192 | 
            +
                "encoder.rnn_tr.5.conv.net.5.running_var": "model-00009-of-00009.safetensors",
         | 
| 193 | 
            +
                "encoder.rnn_tr.5.conv.net.5.weight": "model-00009-of-00009.safetensors",
         | 
| 194 | 
            +
                "encoder.rnn_tr.5.conv.net.7.bias": "model-00009-of-00009.safetensors",
         | 
| 195 | 
            +
                "encoder.rnn_tr.5.conv.net.7.weight": "model-00009-of-00009.safetensors",
         | 
| 196 | 
            +
                "encoder.rnn_tr.5.ff1.fn.fn.net.0.bias": "model-00009-of-00009.safetensors",
         | 
| 197 | 
            +
                "encoder.rnn_tr.5.ff1.fn.fn.net.0.weight": "model-00009-of-00009.safetensors",
         | 
| 198 | 
            +
                "encoder.rnn_tr.5.ff1.fn.fn.net.3.bias": "model-00009-of-00009.safetensors",
         | 
| 199 | 
            +
                "encoder.rnn_tr.5.ff1.fn.fn.net.3.weight": "model-00009-of-00009.safetensors",
         | 
| 200 | 
            +
                "encoder.rnn_tr.5.ff1.fn.norm.bias": "model-00009-of-00009.safetensors",
         | 
| 201 | 
            +
                "encoder.rnn_tr.5.ff1.fn.norm.weight": "model-00009-of-00009.safetensors",
         | 
| 202 | 
            +
                "encoder.rnn_tr.5.ff2.fn.fn.net.0.bias": "model-00009-of-00009.safetensors",
         | 
| 203 | 
            +
                "encoder.rnn_tr.5.ff2.fn.fn.net.0.weight": "model-00009-of-00009.safetensors",
         | 
| 204 | 
            +
                "encoder.rnn_tr.5.ff2.fn.fn.net.3.bias": "model-00009-of-00009.safetensors",
         | 
| 205 | 
            +
                "encoder.rnn_tr.5.ff2.fn.fn.net.3.weight": "model-00009-of-00009.safetensors",
         | 
| 206 | 
            +
                "encoder.rnn_tr.5.ff2.fn.norm.bias": "model-00009-of-00009.safetensors",
         | 
| 207 | 
            +
                "encoder.rnn_tr.5.ff2.fn.norm.weight": "model-00009-of-00009.safetensors",
         | 
| 208 | 
            +
                "encoder.rnn_tr.5.post_norm.bias": "model-00009-of-00009.safetensors",
         | 
| 209 | 
            +
                "encoder.rnn_tr.5.post_norm.weight": "model-00009-of-00009.safetensors",
         | 
| 210 | 
            +
                "encoder.rnn_tr.6.attn.fn.rel_pos_emb.weight": "model-00009-of-00009.safetensors",
         | 
| 211 | 
            +
                "encoder.rnn_tr.6.attn.fn.to_kv.weight": "model-00009-of-00009.safetensors",
         | 
| 212 | 
            +
                "encoder.rnn_tr.6.attn.fn.to_out.bias": "model-00009-of-00009.safetensors",
         | 
| 213 | 
            +
                "encoder.rnn_tr.6.attn.fn.to_out.weight": "model-00009-of-00009.safetensors",
         | 
| 214 | 
            +
                "encoder.rnn_tr.6.attn.fn.to_q.weight": "model-00009-of-00009.safetensors",
         | 
| 215 | 
            +
                "encoder.rnn_tr.6.attn.norm.bias": "model-00009-of-00009.safetensors",
         | 
| 216 | 
            +
                "encoder.rnn_tr.6.attn.norm.weight": "model-00009-of-00009.safetensors",
         | 
| 217 | 
            +
                "encoder.rnn_tr.6.conv.net.0.bias": "model-00009-of-00009.safetensors",
         | 
| 218 | 
            +
                "encoder.rnn_tr.6.conv.net.0.weight": "model-00009-of-00009.safetensors",
         | 
| 219 | 
            +
                "encoder.rnn_tr.6.conv.net.2.bias": "model-00009-of-00009.safetensors",
         | 
| 220 | 
            +
                "encoder.rnn_tr.6.conv.net.2.weight": "model-00009-of-00009.safetensors",
         | 
| 221 | 
            +
                "encoder.rnn_tr.6.conv.net.4.conv.weight": "model-00009-of-00009.safetensors",
         | 
| 222 | 
            +
                "encoder.rnn_tr.6.conv.net.5.bias": "model-00009-of-00009.safetensors",
         | 
| 223 | 
            +
                "encoder.rnn_tr.6.conv.net.5.num_batches_tracked": "model-00009-of-00009.safetensors",
         | 
| 224 | 
            +
                "encoder.rnn_tr.6.conv.net.5.running_mean": "model-00009-of-00009.safetensors",
         | 
| 225 | 
            +
                "encoder.rnn_tr.6.conv.net.5.running_var": "model-00009-of-00009.safetensors",
         | 
| 226 | 
            +
                "encoder.rnn_tr.6.conv.net.5.weight": "model-00009-of-00009.safetensors",
         | 
| 227 | 
            +
                "encoder.rnn_tr.6.conv.net.7.bias": "model-00009-of-00009.safetensors",
         | 
| 228 | 
            +
                "encoder.rnn_tr.6.conv.net.7.weight": "model-00009-of-00009.safetensors",
         | 
| 229 | 
            +
                "encoder.rnn_tr.6.ff1.fn.fn.net.0.bias": "model-00009-of-00009.safetensors",
         | 
| 230 | 
            +
                "encoder.rnn_tr.6.ff1.fn.fn.net.0.weight": "model-00009-of-00009.safetensors",
         | 
| 231 | 
            +
                "encoder.rnn_tr.6.ff1.fn.fn.net.3.bias": "model-00009-of-00009.safetensors",
         | 
| 232 | 
            +
                "encoder.rnn_tr.6.ff1.fn.fn.net.3.weight": "model-00009-of-00009.safetensors",
         | 
| 233 | 
            +
                "encoder.rnn_tr.6.ff1.fn.norm.bias": "model-00009-of-00009.safetensors",
         | 
| 234 | 
            +
                "encoder.rnn_tr.6.ff1.fn.norm.weight": "model-00009-of-00009.safetensors",
         | 
| 235 | 
            +
                "encoder.rnn_tr.6.ff2.fn.fn.net.0.bias": "model-00009-of-00009.safetensors",
         | 
| 236 | 
            +
                "encoder.rnn_tr.6.ff2.fn.fn.net.0.weight": "model-00009-of-00009.safetensors",
         | 
| 237 | 
            +
                "encoder.rnn_tr.6.ff2.fn.fn.net.3.bias": "model-00009-of-00009.safetensors",
         | 
| 238 | 
            +
                "encoder.rnn_tr.6.ff2.fn.fn.net.3.weight": "model-00009-of-00009.safetensors",
         | 
| 239 | 
            +
                "encoder.rnn_tr.6.ff2.fn.norm.bias": "model-00009-of-00009.safetensors",
         | 
| 240 | 
            +
                "encoder.rnn_tr.6.ff2.fn.norm.weight": "model-00009-of-00009.safetensors",
         | 
| 241 | 
            +
                "encoder.rnn_tr.6.post_norm.bias": "model-00009-of-00009.safetensors",
         | 
| 242 | 
            +
                "encoder.rnn_tr.6.post_norm.weight": "model-00009-of-00009.safetensors",
         | 
| 243 | 
            +
                "encoder.rnn_tr.7.attn.fn.rel_pos_emb.weight": "model-00009-of-00009.safetensors",
         | 
| 244 | 
            +
                "encoder.rnn_tr.7.attn.fn.to_kv.weight": "model-00009-of-00009.safetensors",
         | 
| 245 | 
            +
                "encoder.rnn_tr.7.attn.fn.to_out.bias": "model-00009-of-00009.safetensors",
         | 
| 246 | 
            +
                "encoder.rnn_tr.7.attn.fn.to_out.weight": "model-00009-of-00009.safetensors",
         | 
| 247 | 
            +
                "encoder.rnn_tr.7.attn.fn.to_q.weight": "model-00009-of-00009.safetensors",
         | 
| 248 | 
            +
                "encoder.rnn_tr.7.attn.norm.bias": "model-00009-of-00009.safetensors",
         | 
| 249 | 
            +
                "encoder.rnn_tr.7.attn.norm.weight": "model-00009-of-00009.safetensors",
         | 
| 250 | 
            +
                "encoder.rnn_tr.7.conv.net.0.bias": "model-00009-of-00009.safetensors",
         | 
| 251 | 
            +
                "encoder.rnn_tr.7.conv.net.0.weight": "model-00009-of-00009.safetensors",
         | 
| 252 | 
            +
                "encoder.rnn_tr.7.conv.net.2.bias": "model-00009-of-00009.safetensors",
         | 
| 253 | 
            +
                "encoder.rnn_tr.7.conv.net.2.weight": "model-00009-of-00009.safetensors",
         | 
| 254 | 
            +
                "encoder.rnn_tr.7.conv.net.4.conv.weight": "model-00009-of-00009.safetensors",
         | 
| 255 | 
            +
                "encoder.rnn_tr.7.conv.net.5.bias": "model-00009-of-00009.safetensors",
         | 
| 256 | 
            +
                "encoder.rnn_tr.7.conv.net.5.num_batches_tracked": "model-00009-of-00009.safetensors",
         | 
| 257 | 
            +
                "encoder.rnn_tr.7.conv.net.5.running_mean": "model-00009-of-00009.safetensors",
         | 
| 258 | 
            +
                "encoder.rnn_tr.7.conv.net.5.running_var": "model-00009-of-00009.safetensors",
         | 
| 259 | 
            +
                "encoder.rnn_tr.7.conv.net.5.weight": "model-00009-of-00009.safetensors",
         | 
| 260 | 
            +
                "encoder.rnn_tr.7.conv.net.7.bias": "model-00009-of-00009.safetensors",
         | 
| 261 | 
            +
                "encoder.rnn_tr.7.conv.net.7.weight": "model-00009-of-00009.safetensors",
         | 
| 262 | 
            +
                "encoder.rnn_tr.7.ff1.fn.fn.net.0.bias": "model-00009-of-00009.safetensors",
         | 
| 263 | 
            +
                "encoder.rnn_tr.7.ff1.fn.fn.net.0.weight": "model-00009-of-00009.safetensors",
         | 
| 264 | 
            +
                "encoder.rnn_tr.7.ff1.fn.fn.net.3.bias": "model-00009-of-00009.safetensors",
         | 
| 265 | 
            +
                "encoder.rnn_tr.7.ff1.fn.fn.net.3.weight": "model-00009-of-00009.safetensors",
         | 
| 266 | 
            +
                "encoder.rnn_tr.7.ff1.fn.norm.bias": "model-00009-of-00009.safetensors",
         | 
| 267 | 
            +
                "encoder.rnn_tr.7.ff1.fn.norm.weight": "model-00009-of-00009.safetensors",
         | 
| 268 | 
            +
                "encoder.rnn_tr.7.ff2.fn.fn.net.0.bias": "model-00009-of-00009.safetensors",
         | 
| 269 | 
            +
                "encoder.rnn_tr.7.ff2.fn.fn.net.0.weight": "model-00009-of-00009.safetensors",
         | 
| 270 | 
            +
                "encoder.rnn_tr.7.ff2.fn.fn.net.3.bias": "model-00009-of-00009.safetensors",
         | 
| 271 | 
            +
                "encoder.rnn_tr.7.ff2.fn.fn.net.3.weight": "model-00009-of-00009.safetensors",
         | 
| 272 | 
            +
                "encoder.rnn_tr.7.ff2.fn.norm.bias": "model-00009-of-00009.safetensors",
         | 
| 273 | 
            +
                "encoder.rnn_tr.7.ff2.fn.norm.weight": "model-00009-of-00009.safetensors",
         | 
| 274 | 
            +
                "encoder.rnn_tr.7.post_norm.bias": "model-00009-of-00009.safetensors",
         | 
| 275 | 
            +
                "encoder.rnn_tr.7.post_norm.weight": "model-00009-of-00009.safetensors",
         | 
| 276 | 
            +
                "encoder.rnn_tr.8.attn.fn.rel_pos_emb.weight": "model-00009-of-00009.safetensors",
         | 
| 277 | 
            +
                "encoder.rnn_tr.8.attn.fn.to_kv.weight": "model-00009-of-00009.safetensors",
         | 
| 278 | 
            +
                "encoder.rnn_tr.8.attn.fn.to_out.bias": "model-00009-of-00009.safetensors",
         | 
| 279 | 
            +
                "encoder.rnn_tr.8.attn.fn.to_out.weight": "model-00009-of-00009.safetensors",
         | 
| 280 | 
            +
                "encoder.rnn_tr.8.attn.fn.to_q.weight": "model-00009-of-00009.safetensors",
         | 
| 281 | 
            +
                "encoder.rnn_tr.8.attn.norm.bias": "model-00009-of-00009.safetensors",
         | 
| 282 | 
            +
                "encoder.rnn_tr.8.attn.norm.weight": "model-00009-of-00009.safetensors",
         | 
| 283 | 
            +
                "encoder.rnn_tr.8.conv.net.0.bias": "model-00009-of-00009.safetensors",
         | 
| 284 | 
            +
                "encoder.rnn_tr.8.conv.net.0.weight": "model-00009-of-00009.safetensors",
         | 
| 285 | 
            +
                "encoder.rnn_tr.8.conv.net.2.bias": "model-00009-of-00009.safetensors",
         | 
| 286 | 
            +
                "encoder.rnn_tr.8.conv.net.2.weight": "model-00009-of-00009.safetensors",
         | 
| 287 | 
            +
                "encoder.rnn_tr.8.conv.net.4.conv.weight": "model-00009-of-00009.safetensors",
         | 
| 288 | 
            +
                "encoder.rnn_tr.8.conv.net.5.bias": "model-00009-of-00009.safetensors",
         | 
| 289 | 
            +
                "encoder.rnn_tr.8.conv.net.5.num_batches_tracked": "model-00009-of-00009.safetensors",
         | 
| 290 | 
            +
                "encoder.rnn_tr.8.conv.net.5.running_mean": "model-00009-of-00009.safetensors",
         | 
| 291 | 
            +
                "encoder.rnn_tr.8.conv.net.5.running_var": "model-00009-of-00009.safetensors",
         | 
| 292 | 
            +
                "encoder.rnn_tr.8.conv.net.5.weight": "model-00009-of-00009.safetensors",
         | 
| 293 | 
            +
                "encoder.rnn_tr.8.conv.net.7.bias": "model-00009-of-00009.safetensors",
         | 
| 294 | 
            +
                "encoder.rnn_tr.8.conv.net.7.weight": "model-00009-of-00009.safetensors",
         | 
| 295 | 
            +
                "encoder.rnn_tr.8.ff1.fn.fn.net.0.bias": "model-00009-of-00009.safetensors",
         | 
| 296 | 
            +
                "encoder.rnn_tr.8.ff1.fn.fn.net.0.weight": "model-00009-of-00009.safetensors",
         | 
| 297 | 
            +
                "encoder.rnn_tr.8.ff1.fn.fn.net.3.bias": "model-00009-of-00009.safetensors",
         | 
| 298 | 
            +
                "encoder.rnn_tr.8.ff1.fn.fn.net.3.weight": "model-00009-of-00009.safetensors",
         | 
| 299 | 
            +
                "encoder.rnn_tr.8.ff1.fn.norm.bias": "model-00009-of-00009.safetensors",
         | 
| 300 | 
            +
                "encoder.rnn_tr.8.ff1.fn.norm.weight": "model-00009-of-00009.safetensors",
         | 
| 301 | 
            +
                "encoder.rnn_tr.8.ff2.fn.fn.net.0.bias": "model-00009-of-00009.safetensors",
         | 
| 302 | 
            +
                "encoder.rnn_tr.8.ff2.fn.fn.net.0.weight": "model-00009-of-00009.safetensors",
         | 
| 303 | 
            +
                "encoder.rnn_tr.8.ff2.fn.fn.net.3.bias": "model-00009-of-00009.safetensors",
         | 
| 304 | 
            +
                "encoder.rnn_tr.8.ff2.fn.fn.net.3.weight": "model-00009-of-00009.safetensors",
         | 
| 305 | 
            +
                "encoder.rnn_tr.8.ff2.fn.norm.bias": "model-00009-of-00009.safetensors",
         | 
| 306 | 
            +
                "encoder.rnn_tr.8.ff2.fn.norm.weight": "model-00009-of-00009.safetensors",
         | 
| 307 | 
            +
                "encoder.rnn_tr.8.post_norm.bias": "model-00009-of-00009.safetensors",
         | 
| 308 | 
            +
                "encoder.rnn_tr.8.post_norm.weight": "model-00009-of-00009.safetensors",
         | 
| 309 | 
            +
                "encoder.rnn_tr.9.attn.fn.rel_pos_emb.weight": "model-00009-of-00009.safetensors",
         | 
| 310 | 
            +
                "encoder.rnn_tr.9.attn.fn.to_kv.weight": "model-00009-of-00009.safetensors",
         | 
| 311 | 
            +
                "encoder.rnn_tr.9.attn.fn.to_out.bias": "model-00009-of-00009.safetensors",
         | 
| 312 | 
            +
                "encoder.rnn_tr.9.attn.fn.to_out.weight": "model-00009-of-00009.safetensors",
         | 
| 313 | 
            +
                "encoder.rnn_tr.9.attn.fn.to_q.weight": "model-00009-of-00009.safetensors",
         | 
| 314 | 
            +
                "encoder.rnn_tr.9.attn.norm.bias": "model-00009-of-00009.safetensors",
         | 
| 315 | 
            +
                "encoder.rnn_tr.9.attn.norm.weight": "model-00009-of-00009.safetensors",
         | 
| 316 | 
            +
                "encoder.rnn_tr.9.conv.net.0.bias": "model-00009-of-00009.safetensors",
         | 
| 317 | 
            +
                "encoder.rnn_tr.9.conv.net.0.weight": "model-00009-of-00009.safetensors",
         | 
| 318 | 
            +
                "encoder.rnn_tr.9.conv.net.2.bias": "model-00009-of-00009.safetensors",
         | 
| 319 | 
            +
                "encoder.rnn_tr.9.conv.net.2.weight": "model-00009-of-00009.safetensors",
         | 
| 320 | 
            +
                "encoder.rnn_tr.9.conv.net.4.conv.weight": "model-00009-of-00009.safetensors",
         | 
| 321 | 
            +
                "encoder.rnn_tr.9.conv.net.5.bias": "model-00009-of-00009.safetensors",
         | 
| 322 | 
            +
                "encoder.rnn_tr.9.conv.net.5.num_batches_tracked": "model-00009-of-00009.safetensors",
         | 
| 323 | 
            +
                "encoder.rnn_tr.9.conv.net.5.running_mean": "model-00009-of-00009.safetensors",
         | 
| 324 | 
            +
                "encoder.rnn_tr.9.conv.net.5.running_var": "model-00009-of-00009.safetensors",
         | 
| 325 | 
            +
                "encoder.rnn_tr.9.conv.net.5.weight": "model-00009-of-00009.safetensors",
         | 
| 326 | 
            +
                "encoder.rnn_tr.9.conv.net.7.bias": "model-00009-of-00009.safetensors",
         | 
| 327 | 
            +
                "encoder.rnn_tr.9.conv.net.7.weight": "model-00009-of-00009.safetensors",
         | 
| 328 | 
            +
                "encoder.rnn_tr.9.ff1.fn.fn.net.0.bias": "model-00009-of-00009.safetensors",
         | 
| 329 | 
            +
                "encoder.rnn_tr.9.ff1.fn.fn.net.0.weight": "model-00009-of-00009.safetensors",
         | 
| 330 | 
            +
                "encoder.rnn_tr.9.ff1.fn.fn.net.3.bias": "model-00009-of-00009.safetensors",
         | 
| 331 | 
            +
                "encoder.rnn_tr.9.ff1.fn.fn.net.3.weight": "model-00009-of-00009.safetensors",
         | 
| 332 | 
            +
                "encoder.rnn_tr.9.ff1.fn.norm.bias": "model-00009-of-00009.safetensors",
         | 
| 333 | 
            +
                "encoder.rnn_tr.9.ff1.fn.norm.weight": "model-00009-of-00009.safetensors",
         | 
| 334 | 
            +
                "encoder.rnn_tr.9.ff2.fn.fn.net.0.bias": "model-00009-of-00009.safetensors",
         | 
| 335 | 
            +
                "encoder.rnn_tr.9.ff2.fn.fn.net.0.weight": "model-00009-of-00009.safetensors",
         | 
| 336 | 
            +
                "encoder.rnn_tr.9.ff2.fn.fn.net.3.bias": "model-00009-of-00009.safetensors",
         | 
| 337 | 
            +
                "encoder.rnn_tr.9.ff2.fn.fn.net.3.weight": "model-00009-of-00009.safetensors",
         | 
| 338 | 
            +
                "encoder.rnn_tr.9.ff2.fn.norm.bias": "model-00009-of-00009.safetensors",
         | 
| 339 | 
            +
                "encoder.rnn_tr.9.ff2.fn.norm.weight": "model-00009-of-00009.safetensors",
         | 
| 340 | 
            +
                "encoder.rnn_tr.9.post_norm.bias": "model-00009-of-00009.safetensors",
         | 
| 341 | 
            +
                "encoder.rnn_tr.9.post_norm.weight": "model-00009-of-00009.safetensors",
         | 
| 342 | 
            +
                "language_model.model.embed_tokens.weight": "model-00001-of-00009.safetensors",
         | 
| 343 | 
            +
                "language_model.model.layers.0.input_layernorm.weight": "model-00001-of-00009.safetensors",
         | 
| 344 | 
            +
                "language_model.model.layers.0.mlp.down_proj.weight": "model-00001-of-00009.safetensors",
         | 
| 345 | 
            +
                "language_model.model.layers.0.mlp.gate_proj.weight": "model-00001-of-00009.safetensors",
         | 
| 346 | 
            +
                "language_model.model.layers.0.mlp.up_proj.weight": "model-00001-of-00009.safetensors",
         | 
| 347 | 
            +
                "language_model.model.layers.0.post_attention_layernorm.weight": "model-00001-of-00009.safetensors",
         | 
| 348 | 
            +
                "language_model.model.layers.0.self_attn.k_proj.weight": "model-00001-of-00009.safetensors",
         | 
| 349 | 
            +
                "language_model.model.layers.0.self_attn.o_proj.weight": "model-00001-of-00009.safetensors",
         | 
| 350 | 
            +
                "language_model.model.layers.0.self_attn.q_proj.weight": "model-00001-of-00009.safetensors",
         | 
| 351 | 
            +
                "language_model.model.layers.0.self_attn.v_proj.weight": "model-00001-of-00009.safetensors",
         | 
| 352 | 
            +
                "language_model.model.layers.1.input_layernorm.weight": "model-00001-of-00009.safetensors",
         | 
| 353 | 
            +
                "language_model.model.layers.1.mlp.down_proj.weight": "model-00001-of-00009.safetensors",
         | 
| 354 | 
            +
                "language_model.model.layers.1.mlp.gate_proj.weight": "model-00001-of-00009.safetensors",
         | 
| 355 | 
            +
                "language_model.model.layers.1.mlp.up_proj.weight": "model-00001-of-00009.safetensors",
         | 
| 356 | 
            +
                "language_model.model.layers.1.post_attention_layernorm.weight": "model-00001-of-00009.safetensors",
         | 
| 357 | 
            +
                "language_model.model.layers.1.self_attn.k_proj.weight": "model-00001-of-00009.safetensors",
         | 
| 358 | 
            +
                "language_model.model.layers.1.self_attn.o_proj.weight": "model-00001-of-00009.safetensors",
         | 
| 359 | 
            +
                "language_model.model.layers.1.self_attn.q_proj.weight": "model-00001-of-00009.safetensors",
         | 
| 360 | 
            +
                "language_model.model.layers.1.self_attn.v_proj.weight": "model-00001-of-00009.safetensors",
         | 
| 361 | 
            +
                "language_model.model.layers.10.input_layernorm.weight": "model-00003-of-00009.safetensors",
         | 
| 362 | 
            +
                "language_model.model.layers.10.mlp.down_proj.weight": "model-00003-of-00009.safetensors",
         | 
| 363 | 
            +
                "language_model.model.layers.10.mlp.gate_proj.weight": "model-00003-of-00009.safetensors",
         | 
| 364 | 
            +
                "language_model.model.layers.10.mlp.up_proj.weight": "model-00003-of-00009.safetensors",
         | 
| 365 | 
            +
                "language_model.model.layers.10.post_attention_layernorm.weight": "model-00003-of-00009.safetensors",
         | 
| 366 | 
            +
                "language_model.model.layers.10.self_attn.k_proj.weight": "model-00003-of-00009.safetensors",
         | 
| 367 | 
            +
                "language_model.model.layers.10.self_attn.o_proj.weight": "model-00003-of-00009.safetensors",
         | 
| 368 | 
            +
                "language_model.model.layers.10.self_attn.q_proj.weight": "model-00003-of-00009.safetensors",
         | 
| 369 | 
            +
                "language_model.model.layers.10.self_attn.v_proj.weight": "model-00003-of-00009.safetensors",
         | 
| 370 | 
            +
                "language_model.model.layers.11.input_layernorm.weight": "model-00003-of-00009.safetensors",
         | 
| 371 | 
            +
                "language_model.model.layers.11.mlp.down_proj.weight": "model-00003-of-00009.safetensors",
         | 
| 372 | 
            +
                "language_model.model.layers.11.mlp.gate_proj.weight": "model-00003-of-00009.safetensors",
         | 
| 373 | 
            +
                "language_model.model.layers.11.mlp.up_proj.weight": "model-00003-of-00009.safetensors",
         | 
| 374 | 
            +
                "language_model.model.layers.11.post_attention_layernorm.weight": "model-00003-of-00009.safetensors",
         | 
| 375 | 
            +
                "language_model.model.layers.11.self_attn.k_proj.weight": "model-00003-of-00009.safetensors",
         | 
| 376 | 
            +
                "language_model.model.layers.11.self_attn.o_proj.weight": "model-00003-of-00009.safetensors",
         | 
| 377 | 
            +
                "language_model.model.layers.11.self_attn.q_proj.weight": "model-00003-of-00009.safetensors",
         | 
| 378 | 
            +
                "language_model.model.layers.11.self_attn.v_proj.weight": "model-00003-of-00009.safetensors",
         | 
| 379 | 
            +
                "language_model.model.layers.12.input_layernorm.weight": "model-00003-of-00009.safetensors",
         | 
| 380 | 
            +
                "language_model.model.layers.12.mlp.down_proj.weight": "model-00003-of-00009.safetensors",
         | 
| 381 | 
            +
                "language_model.model.layers.12.mlp.gate_proj.weight": "model-00003-of-00009.safetensors",
         | 
| 382 | 
            +
                "language_model.model.layers.12.mlp.up_proj.weight": "model-00003-of-00009.safetensors",
         | 
| 383 | 
            +
                "language_model.model.layers.12.post_attention_layernorm.weight": "model-00003-of-00009.safetensors",
         | 
| 384 | 
            +
                "language_model.model.layers.12.self_attn.k_proj.weight": "model-00003-of-00009.safetensors",
         | 
| 385 | 
            +
                "language_model.model.layers.12.self_attn.o_proj.weight": "model-00003-of-00009.safetensors",
         | 
| 386 | 
            +
                "language_model.model.layers.12.self_attn.q_proj.weight": "model-00003-of-00009.safetensors",
         | 
| 387 | 
            +
                "language_model.model.layers.12.self_attn.v_proj.weight": "model-00003-of-00009.safetensors",
         | 
| 388 | 
            +
                "language_model.model.layers.13.input_layernorm.weight": "model-00003-of-00009.safetensors",
         | 
| 389 | 
            +
                "language_model.model.layers.13.mlp.down_proj.weight": "model-00003-of-00009.safetensors",
         | 
| 390 | 
            +
                "language_model.model.layers.13.mlp.gate_proj.weight": "model-00003-of-00009.safetensors",
         | 
| 391 | 
            +
                "language_model.model.layers.13.mlp.up_proj.weight": "model-00003-of-00009.safetensors",
         | 
| 392 | 
            +
                "language_model.model.layers.13.post_attention_layernorm.weight": "model-00003-of-00009.safetensors",
         | 
| 393 | 
            +
                "language_model.model.layers.13.self_attn.k_proj.weight": "model-00003-of-00009.safetensors",
         | 
| 394 | 
            +
                "language_model.model.layers.13.self_attn.o_proj.weight": "model-00003-of-00009.safetensors",
         | 
| 395 | 
            +
                "language_model.model.layers.13.self_attn.q_proj.weight": "model-00003-of-00009.safetensors",
         | 
| 396 | 
            +
                "language_model.model.layers.13.self_attn.v_proj.weight": "model-00003-of-00009.safetensors",
         | 
| 397 | 
            +
                "language_model.model.layers.14.input_layernorm.weight": "model-00004-of-00009.safetensors",
         | 
| 398 | 
            +
                "language_model.model.layers.14.mlp.down_proj.weight": "model-00004-of-00009.safetensors",
         | 
| 399 | 
            +
                "language_model.model.layers.14.mlp.gate_proj.weight": "model-00004-of-00009.safetensors",
         | 
| 400 | 
            +
                "language_model.model.layers.14.mlp.up_proj.weight": "model-00004-of-00009.safetensors",
         | 
| 401 | 
            +
                "language_model.model.layers.14.post_attention_layernorm.weight": "model-00004-of-00009.safetensors",
         | 
| 402 | 
            +
                "language_model.model.layers.14.self_attn.k_proj.weight": "model-00004-of-00009.safetensors",
         | 
| 403 | 
            +
                "language_model.model.layers.14.self_attn.o_proj.weight": "model-00004-of-00009.safetensors",
         | 
| 404 | 
            +
                "language_model.model.layers.14.self_attn.q_proj.weight": "model-00004-of-00009.safetensors",
         | 
| 405 | 
            +
                "language_model.model.layers.14.self_attn.v_proj.weight": "model-00004-of-00009.safetensors",
         | 
| 406 | 
            +
                "language_model.model.layers.15.input_layernorm.weight": "model-00004-of-00009.safetensors",
         | 
| 407 | 
            +
                "language_model.model.layers.15.mlp.down_proj.weight": "model-00004-of-00009.safetensors",
         | 
| 408 | 
            +
                "language_model.model.layers.15.mlp.gate_proj.weight": "model-00004-of-00009.safetensors",
         | 
| 409 | 
            +
                "language_model.model.layers.15.mlp.up_proj.weight": "model-00004-of-00009.safetensors",
         | 
| 410 | 
            +
                "language_model.model.layers.15.post_attention_layernorm.weight": "model-00004-of-00009.safetensors",
         | 
| 411 | 
            +
                "language_model.model.layers.15.self_attn.k_proj.weight": "model-00004-of-00009.safetensors",
         | 
| 412 | 
            +
                "language_model.model.layers.15.self_attn.o_proj.weight": "model-00004-of-00009.safetensors",
         | 
| 413 | 
            +
                "language_model.model.layers.15.self_attn.q_proj.weight": "model-00004-of-00009.safetensors",
         | 
| 414 | 
            +
                "language_model.model.layers.15.self_attn.v_proj.weight": "model-00004-of-00009.safetensors",
         | 
| 415 | 
            +
                "language_model.model.layers.16.input_layernorm.weight": "model-00004-of-00009.safetensors",
         | 
| 416 | 
            +
                "language_model.model.layers.16.mlp.down_proj.weight": "model-00004-of-00009.safetensors",
         | 
| 417 | 
            +
                "language_model.model.layers.16.mlp.gate_proj.weight": "model-00004-of-00009.safetensors",
         | 
| 418 | 
            +
                "language_model.model.layers.16.mlp.up_proj.weight": "model-00004-of-00009.safetensors",
         | 
| 419 | 
            +
                "language_model.model.layers.16.post_attention_layernorm.weight": "model-00004-of-00009.safetensors",
         | 
| 420 | 
            +
                "language_model.model.layers.16.self_attn.k_proj.weight": "model-00004-of-00009.safetensors",
         | 
| 421 | 
            +
                "language_model.model.layers.16.self_attn.o_proj.weight": "model-00004-of-00009.safetensors",
         | 
| 422 | 
            +
                "language_model.model.layers.16.self_attn.q_proj.weight": "model-00004-of-00009.safetensors",
         | 
| 423 | 
            +
                "language_model.model.layers.16.self_attn.v_proj.weight": "model-00004-of-00009.safetensors",
         | 
| 424 | 
            +
                "language_model.model.layers.17.input_layernorm.weight": "model-00004-of-00009.safetensors",
         | 
| 425 | 
            +
                "language_model.model.layers.17.mlp.down_proj.weight": "model-00004-of-00009.safetensors",
         | 
| 426 | 
            +
                "language_model.model.layers.17.mlp.gate_proj.weight": "model-00004-of-00009.safetensors",
         | 
| 427 | 
            +
                "language_model.model.layers.17.mlp.up_proj.weight": "model-00004-of-00009.safetensors",
         | 
| 428 | 
            +
                "language_model.model.layers.17.post_attention_layernorm.weight": "model-00004-of-00009.safetensors",
         | 
| 429 | 
            +
                "language_model.model.layers.17.self_attn.k_proj.weight": "model-00004-of-00009.safetensors",
         | 
| 430 | 
            +
                "language_model.model.layers.17.self_attn.o_proj.weight": "model-00004-of-00009.safetensors",
         | 
| 431 | 
            +
                "language_model.model.layers.17.self_attn.q_proj.weight": "model-00004-of-00009.safetensors",
         | 
| 432 | 
            +
                "language_model.model.layers.17.self_attn.v_proj.weight": "model-00004-of-00009.safetensors",
         | 
| 433 | 
            +
                "language_model.model.layers.18.input_layernorm.weight": "model-00004-of-00009.safetensors",
         | 
| 434 | 
            +
                "language_model.model.layers.18.mlp.down_proj.weight": "model-00004-of-00009.safetensors",
         | 
| 435 | 
            +
                "language_model.model.layers.18.mlp.gate_proj.weight": "model-00004-of-00009.safetensors",
         | 
| 436 | 
            +
                "language_model.model.layers.18.mlp.up_proj.weight": "model-00004-of-00009.safetensors",
         | 
| 437 | 
            +
                "language_model.model.layers.18.post_attention_layernorm.weight": "model-00004-of-00009.safetensors",
         | 
| 438 | 
            +
                "language_model.model.layers.18.self_attn.k_proj.weight": "model-00004-of-00009.safetensors",
         | 
| 439 | 
            +
                "language_model.model.layers.18.self_attn.o_proj.weight": "model-00004-of-00009.safetensors",
         | 
| 440 | 
            +
                "language_model.model.layers.18.self_attn.q_proj.weight": "model-00004-of-00009.safetensors",
         | 
| 441 | 
            +
                "language_model.model.layers.18.self_attn.v_proj.weight": "model-00004-of-00009.safetensors",
         | 
| 442 | 
            +
                "language_model.model.layers.19.input_layernorm.weight": "model-00005-of-00009.safetensors",
         | 
| 443 | 
            +
                "language_model.model.layers.19.mlp.down_proj.weight": "model-00005-of-00009.safetensors",
         | 
| 444 | 
            +
                "language_model.model.layers.19.mlp.gate_proj.weight": "model-00005-of-00009.safetensors",
         | 
| 445 | 
            +
                "language_model.model.layers.19.mlp.up_proj.weight": "model-00005-of-00009.safetensors",
         | 
| 446 | 
            +
                "language_model.model.layers.19.post_attention_layernorm.weight": "model-00005-of-00009.safetensors",
         | 
| 447 | 
            +
                "language_model.model.layers.19.self_attn.k_proj.weight": "model-00005-of-00009.safetensors",
         | 
| 448 | 
            +
                "language_model.model.layers.19.self_attn.o_proj.weight": "model-00005-of-00009.safetensors",
         | 
| 449 | 
            +
                "language_model.model.layers.19.self_attn.q_proj.weight": "model-00005-of-00009.safetensors",
         | 
| 450 | 
            +
                "language_model.model.layers.19.self_attn.v_proj.weight": "model-00005-of-00009.safetensors",
         | 
| 451 | 
            +
                "language_model.model.layers.2.input_layernorm.weight": "model-00001-of-00009.safetensors",
         | 
| 452 | 
            +
                "language_model.model.layers.2.mlp.down_proj.weight": "model-00001-of-00009.safetensors",
         | 
| 453 | 
            +
                "language_model.model.layers.2.mlp.gate_proj.weight": "model-00001-of-00009.safetensors",
         | 
| 454 | 
            +
                "language_model.model.layers.2.mlp.up_proj.weight": "model-00001-of-00009.safetensors",
         | 
| 455 | 
            +
                "language_model.model.layers.2.post_attention_layernorm.weight": "model-00001-of-00009.safetensors",
         | 
| 456 | 
            +
                "language_model.model.layers.2.self_attn.k_proj.weight": "model-00001-of-00009.safetensors",
         | 
| 457 | 
            +
                "language_model.model.layers.2.self_attn.o_proj.weight": "model-00001-of-00009.safetensors",
         | 
| 458 | 
            +
                "language_model.model.layers.2.self_attn.q_proj.weight": "model-00001-of-00009.safetensors",
         | 
| 459 | 
            +
                "language_model.model.layers.2.self_attn.v_proj.weight": "model-00001-of-00009.safetensors",
         | 
| 460 | 
            +
                "language_model.model.layers.20.input_layernorm.weight": "model-00005-of-00009.safetensors",
         | 
| 461 | 
            +
                "language_model.model.layers.20.mlp.down_proj.weight": "model-00005-of-00009.safetensors",
         | 
| 462 | 
            +
                "language_model.model.layers.20.mlp.gate_proj.weight": "model-00005-of-00009.safetensors",
         | 
| 463 | 
            +
                "language_model.model.layers.20.mlp.up_proj.weight": "model-00005-of-00009.safetensors",
         | 
| 464 | 
            +
                "language_model.model.layers.20.post_attention_layernorm.weight": "model-00005-of-00009.safetensors",
         | 
| 465 | 
            +
                "language_model.model.layers.20.self_attn.k_proj.weight": "model-00005-of-00009.safetensors",
         | 
| 466 | 
            +
                "language_model.model.layers.20.self_attn.o_proj.weight": "model-00005-of-00009.safetensors",
         | 
| 467 | 
            +
                "language_model.model.layers.20.self_attn.q_proj.weight": "model-00005-of-00009.safetensors",
         | 
| 468 | 
            +
                "language_model.model.layers.20.self_attn.v_proj.weight": "model-00005-of-00009.safetensors",
         | 
| 469 | 
            +
                "language_model.model.layers.21.input_layernorm.weight": "model-00005-of-00009.safetensors",
         | 
| 470 | 
            +
                "language_model.model.layers.21.mlp.down_proj.weight": "model-00005-of-00009.safetensors",
         | 
| 471 | 
            +
                "language_model.model.layers.21.mlp.gate_proj.weight": "model-00005-of-00009.safetensors",
         | 
| 472 | 
            +
                "language_model.model.layers.21.mlp.up_proj.weight": "model-00005-of-00009.safetensors",
         | 
| 473 | 
            +
                "language_model.model.layers.21.post_attention_layernorm.weight": "model-00005-of-00009.safetensors",
         | 
| 474 | 
            +
                "language_model.model.layers.21.self_attn.k_proj.weight": "model-00005-of-00009.safetensors",
         | 
| 475 | 
            +
                "language_model.model.layers.21.self_attn.o_proj.weight": "model-00005-of-00009.safetensors",
         | 
| 476 | 
            +
                "language_model.model.layers.21.self_attn.q_proj.weight": "model-00005-of-00009.safetensors",
         | 
| 477 | 
            +
                "language_model.model.layers.21.self_attn.v_proj.weight": "model-00005-of-00009.safetensors",
         | 
| 478 | 
            +
                "language_model.model.layers.22.input_layernorm.weight": "model-00005-of-00009.safetensors",
         | 
| 479 | 
            +
                "language_model.model.layers.22.mlp.down_proj.weight": "model-00005-of-00009.safetensors",
         | 
| 480 | 
            +
                "language_model.model.layers.22.mlp.gate_proj.weight": "model-00005-of-00009.safetensors",
         | 
| 481 | 
            +
                "language_model.model.layers.22.mlp.up_proj.weight": "model-00005-of-00009.safetensors",
         | 
| 482 | 
            +
                "language_model.model.layers.22.post_attention_layernorm.weight": "model-00005-of-00009.safetensors",
         | 
| 483 | 
            +
                "language_model.model.layers.22.self_attn.k_proj.weight": "model-00005-of-00009.safetensors",
         | 
| 484 | 
            +
                "language_model.model.layers.22.self_attn.o_proj.weight": "model-00005-of-00009.safetensors",
         | 
| 485 | 
            +
                "language_model.model.layers.22.self_attn.q_proj.weight": "model-00005-of-00009.safetensors",
         | 
| 486 | 
            +
                "language_model.model.layers.22.self_attn.v_proj.weight": "model-00005-of-00009.safetensors",
         | 
| 487 | 
            +
                "language_model.model.layers.23.input_layernorm.weight": "model-00005-of-00009.safetensors",
         | 
| 488 | 
            +
                "language_model.model.layers.23.mlp.down_proj.weight": "model-00005-of-00009.safetensors",
         | 
| 489 | 
            +
                "language_model.model.layers.23.mlp.gate_proj.weight": "model-00005-of-00009.safetensors",
         | 
| 490 | 
            +
                "language_model.model.layers.23.mlp.up_proj.weight": "model-00005-of-00009.safetensors",
         | 
| 491 | 
            +
                "language_model.model.layers.23.post_attention_layernorm.weight": "model-00005-of-00009.safetensors",
         | 
| 492 | 
            +
                "language_model.model.layers.23.self_attn.k_proj.weight": "model-00005-of-00009.safetensors",
         | 
| 493 | 
            +
                "language_model.model.layers.23.self_attn.o_proj.weight": "model-00005-of-00009.safetensors",
         | 
| 494 | 
            +
                "language_model.model.layers.23.self_attn.q_proj.weight": "model-00005-of-00009.safetensors",
         | 
| 495 | 
            +
                "language_model.model.layers.23.self_attn.v_proj.weight": "model-00005-of-00009.safetensors",
         | 
| 496 | 
            +
                "language_model.model.layers.24.input_layernorm.weight": "model-00006-of-00009.safetensors",
         | 
| 497 | 
            +
                "language_model.model.layers.24.mlp.down_proj.weight": "model-00006-of-00009.safetensors",
         | 
| 498 | 
            +
                "language_model.model.layers.24.mlp.gate_proj.weight": "model-00006-of-00009.safetensors",
         | 
| 499 | 
            +
                "language_model.model.layers.24.mlp.up_proj.weight": "model-00006-of-00009.safetensors",
         | 
| 500 | 
            +
                "language_model.model.layers.24.post_attention_layernorm.weight": "model-00006-of-00009.safetensors",
         | 
| 501 | 
            +
                "language_model.model.layers.24.self_attn.k_proj.weight": "model-00006-of-00009.safetensors",
         | 
| 502 | 
            +
                "language_model.model.layers.24.self_attn.o_proj.weight": "model-00006-of-00009.safetensors",
         | 
| 503 | 
            +
                "language_model.model.layers.24.self_attn.q_proj.weight": "model-00006-of-00009.safetensors",
         | 
| 504 | 
            +
                "language_model.model.layers.24.self_attn.v_proj.weight": "model-00006-of-00009.safetensors",
         | 
| 505 | 
            +
                "language_model.model.layers.25.input_layernorm.weight": "model-00006-of-00009.safetensors",
         | 
| 506 | 
            +
                "language_model.model.layers.25.mlp.down_proj.weight": "model-00006-of-00009.safetensors",
         | 
| 507 | 
            +
                "language_model.model.layers.25.mlp.gate_proj.weight": "model-00006-of-00009.safetensors",
         | 
| 508 | 
            +
                "language_model.model.layers.25.mlp.up_proj.weight": "model-00006-of-00009.safetensors",
         | 
| 509 | 
            +
                "language_model.model.layers.25.post_attention_layernorm.weight": "model-00006-of-00009.safetensors",
         | 
| 510 | 
            +
                "language_model.model.layers.25.self_attn.k_proj.weight": "model-00006-of-00009.safetensors",
         | 
| 511 | 
            +
                "language_model.model.layers.25.self_attn.o_proj.weight": "model-00006-of-00009.safetensors",
         | 
| 512 | 
            +
                "language_model.model.layers.25.self_attn.q_proj.weight": "model-00006-of-00009.safetensors",
         | 
| 513 | 
            +
                "language_model.model.layers.25.self_attn.v_proj.weight": "model-00006-of-00009.safetensors",
         | 
| 514 | 
            +
                "language_model.model.layers.26.input_layernorm.weight": "model-00006-of-00009.safetensors",
         | 
| 515 | 
            +
                "language_model.model.layers.26.mlp.down_proj.weight": "model-00006-of-00009.safetensors",
         | 
| 516 | 
            +
                "language_model.model.layers.26.mlp.gate_proj.weight": "model-00006-of-00009.safetensors",
         | 
| 517 | 
            +
                "language_model.model.layers.26.mlp.up_proj.weight": "model-00006-of-00009.safetensors",
         | 
| 518 | 
            +
                "language_model.model.layers.26.post_attention_layernorm.weight": "model-00006-of-00009.safetensors",
         | 
| 519 | 
            +
                "language_model.model.layers.26.self_attn.k_proj.weight": "model-00006-of-00009.safetensors",
         | 
| 520 | 
            +
                "language_model.model.layers.26.self_attn.o_proj.weight": "model-00006-of-00009.safetensors",
         | 
| 521 | 
            +
                "language_model.model.layers.26.self_attn.q_proj.weight": "model-00006-of-00009.safetensors",
         | 
| 522 | 
            +
                "language_model.model.layers.26.self_attn.v_proj.weight": "model-00006-of-00009.safetensors",
         | 
| 523 | 
            +
                "language_model.model.layers.27.input_layernorm.weight": "model-00006-of-00009.safetensors",
         | 
| 524 | 
            +
                "language_model.model.layers.27.mlp.down_proj.weight": "model-00006-of-00009.safetensors",
         | 
| 525 | 
            +
                "language_model.model.layers.27.mlp.gate_proj.weight": "model-00006-of-00009.safetensors",
         | 
| 526 | 
            +
                "language_model.model.layers.27.mlp.up_proj.weight": "model-00006-of-00009.safetensors",
         | 
| 527 | 
            +
                "language_model.model.layers.27.post_attention_layernorm.weight": "model-00006-of-00009.safetensors",
         | 
| 528 | 
            +
                "language_model.model.layers.27.self_attn.k_proj.weight": "model-00006-of-00009.safetensors",
         | 
| 529 | 
            +
                "language_model.model.layers.27.self_attn.o_proj.weight": "model-00006-of-00009.safetensors",
         | 
| 530 | 
            +
                "language_model.model.layers.27.self_attn.q_proj.weight": "model-00006-of-00009.safetensors",
         | 
| 531 | 
            +
                "language_model.model.layers.27.self_attn.v_proj.weight": "model-00006-of-00009.safetensors",
         | 
| 532 | 
            +
                "language_model.model.layers.28.input_layernorm.weight": "model-00006-of-00009.safetensors",
         | 
| 533 | 
            +
                "language_model.model.layers.28.mlp.down_proj.weight": "model-00006-of-00009.safetensors",
         | 
| 534 | 
            +
                "language_model.model.layers.28.mlp.gate_proj.weight": "model-00006-of-00009.safetensors",
         | 
| 535 | 
            +
                "language_model.model.layers.28.mlp.up_proj.weight": "model-00006-of-00009.safetensors",
         | 
| 536 | 
            +
                "language_model.model.layers.28.post_attention_layernorm.weight": "model-00006-of-00009.safetensors",
         | 
| 537 | 
            +
                "language_model.model.layers.28.self_attn.k_proj.weight": "model-00006-of-00009.safetensors",
         | 
| 538 | 
            +
                "language_model.model.layers.28.self_attn.o_proj.weight": "model-00006-of-00009.safetensors",
         | 
| 539 | 
            +
                "language_model.model.layers.28.self_attn.q_proj.weight": "model-00006-of-00009.safetensors",
         | 
| 540 | 
            +
                "language_model.model.layers.28.self_attn.v_proj.weight": "model-00006-of-00009.safetensors",
         | 
| 541 | 
            +
                "language_model.model.layers.29.input_layernorm.weight": "model-00007-of-00009.safetensors",
         | 
| 542 | 
            +
                "language_model.model.layers.29.mlp.down_proj.weight": "model-00007-of-00009.safetensors",
         | 
| 543 | 
            +
                "language_model.model.layers.29.mlp.gate_proj.weight": "model-00007-of-00009.safetensors",
         | 
| 544 | 
            +
                "language_model.model.layers.29.mlp.up_proj.weight": "model-00007-of-00009.safetensors",
         | 
| 545 | 
            +
                "language_model.model.layers.29.post_attention_layernorm.weight": "model-00007-of-00009.safetensors",
         | 
| 546 | 
            +
                "language_model.model.layers.29.self_attn.k_proj.weight": "model-00007-of-00009.safetensors",
         | 
| 547 | 
            +
                "language_model.model.layers.29.self_attn.o_proj.weight": "model-00007-of-00009.safetensors",
         | 
| 548 | 
            +
                "language_model.model.layers.29.self_attn.q_proj.weight": "model-00007-of-00009.safetensors",
         | 
| 549 | 
            +
                "language_model.model.layers.29.self_attn.v_proj.weight": "model-00007-of-00009.safetensors",
         | 
| 550 | 
            +
                "language_model.model.layers.3.input_layernorm.weight": "model-00001-of-00009.safetensors",
         | 
| 551 | 
            +
                "language_model.model.layers.3.mlp.down_proj.weight": "model-00001-of-00009.safetensors",
         | 
| 552 | 
            +
                "language_model.model.layers.3.mlp.gate_proj.weight": "model-00001-of-00009.safetensors",
         | 
| 553 | 
            +
                "language_model.model.layers.3.mlp.up_proj.weight": "model-00001-of-00009.safetensors",
         | 
| 554 | 
            +
                "language_model.model.layers.3.post_attention_layernorm.weight": "model-00001-of-00009.safetensors",
         | 
| 555 | 
            +
                "language_model.model.layers.3.self_attn.k_proj.weight": "model-00001-of-00009.safetensors",
         | 
| 556 | 
            +
                "language_model.model.layers.3.self_attn.o_proj.weight": "model-00001-of-00009.safetensors",
         | 
| 557 | 
            +
                "language_model.model.layers.3.self_attn.q_proj.weight": "model-00001-of-00009.safetensors",
         | 
| 558 | 
            +
                "language_model.model.layers.3.self_attn.v_proj.weight": "model-00001-of-00009.safetensors",
         | 
| 559 | 
            +
                "language_model.model.layers.30.input_layernorm.weight": "model-00007-of-00009.safetensors",
         | 
| 560 | 
            +
                "language_model.model.layers.30.mlp.down_proj.weight": "model-00007-of-00009.safetensors",
         | 
| 561 | 
            +
                "language_model.model.layers.30.mlp.gate_proj.weight": "model-00007-of-00009.safetensors",
         | 
| 562 | 
            +
                "language_model.model.layers.30.mlp.up_proj.weight": "model-00007-of-00009.safetensors",
         | 
| 563 | 
            +
                "language_model.model.layers.30.post_attention_layernorm.weight": "model-00007-of-00009.safetensors",
         | 
| 564 | 
            +
                "language_model.model.layers.30.self_attn.k_proj.weight": "model-00007-of-00009.safetensors",
         | 
| 565 | 
            +
                "language_model.model.layers.30.self_attn.o_proj.weight": "model-00007-of-00009.safetensors",
         | 
| 566 | 
            +
                "language_model.model.layers.30.self_attn.q_proj.weight": "model-00007-of-00009.safetensors",
         | 
| 567 | 
            +
                "language_model.model.layers.30.self_attn.v_proj.weight": "model-00007-of-00009.safetensors",
         | 
| 568 | 
            +
                "language_model.model.layers.31.input_layernorm.weight": "model-00007-of-00009.safetensors",
         | 
| 569 | 
            +
                "language_model.model.layers.31.mlp.down_proj.weight": "model-00007-of-00009.safetensors",
         | 
| 570 | 
            +
                "language_model.model.layers.31.mlp.gate_proj.weight": "model-00007-of-00009.safetensors",
         | 
| 571 | 
            +
                "language_model.model.layers.31.mlp.up_proj.weight": "model-00007-of-00009.safetensors",
         | 
| 572 | 
            +
                "language_model.model.layers.31.post_attention_layernorm.weight": "model-00007-of-00009.safetensors",
         | 
| 573 | 
            +
                "language_model.model.layers.31.self_attn.k_proj.weight": "model-00007-of-00009.safetensors",
         | 
| 574 | 
            +
                "language_model.model.layers.31.self_attn.o_proj.weight": "model-00007-of-00009.safetensors",
         | 
| 575 | 
            +
                "language_model.model.layers.31.self_attn.q_proj.weight": "model-00007-of-00009.safetensors",
         | 
| 576 | 
            +
                "language_model.model.layers.31.self_attn.v_proj.weight": "model-00007-of-00009.safetensors",
         | 
| 577 | 
            +
                "language_model.model.layers.32.input_layernorm.weight": "model-00007-of-00009.safetensors",
         | 
| 578 | 
            +
                "language_model.model.layers.32.mlp.down_proj.weight": "model-00007-of-00009.safetensors",
         | 
| 579 | 
            +
                "language_model.model.layers.32.mlp.gate_proj.weight": "model-00007-of-00009.safetensors",
         | 
| 580 | 
            +
                "language_model.model.layers.32.mlp.up_proj.weight": "model-00007-of-00009.safetensors",
         | 
| 581 | 
            +
                "language_model.model.layers.32.post_attention_layernorm.weight": "model-00007-of-00009.safetensors",
         | 
| 582 | 
            +
                "language_model.model.layers.32.self_attn.k_proj.weight": "model-00007-of-00009.safetensors",
         | 
| 583 | 
            +
                "language_model.model.layers.32.self_attn.o_proj.weight": "model-00007-of-00009.safetensors",
         | 
| 584 | 
            +
                "language_model.model.layers.32.self_attn.q_proj.weight": "model-00007-of-00009.safetensors",
         | 
| 585 | 
            +
                "language_model.model.layers.32.self_attn.v_proj.weight": "model-00007-of-00009.safetensors",
         | 
| 586 | 
            +
                "language_model.model.layers.33.input_layernorm.weight": "model-00007-of-00009.safetensors",
         | 
| 587 | 
            +
                "language_model.model.layers.33.mlp.down_proj.weight": "model-00007-of-00009.safetensors",
         | 
| 588 | 
            +
                "language_model.model.layers.33.mlp.gate_proj.weight": "model-00007-of-00009.safetensors",
         | 
| 589 | 
            +
                "language_model.model.layers.33.mlp.up_proj.weight": "model-00007-of-00009.safetensors",
         | 
| 590 | 
            +
                "language_model.model.layers.33.post_attention_layernorm.weight": "model-00007-of-00009.safetensors",
         | 
| 591 | 
            +
                "language_model.model.layers.33.self_attn.k_proj.weight": "model-00007-of-00009.safetensors",
         | 
| 592 | 
            +
                "language_model.model.layers.33.self_attn.o_proj.weight": "model-00007-of-00009.safetensors",
         | 
| 593 | 
            +
                "language_model.model.layers.33.self_attn.q_proj.weight": "model-00007-of-00009.safetensors",
         | 
| 594 | 
            +
                "language_model.model.layers.33.self_attn.v_proj.weight": "model-00007-of-00009.safetensors",
         | 
| 595 | 
            +
                "language_model.model.layers.34.input_layernorm.weight": "model-00008-of-00009.safetensors",
         | 
| 596 | 
            +
                "language_model.model.layers.34.mlp.down_proj.weight": "model-00008-of-00009.safetensors",
         | 
| 597 | 
            +
                "language_model.model.layers.34.mlp.gate_proj.weight": "model-00008-of-00009.safetensors",
         | 
| 598 | 
            +
                "language_model.model.layers.34.mlp.up_proj.weight": "model-00008-of-00009.safetensors",
         | 
| 599 | 
            +
                "language_model.model.layers.34.post_attention_layernorm.weight": "model-00008-of-00009.safetensors",
         | 
| 600 | 
            +
                "language_model.model.layers.34.self_attn.k_proj.weight": "model-00008-of-00009.safetensors",
         | 
| 601 | 
            +
                "language_model.model.layers.34.self_attn.o_proj.weight": "model-00008-of-00009.safetensors",
         | 
| 602 | 
            +
                "language_model.model.layers.34.self_attn.q_proj.weight": "model-00008-of-00009.safetensors",
         | 
| 603 | 
            +
                "language_model.model.layers.34.self_attn.v_proj.weight": "model-00008-of-00009.safetensors",
         | 
| 604 | 
            +
                "language_model.model.layers.35.input_layernorm.weight": "model-00008-of-00009.safetensors",
         | 
| 605 | 
            +
                "language_model.model.layers.35.mlp.down_proj.weight": "model-00008-of-00009.safetensors",
         | 
| 606 | 
            +
                "language_model.model.layers.35.mlp.gate_proj.weight": "model-00008-of-00009.safetensors",
         | 
| 607 | 
            +
                "language_model.model.layers.35.mlp.up_proj.weight": "model-00008-of-00009.safetensors",
         | 
| 608 | 
            +
                "language_model.model.layers.35.post_attention_layernorm.weight": "model-00008-of-00009.safetensors",
         | 
| 609 | 
            +
                "language_model.model.layers.35.self_attn.k_proj.weight": "model-00008-of-00009.safetensors",
         | 
| 610 | 
            +
                "language_model.model.layers.35.self_attn.o_proj.weight": "model-00008-of-00009.safetensors",
         | 
| 611 | 
            +
                "language_model.model.layers.35.self_attn.q_proj.weight": "model-00008-of-00009.safetensors",
         | 
| 612 | 
            +
                "language_model.model.layers.35.self_attn.v_proj.weight": "model-00008-of-00009.safetensors",
         | 
| 613 | 
            +
                "language_model.model.layers.36.input_layernorm.weight": "model-00008-of-00009.safetensors",
         | 
| 614 | 
            +
                "language_model.model.layers.36.mlp.down_proj.weight": "model-00008-of-00009.safetensors",
         | 
| 615 | 
            +
                "language_model.model.layers.36.mlp.gate_proj.weight": "model-00008-of-00009.safetensors",
         | 
| 616 | 
            +
                "language_model.model.layers.36.mlp.up_proj.weight": "model-00008-of-00009.safetensors",
         | 
| 617 | 
            +
                "language_model.model.layers.36.post_attention_layernorm.weight": "model-00008-of-00009.safetensors",
         | 
| 618 | 
            +
                "language_model.model.layers.36.self_attn.k_proj.weight": "model-00008-of-00009.safetensors",
         | 
| 619 | 
            +
                "language_model.model.layers.36.self_attn.o_proj.weight": "model-00008-of-00009.safetensors",
         | 
| 620 | 
            +
                "language_model.model.layers.36.self_attn.q_proj.weight": "model-00008-of-00009.safetensors",
         | 
| 621 | 
            +
                "language_model.model.layers.36.self_attn.v_proj.weight": "model-00008-of-00009.safetensors",
         | 
| 622 | 
            +
                "language_model.model.layers.37.input_layernorm.weight": "model-00008-of-00009.safetensors",
         | 
| 623 | 
            +
                "language_model.model.layers.37.mlp.down_proj.weight": "model-00008-of-00009.safetensors",
         | 
| 624 | 
            +
                "language_model.model.layers.37.mlp.gate_proj.weight": "model-00008-of-00009.safetensors",
         | 
| 625 | 
            +
                "language_model.model.layers.37.mlp.up_proj.weight": "model-00008-of-00009.safetensors",
         | 
| 626 | 
            +
                "language_model.model.layers.37.post_attention_layernorm.weight": "model-00008-of-00009.safetensors",
         | 
| 627 | 
            +
                "language_model.model.layers.37.self_attn.k_proj.weight": "model-00008-of-00009.safetensors",
         | 
| 628 | 
            +
                "language_model.model.layers.37.self_attn.o_proj.weight": "model-00008-of-00009.safetensors",
         | 
| 629 | 
            +
                "language_model.model.layers.37.self_attn.q_proj.weight": "model-00008-of-00009.safetensors",
         | 
| 630 | 
            +
                "language_model.model.layers.37.self_attn.v_proj.weight": "model-00008-of-00009.safetensors",
         | 
| 631 | 
            +
                "language_model.model.layers.38.input_layernorm.weight": "model-00008-of-00009.safetensors",
         | 
| 632 | 
            +
                "language_model.model.layers.38.mlp.down_proj.weight": "model-00008-of-00009.safetensors",
         | 
| 633 | 
            +
                "language_model.model.layers.38.mlp.gate_proj.weight": "model-00008-of-00009.safetensors",
         | 
| 634 | 
            +
                "language_model.model.layers.38.mlp.up_proj.weight": "model-00008-of-00009.safetensors",
         | 
| 635 | 
            +
                "language_model.model.layers.38.post_attention_layernorm.weight": "model-00008-of-00009.safetensors",
         | 
| 636 | 
            +
                "language_model.model.layers.38.self_attn.k_proj.weight": "model-00008-of-00009.safetensors",
         | 
| 637 | 
            +
                "language_model.model.layers.38.self_attn.o_proj.weight": "model-00008-of-00009.safetensors",
         | 
| 638 | 
            +
                "language_model.model.layers.38.self_attn.q_proj.weight": "model-00008-of-00009.safetensors",
         | 
| 639 | 
            +
                "language_model.model.layers.38.self_attn.v_proj.weight": "model-00008-of-00009.safetensors",
         | 
| 640 | 
            +
                "language_model.model.layers.39.input_layernorm.weight": "model-00009-of-00009.safetensors",
         | 
| 641 | 
            +
                "language_model.model.layers.39.mlp.down_proj.weight": "model-00009-of-00009.safetensors",
         | 
| 642 | 
            +
                "language_model.model.layers.39.mlp.gate_proj.weight": "model-00009-of-00009.safetensors",
         | 
| 643 | 
            +
                "language_model.model.layers.39.mlp.up_proj.weight": "model-00009-of-00009.safetensors",
         | 
| 644 | 
            +
                "language_model.model.layers.39.post_attention_layernorm.weight": "model-00009-of-00009.safetensors",
         | 
| 645 | 
            +
                "language_model.model.layers.39.self_attn.k_proj.weight": "model-00009-of-00009.safetensors",
         | 
| 646 | 
            +
                "language_model.model.layers.39.self_attn.o_proj.weight": "model-00009-of-00009.safetensors",
         | 
| 647 | 
            +
                "language_model.model.layers.39.self_attn.q_proj.weight": "model-00009-of-00009.safetensors",
         | 
| 648 | 
            +
                "language_model.model.layers.39.self_attn.v_proj.weight": "model-00009-of-00009.safetensors",
         | 
| 649 | 
            +
                "language_model.model.layers.4.input_layernorm.weight": "model-00002-of-00009.safetensors",
         | 
| 650 | 
            +
                "language_model.model.layers.4.mlp.down_proj.weight": "model-00002-of-00009.safetensors",
         | 
| 651 | 
            +
                "language_model.model.layers.4.mlp.gate_proj.weight": "model-00002-of-00009.safetensors",
         | 
| 652 | 
            +
                "language_model.model.layers.4.mlp.up_proj.weight": "model-00002-of-00009.safetensors",
         | 
| 653 | 
            +
                "language_model.model.layers.4.post_attention_layernorm.weight": "model-00002-of-00009.safetensors",
         | 
| 654 | 
            +
                "language_model.model.layers.4.self_attn.k_proj.weight": "model-00002-of-00009.safetensors",
         | 
| 655 | 
            +
                "language_model.model.layers.4.self_attn.o_proj.weight": "model-00002-of-00009.safetensors",
         | 
| 656 | 
            +
                "language_model.model.layers.4.self_attn.q_proj.weight": "model-00002-of-00009.safetensors",
         | 
| 657 | 
            +
                "language_model.model.layers.4.self_attn.v_proj.weight": "model-00002-of-00009.safetensors",
         | 
| 658 | 
            +
                "language_model.model.layers.5.input_layernorm.weight": "model-00002-of-00009.safetensors",
         | 
| 659 | 
            +
                "language_model.model.layers.5.mlp.down_proj.weight": "model-00002-of-00009.safetensors",
         | 
| 660 | 
            +
                "language_model.model.layers.5.mlp.gate_proj.weight": "model-00002-of-00009.safetensors",
         | 
| 661 | 
            +
                "language_model.model.layers.5.mlp.up_proj.weight": "model-00002-of-00009.safetensors",
         | 
| 662 | 
            +
                "language_model.model.layers.5.post_attention_layernorm.weight": "model-00002-of-00009.safetensors",
         | 
| 663 | 
            +
                "language_model.model.layers.5.self_attn.k_proj.weight": "model-00002-of-00009.safetensors",
         | 
| 664 | 
            +
                "language_model.model.layers.5.self_attn.o_proj.weight": "model-00002-of-00009.safetensors",
         | 
| 665 | 
            +
                "language_model.model.layers.5.self_attn.q_proj.weight": "model-00002-of-00009.safetensors",
         | 
| 666 | 
            +
                "language_model.model.layers.5.self_attn.v_proj.weight": "model-00002-of-00009.safetensors",
         | 
| 667 | 
            +
                "language_model.model.layers.6.input_layernorm.weight": "model-00002-of-00009.safetensors",
         | 
| 668 | 
            +
                "language_model.model.layers.6.mlp.down_proj.weight": "model-00002-of-00009.safetensors",
         | 
| 669 | 
            +
                "language_model.model.layers.6.mlp.gate_proj.weight": "model-00002-of-00009.safetensors",
         | 
| 670 | 
            +
                "language_model.model.layers.6.mlp.up_proj.weight": "model-00002-of-00009.safetensors",
         | 
| 671 | 
            +
                "language_model.model.layers.6.post_attention_layernorm.weight": "model-00002-of-00009.safetensors",
         | 
| 672 | 
            +
                "language_model.model.layers.6.self_attn.k_proj.weight": "model-00002-of-00009.safetensors",
         | 
| 673 | 
            +
                "language_model.model.layers.6.self_attn.o_proj.weight": "model-00002-of-00009.safetensors",
         | 
| 674 | 
            +
                "language_model.model.layers.6.self_attn.q_proj.weight": "model-00002-of-00009.safetensors",
         | 
| 675 | 
            +
                "language_model.model.layers.6.self_attn.v_proj.weight": "model-00002-of-00009.safetensors",
         | 
| 676 | 
            +
                "language_model.model.layers.7.input_layernorm.weight": "model-00002-of-00009.safetensors",
         | 
| 677 | 
            +
                "language_model.model.layers.7.mlp.down_proj.weight": "model-00002-of-00009.safetensors",
         | 
| 678 | 
            +
                "language_model.model.layers.7.mlp.gate_proj.weight": "model-00002-of-00009.safetensors",
         | 
| 679 | 
            +
                "language_model.model.layers.7.mlp.up_proj.weight": "model-00002-of-00009.safetensors",
         | 
| 680 | 
            +
                "language_model.model.layers.7.post_attention_layernorm.weight": "model-00002-of-00009.safetensors",
         | 
| 681 | 
            +
                "language_model.model.layers.7.self_attn.k_proj.weight": "model-00002-of-00009.safetensors",
         | 
| 682 | 
            +
                "language_model.model.layers.7.self_attn.o_proj.weight": "model-00002-of-00009.safetensors",
         | 
| 683 | 
            +
                "language_model.model.layers.7.self_attn.q_proj.weight": "model-00002-of-00009.safetensors",
         | 
| 684 | 
            +
                "language_model.model.layers.7.self_attn.v_proj.weight": "model-00002-of-00009.safetensors",
         | 
| 685 | 
            +
                "language_model.model.layers.8.input_layernorm.weight": "model-00002-of-00009.safetensors",
         | 
| 686 | 
            +
                "language_model.model.layers.8.mlp.down_proj.weight": "model-00002-of-00009.safetensors",
         | 
| 687 | 
            +
                "language_model.model.layers.8.mlp.gate_proj.weight": "model-00002-of-00009.safetensors",
         | 
| 688 | 
            +
                "language_model.model.layers.8.mlp.up_proj.weight": "model-00002-of-00009.safetensors",
         | 
| 689 | 
            +
                "language_model.model.layers.8.post_attention_layernorm.weight": "model-00002-of-00009.safetensors",
         | 
| 690 | 
            +
                "language_model.model.layers.8.self_attn.k_proj.weight": "model-00002-of-00009.safetensors",
         | 
| 691 | 
            +
                "language_model.model.layers.8.self_attn.o_proj.weight": "model-00002-of-00009.safetensors",
         | 
| 692 | 
            +
                "language_model.model.layers.8.self_attn.q_proj.weight": "model-00002-of-00009.safetensors",
         | 
| 693 | 
            +
                "language_model.model.layers.8.self_attn.v_proj.weight": "model-00002-of-00009.safetensors",
         | 
| 694 | 
            +
                "language_model.model.layers.9.input_layernorm.weight": "model-00003-of-00009.safetensors",
         | 
| 695 | 
            +
                "language_model.model.layers.9.mlp.down_proj.weight": "model-00003-of-00009.safetensors",
         | 
| 696 | 
            +
                "language_model.model.layers.9.mlp.gate_proj.weight": "model-00003-of-00009.safetensors",
         | 
| 697 | 
            +
                "language_model.model.layers.9.mlp.up_proj.weight": "model-00003-of-00009.safetensors",
         | 
| 698 | 
            +
                "language_model.model.layers.9.post_attention_layernorm.weight": "model-00003-of-00009.safetensors",
         | 
| 699 | 
            +
                "language_model.model.layers.9.self_attn.k_proj.weight": "model-00003-of-00009.safetensors",
         | 
| 700 | 
            +
                "language_model.model.layers.9.self_attn.o_proj.weight": "model-00003-of-00009.safetensors",
         | 
| 701 | 
            +
                "language_model.model.layers.9.self_attn.q_proj.weight": "model-00003-of-00009.safetensors",
         | 
| 702 | 
            +
                "language_model.model.layers.9.self_attn.v_proj.weight": "model-00003-of-00009.safetensors",
         | 
| 703 | 
            +
                "language_model.model.norm.weight": "model-00009-of-00009.safetensors",
         | 
| 704 | 
            +
                "projector.linear.bias": "model-00009-of-00009.safetensors",
         | 
| 705 | 
            +
                "projector.linear.weight": "model-00009-of-00009.safetensors",
         | 
| 706 | 
            +
                "projector.qformer.encoder.layer.0.attention.attention.key.bias": "model-00009-of-00009.safetensors",
         | 
| 707 | 
            +
                "projector.qformer.encoder.layer.0.attention.attention.key.weight": "model-00009-of-00009.safetensors",
         | 
| 708 | 
            +
                "projector.qformer.encoder.layer.0.attention.attention.query.bias": "model-00009-of-00009.safetensors",
         | 
| 709 | 
            +
                "projector.qformer.encoder.layer.0.attention.attention.query.weight": "model-00009-of-00009.safetensors",
         | 
| 710 | 
            +
                "projector.qformer.encoder.layer.0.attention.attention.value.bias": "model-00009-of-00009.safetensors",
         | 
| 711 | 
            +
                "projector.qformer.encoder.layer.0.attention.attention.value.weight": "model-00009-of-00009.safetensors",
         | 
| 712 | 
            +
                "projector.qformer.encoder.layer.0.attention.output.LayerNorm.bias": "model-00009-of-00009.safetensors",
         | 
| 713 | 
            +
                "projector.qformer.encoder.layer.0.attention.output.LayerNorm.weight": "model-00009-of-00009.safetensors",
         | 
| 714 | 
            +
                "projector.qformer.encoder.layer.0.attention.output.dense.bias": "model-00009-of-00009.safetensors",
         | 
| 715 | 
            +
                "projector.qformer.encoder.layer.0.attention.output.dense.weight": "model-00009-of-00009.safetensors",
         | 
| 716 | 
            +
                "projector.qformer.encoder.layer.0.crossattention.attention.key.bias": "model-00009-of-00009.safetensors",
         | 
| 717 | 
            +
                "projector.qformer.encoder.layer.0.crossattention.attention.key.weight": "model-00009-of-00009.safetensors",
         | 
| 718 | 
            +
                "projector.qformer.encoder.layer.0.crossattention.attention.query.bias": "model-00009-of-00009.safetensors",
         | 
| 719 | 
            +
                "projector.qformer.encoder.layer.0.crossattention.attention.query.weight": "model-00009-of-00009.safetensors",
         | 
| 720 | 
            +
                "projector.qformer.encoder.layer.0.crossattention.attention.value.bias": "model-00009-of-00009.safetensors",
         | 
| 721 | 
            +
                "projector.qformer.encoder.layer.0.crossattention.attention.value.weight": "model-00009-of-00009.safetensors",
         | 
| 722 | 
            +
                "projector.qformer.encoder.layer.0.crossattention.output.LayerNorm.bias": "model-00009-of-00009.safetensors",
         | 
| 723 | 
            +
                "projector.qformer.encoder.layer.0.crossattention.output.LayerNorm.weight": "model-00009-of-00009.safetensors",
         | 
| 724 | 
            +
                "projector.qformer.encoder.layer.0.crossattention.output.dense.bias": "model-00009-of-00009.safetensors",
         | 
| 725 | 
            +
                "projector.qformer.encoder.layer.0.crossattention.output.dense.weight": "model-00009-of-00009.safetensors",
         | 
| 726 | 
            +
                "projector.qformer.encoder.layer.0.intermediate_query.dense.bias": "model-00009-of-00009.safetensors",
         | 
| 727 | 
            +
                "projector.qformer.encoder.layer.0.intermediate_query.dense.weight": "model-00009-of-00009.safetensors",
         | 
| 728 | 
            +
                "projector.qformer.encoder.layer.0.output_query.LayerNorm.bias": "model-00009-of-00009.safetensors",
         | 
| 729 | 
            +
                "projector.qformer.encoder.layer.0.output_query.LayerNorm.weight": "model-00009-of-00009.safetensors",
         | 
| 730 | 
            +
                "projector.qformer.encoder.layer.0.output_query.dense.bias": "model-00009-of-00009.safetensors",
         | 
| 731 | 
            +
                "projector.qformer.encoder.layer.0.output_query.dense.weight": "model-00009-of-00009.safetensors",
         | 
| 732 | 
            +
                "projector.qformer.encoder.layer.1.attention.attention.key.bias": "model-00009-of-00009.safetensors",
         | 
| 733 | 
            +
                "projector.qformer.encoder.layer.1.attention.attention.key.weight": "model-00009-of-00009.safetensors",
         | 
| 734 | 
            +
                "projector.qformer.encoder.layer.1.attention.attention.query.bias": "model-00009-of-00009.safetensors",
         | 
| 735 | 
            +
                "projector.qformer.encoder.layer.1.attention.attention.query.weight": "model-00009-of-00009.safetensors",
         | 
| 736 | 
            +
                "projector.qformer.encoder.layer.1.attention.attention.value.bias": "model-00009-of-00009.safetensors",
         | 
| 737 | 
            +
                "projector.qformer.encoder.layer.1.attention.attention.value.weight": "model-00009-of-00009.safetensors",
         | 
| 738 | 
            +
                "projector.qformer.encoder.layer.1.attention.output.LayerNorm.bias": "model-00009-of-00009.safetensors",
         | 
| 739 | 
            +
                "projector.qformer.encoder.layer.1.attention.output.LayerNorm.weight": "model-00009-of-00009.safetensors",
         | 
| 740 | 
            +
                "projector.qformer.encoder.layer.1.attention.output.dense.bias": "model-00009-of-00009.safetensors",
         | 
| 741 | 
            +
                "projector.qformer.encoder.layer.1.attention.output.dense.weight": "model-00009-of-00009.safetensors",
         | 
| 742 | 
            +
                "projector.qformer.encoder.layer.1.crossattention.attention.key.bias": "model-00009-of-00009.safetensors",
         | 
| 743 | 
            +
                "projector.qformer.encoder.layer.1.crossattention.attention.key.weight": "model-00009-of-00009.safetensors",
         | 
| 744 | 
            +
                "projector.qformer.encoder.layer.1.crossattention.attention.query.bias": "model-00009-of-00009.safetensors",
         | 
| 745 | 
            +
                "projector.qformer.encoder.layer.1.crossattention.attention.query.weight": "model-00009-of-00009.safetensors",
         | 
| 746 | 
            +
                "projector.qformer.encoder.layer.1.crossattention.attention.value.bias": "model-00009-of-00009.safetensors",
         | 
| 747 | 
            +
                "projector.qformer.encoder.layer.1.crossattention.attention.value.weight": "model-00009-of-00009.safetensors",
         | 
| 748 | 
            +
                "projector.qformer.encoder.layer.1.crossattention.output.LayerNorm.bias": "model-00009-of-00009.safetensors",
         | 
| 749 | 
            +
                "projector.qformer.encoder.layer.1.crossattention.output.LayerNorm.weight": "model-00009-of-00009.safetensors",
         | 
| 750 | 
            +
                "projector.qformer.encoder.layer.1.crossattention.output.dense.bias": "model-00009-of-00009.safetensors",
         | 
| 751 | 
            +
                "projector.qformer.encoder.layer.1.crossattention.output.dense.weight": "model-00009-of-00009.safetensors",
         | 
| 752 | 
            +
                "projector.qformer.encoder.layer.1.intermediate_query.dense.bias": "model-00009-of-00009.safetensors",
         | 
| 753 | 
            +
                "projector.qformer.encoder.layer.1.intermediate_query.dense.weight": "model-00009-of-00009.safetensors",
         | 
| 754 | 
            +
                "projector.qformer.encoder.layer.1.output_query.LayerNorm.bias": "model-00009-of-00009.safetensors",
         | 
| 755 | 
            +
                "projector.qformer.encoder.layer.1.output_query.LayerNorm.weight": "model-00009-of-00009.safetensors",
         | 
| 756 | 
            +
                "projector.qformer.encoder.layer.1.output_query.dense.bias": "model-00009-of-00009.safetensors",
         | 
| 757 | 
            +
                "projector.qformer.encoder.layer.1.output_query.dense.weight": "model-00009-of-00009.safetensors",
         | 
| 758 | 
            +
                "projector.qformer.layernorm.bias": "model-00009-of-00009.safetensors",
         | 
| 759 | 
            +
                "projector.qformer.layernorm.weight": "model-00009-of-00009.safetensors",
         | 
| 760 | 
            +
                "projector.query": "model-00009-of-00009.safetensors"
         | 
| 761 | 
            +
              }
         | 
| 762 | 
            +
            }
         | 
    	
        modeling_granite_speech.py
    ADDED
    
    | @@ -0,0 +1,1393 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            import math
         | 
| 2 | 
            +
            from dataclasses import dataclass
         | 
| 3 | 
            +
            from typing import List, Optional, Tuple, Union
         | 
| 4 | 
            +
             | 
| 5 | 
            +
            import torch
         | 
| 6 | 
            +
            import torch.nn.functional as F
         | 
| 7 | 
            +
            import torch.utils.checkpoint
         | 
| 8 | 
            +
            from torch import einsum, nn
         | 
| 9 | 
            +
             | 
| 10 | 
            +
            from transformers.activations import ACT2FN
         | 
| 11 | 
            +
            from transformers.generation import GenerationMixin
         | 
| 12 | 
            +
            from transformers.modeling_outputs import (
         | 
| 13 | 
            +
                BaseModelOutputWithPastAndCrossAttentions,
         | 
| 14 | 
            +
                BaseModelOutputWithPoolingAndCrossAttentions,
         | 
| 15 | 
            +
                ModelOutput,
         | 
| 16 | 
            +
            )
         | 
| 17 | 
            +
            from transformers.modeling_utils import PreTrainedModel
         | 
| 18 | 
            +
            from transformers.models.auto import AutoModelForCausalLM
         | 
| 19 | 
            +
            from transformers.pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer
         | 
| 20 | 
            +
            from transformers.utils import (
         | 
| 21 | 
            +
                add_start_docstrings,
         | 
| 22 | 
            +
                add_start_docstrings_to_model_forward,
         | 
| 23 | 
            +
                is_peft_available,
         | 
| 24 | 
            +
                logging,
         | 
| 25 | 
            +
                replace_return_docstrings,
         | 
| 26 | 
            +
            )
         | 
| 27 | 
            +
             | 
| 28 | 
            +
            from .configuration_granite_speech import (
         | 
| 29 | 
            +
                GraniteSpeechConfig,
         | 
| 30 | 
            +
                GraniteSpeechEncoderConfig,
         | 
| 31 | 
            +
                GraniteSpeechProjectorConfig,
         | 
| 32 | 
            +
            )
         | 
| 33 | 
            +
             | 
| 34 | 
            +
             | 
| 35 | 
            +
            logger = logging.get_logger(__name__)
         | 
| 36 | 
            +
             | 
| 37 | 
            +
            _CONFIG_FOR_DOC = "GraniteSpeechConfig"
         | 
| 38 | 
            +
             | 
| 39 | 
            +
             | 
| 40 | 
            +
            @dataclass
         | 
| 41 | 
            +
            class GraniteSpeechCausalLMOutputWithPast(ModelOutput):
         | 
| 42 | 
            +
                """
         | 
| 43 | 
            +
                Base class for LlavaNext causal language model (or autoregressive) outputs.
         | 
| 44 | 
            +
             | 
| 45 | 
            +
                Args:
         | 
| 46 | 
            +
                    loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
         | 
| 47 | 
            +
                        Language modeling loss (for next-token prediction).
         | 
| 48 | 
            +
                    logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
         | 
| 49 | 
            +
                        Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
         | 
| 50 | 
            +
                    past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
         | 
| 51 | 
            +
                        Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
         | 
| 52 | 
            +
                        `(batch_size, num_heads, sequence_length, embed_size_per_head)`)
         | 
| 53 | 
            +
             | 
| 54 | 
            +
                        Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see
         | 
| 55 | 
            +
                        `past_key_values` input) to speed up sequential decoding.
         | 
| 56 | 
            +
                    hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
         | 
| 57 | 
            +
                        Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
         | 
| 58 | 
            +
                        one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
         | 
| 59 | 
            +
             | 
| 60 | 
            +
                        Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
         | 
| 61 | 
            +
                    attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
         | 
| 62 | 
            +
                        Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
         | 
| 63 | 
            +
                        sequence_length)`.
         | 
| 64 | 
            +
             | 
| 65 | 
            +
                        Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
         | 
| 66 | 
            +
                        heads.
         | 
| 67 | 
            +
                """
         | 
| 68 | 
            +
             | 
| 69 | 
            +
                loss: Optional[torch.FloatTensor] = None
         | 
| 70 | 
            +
                logits: torch.FloatTensor = None
         | 
| 71 | 
            +
                past_key_values: Optional[List[torch.FloatTensor]] = None
         | 
| 72 | 
            +
                hidden_states: Optional[Tuple[torch.FloatTensor]] = None
         | 
| 73 | 
            +
                attentions: Optional[Tuple[torch.FloatTensor]] = None
         | 
| 74 | 
            +
             | 
| 75 | 
            +
             | 
| 76 | 
            +
            ### Projector
         | 
| 77 | 
            +
            # Currently, we copy the Qformer code directly to avoid depending on Blip2;
         | 
| 78 | 
            +
            # it would be better to create the model from config, similar to the LLM,
         | 
| 79 | 
            +
            # but to do this, we will need to register the QFormer model into an automodel,
         | 
| 80 | 
            +
            # which will should involve pulling it out into its own dir so that it is accessible
         | 
| 81 | 
            +
            # under transformers.models.X.
         | 
| 82 | 
            +
             | 
| 83 | 
            +
             | 
| 84 | 
            +
            # Copied from transformers.models.blip_2.modeling_blip_2.Blip2QFormerMultiHeadAttention with Blip2->GraniteSpeech
         | 
| 85 | 
            +
            class GraniteSpeechQFormerMultiHeadAttention(nn.Module):
         | 
| 86 | 
            +
                def __init__(self, config, is_cross_attention=False):
         | 
| 87 | 
            +
                    super().__init__()
         | 
| 88 | 
            +
                    self.config = config
         | 
| 89 | 
            +
                    if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
         | 
| 90 | 
            +
                        raise ValueError(
         | 
| 91 | 
            +
                            "The hidden size (%d) is not a multiple of the number of attention heads (%d)"
         | 
| 92 | 
            +
                            % (config.hidden_size, config.num_attention_heads)
         | 
| 93 | 
            +
                        )
         | 
| 94 | 
            +
             | 
| 95 | 
            +
                    self.num_attention_heads = config.num_attention_heads
         | 
| 96 | 
            +
                    self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
         | 
| 97 | 
            +
                    self.all_head_size = self.num_attention_heads * self.attention_head_size
         | 
| 98 | 
            +
             | 
| 99 | 
            +
                    self.query = nn.Linear(config.hidden_size, self.all_head_size)
         | 
| 100 | 
            +
                    if is_cross_attention:
         | 
| 101 | 
            +
                        self.key = nn.Linear(config.encoder_hidden_size, self.all_head_size)
         | 
| 102 | 
            +
                        self.value = nn.Linear(config.encoder_hidden_size, self.all_head_size)
         | 
| 103 | 
            +
                    else:
         | 
| 104 | 
            +
                        self.key = nn.Linear(config.hidden_size, self.all_head_size)
         | 
| 105 | 
            +
                        self.value = nn.Linear(config.hidden_size, self.all_head_size)
         | 
| 106 | 
            +
             | 
| 107 | 
            +
                    self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
         | 
| 108 | 
            +
                    self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
         | 
| 109 | 
            +
                    if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
         | 
| 110 | 
            +
                        self.max_position_embeddings = config.max_position_embeddings
         | 
| 111 | 
            +
                        self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size)
         | 
| 112 | 
            +
                    self.save_attention = False
         | 
| 113 | 
            +
             | 
| 114 | 
            +
                def save_attn_gradients(self, attn_gradients):
         | 
| 115 | 
            +
                    self.attn_gradients = attn_gradients
         | 
| 116 | 
            +
             | 
| 117 | 
            +
                def get_attn_gradients(self):
         | 
| 118 | 
            +
                    return self.attn_gradients
         | 
| 119 | 
            +
             | 
| 120 | 
            +
                def save_attention_map(self, attention_map):
         | 
| 121 | 
            +
                    self.attention_map = attention_map
         | 
| 122 | 
            +
             | 
| 123 | 
            +
                def get_attention_map(self):
         | 
| 124 | 
            +
                    return self.attention_map
         | 
| 125 | 
            +
             | 
| 126 | 
            +
                def transpose_for_scores(self, x):
         | 
| 127 | 
            +
                    new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
         | 
| 128 | 
            +
                    x = x.view(*new_x_shape)
         | 
| 129 | 
            +
                    return x.permute(0, 2, 1, 3)
         | 
| 130 | 
            +
             | 
| 131 | 
            +
                def forward(
         | 
| 132 | 
            +
                    self,
         | 
| 133 | 
            +
                    hidden_states,
         | 
| 134 | 
            +
                    attention_mask=None,
         | 
| 135 | 
            +
                    head_mask=None,
         | 
| 136 | 
            +
                    encoder_hidden_states=None,
         | 
| 137 | 
            +
                    encoder_attention_mask=None,
         | 
| 138 | 
            +
                    past_key_value=None,
         | 
| 139 | 
            +
                    output_attentions=False,
         | 
| 140 | 
            +
                ):
         | 
| 141 | 
            +
                    # If this is instantiated as a cross-attention module, the keys
         | 
| 142 | 
            +
                    # and values come from an encoder; the attention mask needs to be
         | 
| 143 | 
            +
                    # such that the encoder's padding tokens are not attended to.
         | 
| 144 | 
            +
                    is_cross_attention = encoder_hidden_states is not None
         | 
| 145 | 
            +
             | 
| 146 | 
            +
                    if is_cross_attention:
         | 
| 147 | 
            +
                        key_layer = self.transpose_for_scores(self.key(encoder_hidden_states))
         | 
| 148 | 
            +
                        value_layer = self.transpose_for_scores(self.value(encoder_hidden_states))
         | 
| 149 | 
            +
                        attention_mask = encoder_attention_mask
         | 
| 150 | 
            +
                    elif past_key_value is not None:
         | 
| 151 | 
            +
                        key_layer = self.transpose_for_scores(self.key(hidden_states))
         | 
| 152 | 
            +
                        value_layer = self.transpose_for_scores(self.value(hidden_states))
         | 
| 153 | 
            +
                        key_layer = torch.cat([past_key_value[0], key_layer], dim=2)
         | 
| 154 | 
            +
                        value_layer = torch.cat([past_key_value[1], value_layer], dim=2)
         | 
| 155 | 
            +
                    else:
         | 
| 156 | 
            +
                        key_layer = self.transpose_for_scores(self.key(hidden_states))
         | 
| 157 | 
            +
                        value_layer = self.transpose_for_scores(self.value(hidden_states))
         | 
| 158 | 
            +
             | 
| 159 | 
            +
                    mixed_query_layer = self.query(hidden_states)
         | 
| 160 | 
            +
             | 
| 161 | 
            +
                    query_layer = self.transpose_for_scores(mixed_query_layer)
         | 
| 162 | 
            +
             | 
| 163 | 
            +
                    past_key_value = (key_layer, value_layer)
         | 
| 164 | 
            +
             | 
| 165 | 
            +
                    # Take the dot product between "query" and "key" to get the raw attention scores.
         | 
| 166 | 
            +
                    attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
         | 
| 167 | 
            +
             | 
| 168 | 
            +
                    if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
         | 
| 169 | 
            +
                        seq_length = hidden_states.size()[1]
         | 
| 170 | 
            +
                        position_ids_l = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(-1, 1)
         | 
| 171 | 
            +
                        position_ids_r = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(1, -1)
         | 
| 172 | 
            +
                        distance = position_ids_l - position_ids_r
         | 
| 173 | 
            +
                        positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1)
         | 
| 174 | 
            +
                        positional_embedding = positional_embedding.to(dtype=query_layer.dtype)  # fp16 compatibility
         | 
| 175 | 
            +
             | 
| 176 | 
            +
                        if self.position_embedding_type == "relative_key":
         | 
| 177 | 
            +
                            relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
         | 
| 178 | 
            +
                            attention_scores = attention_scores + relative_position_scores
         | 
| 179 | 
            +
                        elif self.position_embedding_type == "relative_key_query":
         | 
| 180 | 
            +
                            relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
         | 
| 181 | 
            +
                            relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding)
         | 
| 182 | 
            +
                            attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key
         | 
| 183 | 
            +
             | 
| 184 | 
            +
                    attention_scores = attention_scores / math.sqrt(self.attention_head_size)
         | 
| 185 | 
            +
             | 
| 186 | 
            +
                    if attention_mask is not None:
         | 
| 187 | 
            +
                        # Apply the attention mask is (precomputed for all layers in BertModel forward() function)
         | 
| 188 | 
            +
                        attention_scores = attention_scores + attention_mask
         | 
| 189 | 
            +
             | 
| 190 | 
            +
                    # Normalize the attention scores to probabilities.
         | 
| 191 | 
            +
                    attention_probs = nn.Softmax(dim=-1)(attention_scores)
         | 
| 192 | 
            +
             | 
| 193 | 
            +
                    if is_cross_attention and self.save_attention:
         | 
| 194 | 
            +
                        self.save_attention_map(attention_probs)
         | 
| 195 | 
            +
                        attention_probs.register_hook(self.save_attn_gradients)
         | 
| 196 | 
            +
             | 
| 197 | 
            +
                    # This is actually dropping out entire tokens to attend to, which might
         | 
| 198 | 
            +
                    # seem a bit unusual, but is taken from the original Transformer paper.
         | 
| 199 | 
            +
                    attention_probs_dropped = self.dropout(attention_probs)
         | 
| 200 | 
            +
             | 
| 201 | 
            +
                    # Mask heads if we want to
         | 
| 202 | 
            +
                    if head_mask is not None:
         | 
| 203 | 
            +
                        attention_probs_dropped = attention_probs_dropped * head_mask
         | 
| 204 | 
            +
             | 
| 205 | 
            +
                    context_layer = torch.matmul(attention_probs_dropped, value_layer)
         | 
| 206 | 
            +
             | 
| 207 | 
            +
                    context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
         | 
| 208 | 
            +
                    new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
         | 
| 209 | 
            +
                    context_layer = context_layer.view(*new_context_layer_shape)
         | 
| 210 | 
            +
             | 
| 211 | 
            +
                    outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
         | 
| 212 | 
            +
             | 
| 213 | 
            +
                    outputs = outputs + (past_key_value,)
         | 
| 214 | 
            +
                    return outputs
         | 
| 215 | 
            +
             | 
| 216 | 
            +
             | 
| 217 | 
            +
            # Copied from transformers.models.bert.modeling_bert.BertSelfOutput with Bert->GraniteSpeechQFormer
         | 
| 218 | 
            +
            class GraniteSpeechQFormerSelfOutput(nn.Module):
         | 
| 219 | 
            +
                def __init__(self, config):
         | 
| 220 | 
            +
                    super().__init__()
         | 
| 221 | 
            +
                    self.dense = nn.Linear(config.hidden_size, config.hidden_size)
         | 
| 222 | 
            +
                    self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
         | 
| 223 | 
            +
                    self.dropout = nn.Dropout(config.hidden_dropout_prob)
         | 
| 224 | 
            +
             | 
| 225 | 
            +
                def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
         | 
| 226 | 
            +
                    hidden_states = self.dense(hidden_states)
         | 
| 227 | 
            +
                    hidden_states = self.dropout(hidden_states)
         | 
| 228 | 
            +
                    hidden_states = self.LayerNorm(hidden_states + input_tensor)
         | 
| 229 | 
            +
                    return hidden_states
         | 
| 230 | 
            +
             | 
| 231 | 
            +
             | 
| 232 | 
            +
            # Copied from transformers.models.blip_2.modeling_blip_2.Blip2QFormerAttention with Blip2->GraniteSpeech
         | 
| 233 | 
            +
            class GraniteSpeechQFormerAttention(nn.Module):
         | 
| 234 | 
            +
                def __init__(self, config, is_cross_attention=False):
         | 
| 235 | 
            +
                    super().__init__()
         | 
| 236 | 
            +
                    self.attention = GraniteSpeechQFormerMultiHeadAttention(config, is_cross_attention)
         | 
| 237 | 
            +
                    self.output = GraniteSpeechQFormerSelfOutput(config)
         | 
| 238 | 
            +
                    self.pruned_heads = set()
         | 
| 239 | 
            +
             | 
| 240 | 
            +
                def prune_heads(self, heads):
         | 
| 241 | 
            +
                    if len(heads) == 0:
         | 
| 242 | 
            +
                        return
         | 
| 243 | 
            +
                    heads, index = find_pruneable_heads_and_indices(
         | 
| 244 | 
            +
                        heads, self.attention.num_attention_heads, self.attention.attention_head_size, self.pruned_heads
         | 
| 245 | 
            +
                    )
         | 
| 246 | 
            +
             | 
| 247 | 
            +
                    # Prune linear layers
         | 
| 248 | 
            +
                    self.attention.query = prune_linear_layer(self.attention.query, index)
         | 
| 249 | 
            +
                    self.attention.key = prune_linear_layer(self.attention.key, index)
         | 
| 250 | 
            +
                    self.attention.value = prune_linear_layer(self.attention.value, index)
         | 
| 251 | 
            +
                    self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
         | 
| 252 | 
            +
             | 
| 253 | 
            +
                    # Update hyper params and store pruned heads
         | 
| 254 | 
            +
                    self.attention.num_attention_heads = self.attention.num_attention_heads - len(heads)
         | 
| 255 | 
            +
                    self.attention.all_head_size = self.attention.attention_head_size * self.attention.num_attention_heads
         | 
| 256 | 
            +
                    self.pruned_heads = self.pruned_heads.union(heads)
         | 
| 257 | 
            +
             | 
| 258 | 
            +
                def forward(
         | 
| 259 | 
            +
                    self,
         | 
| 260 | 
            +
                    hidden_states: torch.Tensor,
         | 
| 261 | 
            +
                    attention_mask: Optional[torch.FloatTensor] = None,
         | 
| 262 | 
            +
                    head_mask: Optional[torch.FloatTensor] = None,
         | 
| 263 | 
            +
                    encoder_hidden_states: Optional[torch.FloatTensor] = None,
         | 
| 264 | 
            +
                    encoder_attention_mask: Optional[torch.FloatTensor] = None,
         | 
| 265 | 
            +
                    past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
         | 
| 266 | 
            +
                    output_attentions: Optional[bool] = False,
         | 
| 267 | 
            +
                ) -> Tuple[torch.Tensor]:
         | 
| 268 | 
            +
                    self_outputs = self.attention(
         | 
| 269 | 
            +
                        hidden_states,
         | 
| 270 | 
            +
                        attention_mask,
         | 
| 271 | 
            +
                        head_mask,
         | 
| 272 | 
            +
                        encoder_hidden_states,
         | 
| 273 | 
            +
                        encoder_attention_mask,
         | 
| 274 | 
            +
                        past_key_value,
         | 
| 275 | 
            +
                        output_attentions,
         | 
| 276 | 
            +
                    )
         | 
| 277 | 
            +
                    attention_output = self.output(self_outputs[0], hidden_states)
         | 
| 278 | 
            +
                    outputs = (attention_output,) + self_outputs[1:]  # add attentions if we output them
         | 
| 279 | 
            +
                    return outputs
         | 
| 280 | 
            +
             | 
| 281 | 
            +
             | 
| 282 | 
            +
            # Copied from transformers.models.bert.modeling_bert.BertIntermediate with Bert->GraniteSpeechQFormer
         | 
| 283 | 
            +
            class GraniteSpeechQFormerIntermediate(nn.Module):
         | 
| 284 | 
            +
                def __init__(self, config):
         | 
| 285 | 
            +
                    super().__init__()
         | 
| 286 | 
            +
                    self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
         | 
| 287 | 
            +
                    if isinstance(config.hidden_act, str):
         | 
| 288 | 
            +
                        self.intermediate_act_fn = ACT2FN[config.hidden_act]
         | 
| 289 | 
            +
                    else:
         | 
| 290 | 
            +
                        self.intermediate_act_fn = config.hidden_act
         | 
| 291 | 
            +
             | 
| 292 | 
            +
                def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
         | 
| 293 | 
            +
                    hidden_states = self.dense(hidden_states)
         | 
| 294 | 
            +
                    hidden_states = self.intermediate_act_fn(hidden_states)
         | 
| 295 | 
            +
                    return hidden_states
         | 
| 296 | 
            +
             | 
| 297 | 
            +
             | 
| 298 | 
            +
            # Copied from transformers.models.bert.modeling_bert.BertOutput with Bert->GraniteSpeechQFormer
         | 
| 299 | 
            +
            class GraniteSpeechQFormerOutput(nn.Module):
         | 
| 300 | 
            +
                def __init__(self, config):
         | 
| 301 | 
            +
                    super().__init__()
         | 
| 302 | 
            +
                    self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
         | 
| 303 | 
            +
                    self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
         | 
| 304 | 
            +
                    self.dropout = nn.Dropout(config.hidden_dropout_prob)
         | 
| 305 | 
            +
             | 
| 306 | 
            +
                def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
         | 
| 307 | 
            +
                    hidden_states = self.dense(hidden_states)
         | 
| 308 | 
            +
                    hidden_states = self.dropout(hidden_states)
         | 
| 309 | 
            +
                    hidden_states = self.LayerNorm(hidden_states + input_tensor)
         | 
| 310 | 
            +
                    return hidden_states
         | 
| 311 | 
            +
             | 
| 312 | 
            +
             | 
| 313 | 
            +
            # Copied from transformers.models.blip_2.modeling_blip_2.Blip2QFormerLayer with Blip2->GraniteSpeech
         | 
| 314 | 
            +
            class GraniteSpeechQFormerLayer(nn.Module):
         | 
| 315 | 
            +
                def __init__(self, config, layer_idx):
         | 
| 316 | 
            +
                    super().__init__()
         | 
| 317 | 
            +
                    self.chunk_size_feed_forward = config.chunk_size_feed_forward
         | 
| 318 | 
            +
                    self.seq_len_dim = 1
         | 
| 319 | 
            +
                    self.attention = GraniteSpeechQFormerAttention(config)
         | 
| 320 | 
            +
             | 
| 321 | 
            +
                    self.layer_idx = layer_idx
         | 
| 322 | 
            +
             | 
| 323 | 
            +
                    if layer_idx % config.cross_attention_frequency == 0:
         | 
| 324 | 
            +
                        self.crossattention = GraniteSpeechQFormerAttention(config, is_cross_attention=True)
         | 
| 325 | 
            +
                        self.has_cross_attention = True
         | 
| 326 | 
            +
                    else:
         | 
| 327 | 
            +
                        self.has_cross_attention = False
         | 
| 328 | 
            +
             | 
| 329 | 
            +
                    if config.use_qformer_text_input:
         | 
| 330 | 
            +
                        self.intermediate = GraniteSpeechQFormerIntermediate(config)
         | 
| 331 | 
            +
                        self.output = GraniteSpeechQFormerOutput(config)
         | 
| 332 | 
            +
             | 
| 333 | 
            +
                    self.intermediate_query = GraniteSpeechQFormerIntermediate(config)
         | 
| 334 | 
            +
                    self.output_query = GraniteSpeechQFormerOutput(config)
         | 
| 335 | 
            +
             | 
| 336 | 
            +
                def forward(
         | 
| 337 | 
            +
                    self,
         | 
| 338 | 
            +
                    hidden_states,
         | 
| 339 | 
            +
                    attention_mask=None,
         | 
| 340 | 
            +
                    head_mask=None,
         | 
| 341 | 
            +
                    encoder_hidden_states=None,
         | 
| 342 | 
            +
                    encoder_attention_mask=None,
         | 
| 343 | 
            +
                    past_key_value=None,
         | 
| 344 | 
            +
                    output_attentions=False,
         | 
| 345 | 
            +
                    query_length=0,
         | 
| 346 | 
            +
                ):
         | 
| 347 | 
            +
                    # decoder uni-directional self-attention cached key/values tuple is at positions 1,2
         | 
| 348 | 
            +
                    self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
         | 
| 349 | 
            +
                    self_attention_outputs = self.attention(
         | 
| 350 | 
            +
                        hidden_states,
         | 
| 351 | 
            +
                        attention_mask,
         | 
| 352 | 
            +
                        head_mask,
         | 
| 353 | 
            +
                        output_attentions=output_attentions,
         | 
| 354 | 
            +
                        past_key_value=self_attn_past_key_value,
         | 
| 355 | 
            +
                    )
         | 
| 356 | 
            +
                    attention_output = self_attention_outputs[0]
         | 
| 357 | 
            +
                    outputs = self_attention_outputs[1:-1]
         | 
| 358 | 
            +
             | 
| 359 | 
            +
                    present_key_value = self_attention_outputs[-1]
         | 
| 360 | 
            +
             | 
| 361 | 
            +
                    if query_length > 0:
         | 
| 362 | 
            +
                        query_attention_output = attention_output[:, :query_length, :]
         | 
| 363 | 
            +
             | 
| 364 | 
            +
                        if self.has_cross_attention:
         | 
| 365 | 
            +
                            if encoder_hidden_states is None:
         | 
| 366 | 
            +
                                raise ValueError("encoder_hidden_states must be given for cross-attention layers")
         | 
| 367 | 
            +
                            cross_attention_outputs = self.crossattention(
         | 
| 368 | 
            +
                                query_attention_output,
         | 
| 369 | 
            +
                                attention_mask,
         | 
| 370 | 
            +
                                head_mask,
         | 
| 371 | 
            +
                                encoder_hidden_states,
         | 
| 372 | 
            +
                                encoder_attention_mask,
         | 
| 373 | 
            +
                                output_attentions=output_attentions,
         | 
| 374 | 
            +
                            )
         | 
| 375 | 
            +
                            query_attention_output = cross_attention_outputs[0]
         | 
| 376 | 
            +
                            # add cross attentions if we output attention weights
         | 
| 377 | 
            +
                            outputs = outputs + cross_attention_outputs[1:-1]
         | 
| 378 | 
            +
             | 
| 379 | 
            +
                        layer_output = apply_chunking_to_forward(
         | 
| 380 | 
            +
                            self.feed_forward_chunk_query,
         | 
| 381 | 
            +
                            self.chunk_size_feed_forward,
         | 
| 382 | 
            +
                            self.seq_len_dim,
         | 
| 383 | 
            +
                            query_attention_output,
         | 
| 384 | 
            +
                        )
         | 
| 385 | 
            +
             | 
| 386 | 
            +
                        if attention_output.shape[1] > query_length:
         | 
| 387 | 
            +
                            layer_output_text = apply_chunking_to_forward(
         | 
| 388 | 
            +
                                self.feed_forward_chunk,
         | 
| 389 | 
            +
                                self.chunk_size_feed_forward,
         | 
| 390 | 
            +
                                self.seq_len_dim,
         | 
| 391 | 
            +
                                attention_output[:, query_length:, :],
         | 
| 392 | 
            +
                            )
         | 
| 393 | 
            +
                            layer_output = torch.cat([layer_output, layer_output_text], dim=1)
         | 
| 394 | 
            +
                    else:
         | 
| 395 | 
            +
                        layer_output = apply_chunking_to_forward(
         | 
| 396 | 
            +
                            self.feed_forward_chunk,
         | 
| 397 | 
            +
                            self.chunk_size_feed_forward,
         | 
| 398 | 
            +
                            self.seq_len_dim,
         | 
| 399 | 
            +
                            attention_output,
         | 
| 400 | 
            +
                        )
         | 
| 401 | 
            +
                    outputs = (layer_output,) + outputs
         | 
| 402 | 
            +
             | 
| 403 | 
            +
                    outputs = outputs + (present_key_value,)
         | 
| 404 | 
            +
             | 
| 405 | 
            +
                    return outputs
         | 
| 406 | 
            +
             | 
| 407 | 
            +
                def feed_forward_chunk(self, attention_output):
         | 
| 408 | 
            +
                    intermediate_output = self.intermediate(attention_output)
         | 
| 409 | 
            +
                    layer_output = self.output(intermediate_output, attention_output)
         | 
| 410 | 
            +
                    return layer_output
         | 
| 411 | 
            +
             | 
| 412 | 
            +
                def feed_forward_chunk_query(self, attention_output):
         | 
| 413 | 
            +
                    intermediate_output = self.intermediate_query(attention_output)
         | 
| 414 | 
            +
                    layer_output = self.output_query(intermediate_output, attention_output)
         | 
| 415 | 
            +
                    return layer_output
         | 
| 416 | 
            +
             | 
| 417 | 
            +
             | 
| 418 | 
            +
            # Copied from transformers.models.blip_2.modeling_blip_2.Blip2QFormerEncoder with Blip2->GraniteSpeech
         | 
| 419 | 
            +
            class GraniteSpeechQFormerEncoder(nn.Module):
         | 
| 420 | 
            +
                def __init__(self, config):
         | 
| 421 | 
            +
                    super().__init__()
         | 
| 422 | 
            +
                    self.config = config
         | 
| 423 | 
            +
                    self.layer = nn.ModuleList(
         | 
| 424 | 
            +
                        [GraniteSpeechQFormerLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
         | 
| 425 | 
            +
                    )
         | 
| 426 | 
            +
                    self.gradient_checkpointing = False
         | 
| 427 | 
            +
             | 
| 428 | 
            +
                def forward(
         | 
| 429 | 
            +
                    self,
         | 
| 430 | 
            +
                    hidden_states,
         | 
| 431 | 
            +
                    attention_mask=None,
         | 
| 432 | 
            +
                    head_mask=None,
         | 
| 433 | 
            +
                    encoder_hidden_states=None,
         | 
| 434 | 
            +
                    encoder_attention_mask=None,
         | 
| 435 | 
            +
                    past_key_values=None,
         | 
| 436 | 
            +
                    use_cache=None,
         | 
| 437 | 
            +
                    output_attentions=False,
         | 
| 438 | 
            +
                    output_hidden_states=False,
         | 
| 439 | 
            +
                    return_dict=True,
         | 
| 440 | 
            +
                    query_length=0,
         | 
| 441 | 
            +
                ):
         | 
| 442 | 
            +
                    all_hidden_states = () if output_hidden_states else None
         | 
| 443 | 
            +
                    all_self_attentions = () if output_attentions else None
         | 
| 444 | 
            +
                    all_cross_attentions = () if output_attentions else None
         | 
| 445 | 
            +
             | 
| 446 | 
            +
                    next_decoder_cache = () if use_cache else None
         | 
| 447 | 
            +
             | 
| 448 | 
            +
                    for i in range(self.config.num_hidden_layers):
         | 
| 449 | 
            +
                        layer_module = self.layer[i]
         | 
| 450 | 
            +
                        if output_hidden_states:
         | 
| 451 | 
            +
                            all_hidden_states = all_hidden_states + (hidden_states,)
         | 
| 452 | 
            +
             | 
| 453 | 
            +
                        layer_head_mask = head_mask[i] if head_mask is not None else None
         | 
| 454 | 
            +
                        past_key_value = past_key_values[i] if past_key_values is not None else None
         | 
| 455 | 
            +
             | 
| 456 | 
            +
                        if getattr(self.config, "gradient_checkpointing", False) and self.training:
         | 
| 457 | 
            +
                            if use_cache:
         | 
| 458 | 
            +
                                logger.warning(
         | 
| 459 | 
            +
                                    "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
         | 
| 460 | 
            +
                                )
         | 
| 461 | 
            +
                                use_cache = False
         | 
| 462 | 
            +
                            layer_outputs = self._gradient_checkpointing_func(
         | 
| 463 | 
            +
                                layer_module.__call__,
         | 
| 464 | 
            +
                                hidden_states,
         | 
| 465 | 
            +
                                attention_mask,
         | 
| 466 | 
            +
                                layer_head_mask,
         | 
| 467 | 
            +
                                encoder_hidden_states,
         | 
| 468 | 
            +
                                encoder_attention_mask,
         | 
| 469 | 
            +
                            )
         | 
| 470 | 
            +
                        else:
         | 
| 471 | 
            +
                            layer_outputs = layer_module(
         | 
| 472 | 
            +
                                hidden_states,
         | 
| 473 | 
            +
                                attention_mask,
         | 
| 474 | 
            +
                                layer_head_mask,
         | 
| 475 | 
            +
                                encoder_hidden_states,
         | 
| 476 | 
            +
                                encoder_attention_mask,
         | 
| 477 | 
            +
                                past_key_value,
         | 
| 478 | 
            +
                                output_attentions,
         | 
| 479 | 
            +
                                query_length,
         | 
| 480 | 
            +
                            )
         | 
| 481 | 
            +
             | 
| 482 | 
            +
                        hidden_states = layer_outputs[0]
         | 
| 483 | 
            +
                        if use_cache:
         | 
| 484 | 
            +
                            next_decoder_cache += (layer_outputs[-1],)
         | 
| 485 | 
            +
                        if output_attentions:
         | 
| 486 | 
            +
                            all_self_attentions = all_self_attentions + (layer_outputs[1],)
         | 
| 487 | 
            +
                            if layer_module.has_cross_attention:
         | 
| 488 | 
            +
                                all_cross_attentions = all_cross_attentions + (layer_outputs[2],)
         | 
| 489 | 
            +
             | 
| 490 | 
            +
                    if output_hidden_states:
         | 
| 491 | 
            +
                        all_hidden_states = all_hidden_states + (hidden_states,)
         | 
| 492 | 
            +
             | 
| 493 | 
            +
                    if not return_dict:
         | 
| 494 | 
            +
                        return tuple(
         | 
| 495 | 
            +
                            v
         | 
| 496 | 
            +
                            for v in [
         | 
| 497 | 
            +
                                hidden_states,
         | 
| 498 | 
            +
                                next_decoder_cache,
         | 
| 499 | 
            +
                                all_hidden_states,
         | 
| 500 | 
            +
                                all_self_attentions,
         | 
| 501 | 
            +
                                all_cross_attentions,
         | 
| 502 | 
            +
                            ]
         | 
| 503 | 
            +
                            if v is not None
         | 
| 504 | 
            +
                        )
         | 
| 505 | 
            +
                    return BaseModelOutputWithPastAndCrossAttentions(
         | 
| 506 | 
            +
                        last_hidden_state=hidden_states,
         | 
| 507 | 
            +
                        past_key_values=next_decoder_cache,
         | 
| 508 | 
            +
                        hidden_states=all_hidden_states,
         | 
| 509 | 
            +
                        attentions=all_self_attentions,
         | 
| 510 | 
            +
                        cross_attentions=all_cross_attentions,
         | 
| 511 | 
            +
                    )
         | 
| 512 | 
            +
             | 
| 513 | 
            +
             | 
| 514 | 
            +
            class GraniteSpeechEncoderProjectorPreTrainedModel(PreTrainedModel):
         | 
| 515 | 
            +
                """
         | 
| 516 | 
            +
                An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
         | 
| 517 | 
            +
                models.
         | 
| 518 | 
            +
                """
         | 
| 519 | 
            +
             | 
| 520 | 
            +
                config_class = GraniteSpeechProjectorConfig
         | 
| 521 | 
            +
                base_model_prefix = "qformer"
         | 
| 522 | 
            +
                supports_gradient_checkpointing = True
         | 
| 523 | 
            +
             | 
| 524 | 
            +
                _no_split_modules = [
         | 
| 525 | 
            +
                    "GraniteSpeechQFormerMultiHeadAttention",
         | 
| 526 | 
            +
                    "T5Block",
         | 
| 527 | 
            +
                    "OPTDecoderLayer",
         | 
| 528 | 
            +
                ]
         | 
| 529 | 
            +
                _skip_keys_device_placement = "past_key_values"
         | 
| 530 | 
            +
                _keep_in_fp32_modules = ["query_tokens"]
         | 
| 531 | 
            +
             | 
| 532 | 
            +
                def _init_weights(self, module):
         | 
| 533 | 
            +
                    """Initialize the weights"""
         | 
| 534 | 
            +
                    factor = self.config.initializer_range
         | 
| 535 | 
            +
                    if isinstance(module, nn.Conv2d) or isinstance(module, nn.Embedding) or isinstance(module, nn.Linear):
         | 
| 536 | 
            +
                        module.weight.data.normal_(mean=0.0, std=factor)
         | 
| 537 | 
            +
                        if hasattr(module, "bias") and module.bias is not None:
         | 
| 538 | 
            +
                            module.bias.data.zero_()
         | 
| 539 | 
            +
             | 
| 540 | 
            +
                    elif isinstance(module, nn.LayerNorm):
         | 
| 541 | 
            +
                        module.bias.data.zero_()
         | 
| 542 | 
            +
                        module.weight.data.fill_(1.0)
         | 
| 543 | 
            +
                    elif isinstance(module, nn.Linear) and module.bias is not None:
         | 
| 544 | 
            +
                        module.bias.data.zero_()
         | 
| 545 | 
            +
             | 
| 546 | 
            +
             | 
| 547 | 
            +
            class GraniteSpeechQFormerModel(GraniteSpeechEncoderProjectorPreTrainedModel):
         | 
| 548 | 
            +
                """
         | 
| 549 | 
            +
                Querying Transformer (Q-Former), used in GraniteSpeech.
         | 
| 550 | 
            +
                """
         | 
| 551 | 
            +
             | 
| 552 | 
            +
                def __init__(self, config: GraniteSpeechProjectorConfig):
         | 
| 553 | 
            +
                    super().__init__(config)
         | 
| 554 | 
            +
                    self.config = config
         | 
| 555 | 
            +
             | 
| 556 | 
            +
                    self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
         | 
| 557 | 
            +
                    self.dropout = nn.Dropout(config.hidden_dropout_prob)
         | 
| 558 | 
            +
             | 
| 559 | 
            +
                    self.encoder = GraniteSpeechQFormerEncoder(config)
         | 
| 560 | 
            +
             | 
| 561 | 
            +
                    self.post_init()
         | 
| 562 | 
            +
             | 
| 563 | 
            +
                # Copied from transformers.models.blip_2.modeling_blip_2.Blip2QFormerModel.get_input_embeddings
         | 
| 564 | 
            +
                def get_input_embeddings(self):
         | 
| 565 | 
            +
                    return self.embeddings.word_embeddings
         | 
| 566 | 
            +
             | 
| 567 | 
            +
                # Copied from transformers.models.blip_2.modeling_blip_2.Blip2QFormerModel.set_input_embeddings
         | 
| 568 | 
            +
                def set_input_embeddings(self, value):
         | 
| 569 | 
            +
                    self.embeddings.word_embeddings = value
         | 
| 570 | 
            +
             | 
| 571 | 
            +
                # Copied from transformers.models.blip_2.modeling_blip_2.Blip2QFormerModel._prune_heads
         | 
| 572 | 
            +
                def _prune_heads(self, heads_to_prune):
         | 
| 573 | 
            +
                    """
         | 
| 574 | 
            +
                    Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
         | 
| 575 | 
            +
                    class PreTrainedModel
         | 
| 576 | 
            +
                    """
         | 
| 577 | 
            +
                    for layer, heads in heads_to_prune.items():
         | 
| 578 | 
            +
                        self.encoder.layer[layer].attention.prune_heads(heads)
         | 
| 579 | 
            +
             | 
| 580 | 
            +
                # Copied from transformers.models.blip_2.modeling_blip_2.Blip2QFormerModel.get_extended_attention_mask
         | 
| 581 | 
            +
                def get_extended_attention_mask(
         | 
| 582 | 
            +
                    self,
         | 
| 583 | 
            +
                    attention_mask: torch.Tensor,
         | 
| 584 | 
            +
                    input_shape: Tuple[int],
         | 
| 585 | 
            +
                    device: torch.device,
         | 
| 586 | 
            +
                    has_query: bool = False,
         | 
| 587 | 
            +
                ) -> torch.Tensor:
         | 
| 588 | 
            +
                    """
         | 
| 589 | 
            +
                    Makes broadcastable attention and causal masks so that future and masked tokens are ignored.
         | 
| 590 | 
            +
             | 
| 591 | 
            +
                    Arguments:
         | 
| 592 | 
            +
                        attention_mask (`torch.Tensor`):
         | 
| 593 | 
            +
                            Mask with ones indicating tokens to attend to, zeros for tokens to ignore.
         | 
| 594 | 
            +
                        input_shape (`Tuple[int]`):
         | 
| 595 | 
            +
                            The shape of the input to the model.
         | 
| 596 | 
            +
                        device (`torch.device`):
         | 
| 597 | 
            +
                            The device of the input to the model.
         | 
| 598 | 
            +
             | 
| 599 | 
            +
                    Returns:
         | 
| 600 | 
            +
                        `torch.Tensor` The extended attention mask, with a the same dtype as `attention_mask.dtype`.
         | 
| 601 | 
            +
                    """
         | 
| 602 | 
            +
                    # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
         | 
| 603 | 
            +
                    # ourselves in which case we just need to make it broadcastable to all heads.
         | 
| 604 | 
            +
                    if attention_mask.dim() == 3:
         | 
| 605 | 
            +
                        extended_attention_mask = attention_mask[:, None, :, :]
         | 
| 606 | 
            +
                    elif attention_mask.dim() == 2:
         | 
| 607 | 
            +
                        # Provided a padding mask of dimensions [batch_size, seq_length]
         | 
| 608 | 
            +
                        # - the model is an encoder, so make the mask broadcastable to [batch_size, num_heads, seq_length, seq_length]
         | 
| 609 | 
            +
                        extended_attention_mask = attention_mask[:, None, None, :]
         | 
| 610 | 
            +
                    else:
         | 
| 611 | 
            +
                        raise ValueError(
         | 
| 612 | 
            +
                            "Wrong shape for input_ids (shape {}) or attention_mask (shape {})".format(
         | 
| 613 | 
            +
                                input_shape, attention_mask.shape
         | 
| 614 | 
            +
                            )
         | 
| 615 | 
            +
                        )
         | 
| 616 | 
            +
             | 
| 617 | 
            +
                    # Since attention_mask is 1.0 for positions we want to attend and 0.0 for
         | 
| 618 | 
            +
                    # masked positions, this operation will create a tensor which is 0.0 for
         | 
| 619 | 
            +
                    # positions we want to attend and -10000.0 for masked positions.
         | 
| 620 | 
            +
                    # Since we are adding it to the raw scores before the softmax, this is
         | 
| 621 | 
            +
                    # effectively the same as removing these entirely.
         | 
| 622 | 
            +
                    extended_attention_mask = extended_attention_mask.to(dtype=self.dtype)  # fp16 compatibility
         | 
| 623 | 
            +
                    extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0
         | 
| 624 | 
            +
                    return extended_attention_mask
         | 
| 625 | 
            +
             | 
| 626 | 
            +
                # Copied from transformers.models.blip_2.modeling_blip_2.Blip2QFormerModel.forward
         | 
| 627 | 
            +
                def forward(
         | 
| 628 | 
            +
                    self,
         | 
| 629 | 
            +
                    query_embeds: torch.FloatTensor,
         | 
| 630 | 
            +
                    query_length: Optional[int] = None,
         | 
| 631 | 
            +
                    attention_mask: Optional[torch.FloatTensor] = None,
         | 
| 632 | 
            +
                    head_mask: Optional[torch.FloatTensor] = None,
         | 
| 633 | 
            +
                    encoder_hidden_states: Optional[torch.FloatTensor] = None,
         | 
| 634 | 
            +
                    encoder_attention_mask: Optional[torch.FloatTensor] = None,
         | 
| 635 | 
            +
                    past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
         | 
| 636 | 
            +
                    use_cache: Optional[bool] = None,
         | 
| 637 | 
            +
                    output_attentions: Optional[bool] = None,
         | 
| 638 | 
            +
                    output_hidden_states: Optional[bool] = None,
         | 
| 639 | 
            +
                    return_dict: Optional[bool] = None,
         | 
| 640 | 
            +
                ) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPoolingAndCrossAttentions]:
         | 
| 641 | 
            +
                    r"""
         | 
| 642 | 
            +
                    encoder_hidden_states  (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, `optional`):
         | 
| 643 | 
            +
                        Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
         | 
| 644 | 
            +
                        the model is configured as a decoder.
         | 
| 645 | 
            +
                    encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, `optional`):
         | 
| 646 | 
            +
                        Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
         | 
| 647 | 
            +
                        the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
         | 
| 648 | 
            +
                        - 1 for tokens that are **not masked**,
         | 
| 649 | 
            +
                        - 0 for tokens that are **masked**.
         | 
| 650 | 
            +
                    past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of:
         | 
| 651 | 
            +
                        shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): Contains precomputed key and
         | 
| 652 | 
            +
                        value hidden states of the attention blocks. Can be used to speed up decoding. If `past_key_values` are
         | 
| 653 | 
            +
                        used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key
         | 
| 654 | 
            +
                        value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape
         | 
| 655 | 
            +
                        `(batch_size, sequence_length)`.
         | 
| 656 | 
            +
                    use_cache (`bool`, `optional`):
         | 
| 657 | 
            +
                        If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
         | 
| 658 | 
            +
                        `past_key_values`).
         | 
| 659 | 
            +
                    """
         | 
| 660 | 
            +
                    output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
         | 
| 661 | 
            +
                    output_hidden_states = (
         | 
| 662 | 
            +
                        output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
         | 
| 663 | 
            +
                    )
         | 
| 664 | 
            +
                    return_dict = return_dict if return_dict is not None else self.config.use_return_dict
         | 
| 665 | 
            +
             | 
| 666 | 
            +
                    # past_key_values_length
         | 
| 667 | 
            +
                    past_key_values_length = (
         | 
| 668 | 
            +
                        past_key_values[0][0].shape[2] - self.config.query_length if past_key_values is not None else 0
         | 
| 669 | 
            +
                    )
         | 
| 670 | 
            +
             | 
| 671 | 
            +
                    query_length = (
         | 
| 672 | 
            +
                        query_length if query_length is not None else query_embeds.shape[1] if query_embeds is not None else 0
         | 
| 673 | 
            +
                    )
         | 
| 674 | 
            +
             | 
| 675 | 
            +
                    embedding_output = self.layernorm(query_embeds)
         | 
| 676 | 
            +
                    embedding_output = self.dropout(embedding_output)
         | 
| 677 | 
            +
             | 
| 678 | 
            +
                    input_shape = embedding_output.size()[:-1]
         | 
| 679 | 
            +
                    batch_size, seq_length = input_shape
         | 
| 680 | 
            +
                    device = embedding_output.device
         | 
| 681 | 
            +
             | 
| 682 | 
            +
                    if attention_mask is None:
         | 
| 683 | 
            +
                        attention_mask = torch.ones(((batch_size, seq_length + past_key_values_length)), device=device)
         | 
| 684 | 
            +
             | 
| 685 | 
            +
                    # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
         | 
| 686 | 
            +
                    # ourselves in which case we just need to make it broadcastable to all heads.
         | 
| 687 | 
            +
                    extended_attention_mask = self.get_extended_attention_mask(attention_mask, input_shape, device)
         | 
| 688 | 
            +
             | 
| 689 | 
            +
                    # If a 2D or 3D attention mask is provided for the cross-attention
         | 
| 690 | 
            +
                    # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
         | 
| 691 | 
            +
                    if encoder_hidden_states is not None:
         | 
| 692 | 
            +
                        if isinstance(encoder_hidden_states, list):
         | 
| 693 | 
            +
                            encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states[0].size()
         | 
| 694 | 
            +
                        else:
         | 
| 695 | 
            +
                            encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
         | 
| 696 | 
            +
                        encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
         | 
| 697 | 
            +
             | 
| 698 | 
            +
                        if isinstance(encoder_attention_mask, list):
         | 
| 699 | 
            +
                            encoder_extended_attention_mask = [self.invert_attention_mask(mask) for mask in encoder_attention_mask]
         | 
| 700 | 
            +
                        elif encoder_attention_mask is None:
         | 
| 701 | 
            +
                            encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
         | 
| 702 | 
            +
                            encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
         | 
| 703 | 
            +
                        else:
         | 
| 704 | 
            +
                            encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
         | 
| 705 | 
            +
                    else:
         | 
| 706 | 
            +
                        encoder_extended_attention_mask = None
         | 
| 707 | 
            +
             | 
| 708 | 
            +
                    # Prepare head mask if needed
         | 
| 709 | 
            +
                    # 1.0 in head_mask indicate we keep the head
         | 
| 710 | 
            +
                    # attention_probs has shape bsz x n_heads x N x N
         | 
| 711 | 
            +
                    # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
         | 
| 712 | 
            +
                    # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
         | 
| 713 | 
            +
                    head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
         | 
| 714 | 
            +
             | 
| 715 | 
            +
                    encoder_outputs = self.encoder(
         | 
| 716 | 
            +
                        embedding_output,
         | 
| 717 | 
            +
                        attention_mask=extended_attention_mask,
         | 
| 718 | 
            +
                        head_mask=head_mask,
         | 
| 719 | 
            +
                        encoder_hidden_states=encoder_hidden_states,
         | 
| 720 | 
            +
                        encoder_attention_mask=encoder_extended_attention_mask,
         | 
| 721 | 
            +
                        past_key_values=past_key_values,
         | 
| 722 | 
            +
                        use_cache=use_cache,
         | 
| 723 | 
            +
                        output_attentions=output_attentions,
         | 
| 724 | 
            +
                        output_hidden_states=output_hidden_states,
         | 
| 725 | 
            +
                        return_dict=return_dict,
         | 
| 726 | 
            +
                        query_length=query_length,
         | 
| 727 | 
            +
                    )
         | 
| 728 | 
            +
                    sequence_output = encoder_outputs[0]
         | 
| 729 | 
            +
                    pooled_output = sequence_output[:, 0, :]
         | 
| 730 | 
            +
             | 
| 731 | 
            +
                    if not return_dict:
         | 
| 732 | 
            +
                        return (sequence_output, pooled_output) + encoder_outputs[1:]
         | 
| 733 | 
            +
             | 
| 734 | 
            +
                    return BaseModelOutputWithPoolingAndCrossAttentions(
         | 
| 735 | 
            +
                        last_hidden_state=sequence_output,
         | 
| 736 | 
            +
                        pooler_output=pooled_output,
         | 
| 737 | 
            +
                        past_key_values=encoder_outputs.past_key_values,
         | 
| 738 | 
            +
                        hidden_states=encoder_outputs.hidden_states,
         | 
| 739 | 
            +
                        attentions=encoder_outputs.attentions,
         | 
| 740 | 
            +
                        cross_attentions=encoder_outputs.cross_attentions,
         | 
| 741 | 
            +
                    )
         | 
| 742 | 
            +
             | 
| 743 | 
            +
             | 
| 744 | 
            +
            # TODO (alex) - refactor GraniteSpeechQformer to be available under
         | 
| 745 | 
            +
            # transformers.models.X, delete all of the code above, and
         | 
| 746 | 
            +
            # create the model through AutoModel.
         | 
| 747 | 
            +
             | 
| 748 | 
            +
             | 
| 749 | 
            +
            class GraniteSpeechEncoderProjectorQFormer(nn.Module):
         | 
| 750 | 
            +
                def __init__(self, config: GraniteSpeechProjectorConfig):
         | 
| 751 | 
            +
                    super().__init__()
         | 
| 752 | 
            +
                    self.hidden_size = config.hidden_size
         | 
| 753 | 
            +
                    self.ds_rate = config.downsample_rate
         | 
| 754 | 
            +
                    self.window_size = config.window_size
         | 
| 755 | 
            +
                    self.num_queries = self.window_size // self.ds_rate
         | 
| 756 | 
            +
                    self.query = nn.Parameter(torch.zeros(1, self.num_queries, config.hidden_size))
         | 
| 757 | 
            +
                    self.query.data.normal_(mean=0.0, std=1.0)
         | 
| 758 | 
            +
                    # NOTE: It would be better to create this from config, similar to the LLM.
         | 
| 759 | 
            +
                    # To do this, we need to register the QFormer model into an automodel, which
         | 
| 760 | 
            +
                    # will require pulling it out into its own dir so that it's accessible under
         | 
| 761 | 
            +
                    # transformers.models.X
         | 
| 762 | 
            +
                    self.qformer = GraniteSpeechQFormerModel(config)
         | 
| 763 | 
            +
                    self.linear = nn.Linear(config.hidden_size, config.llm_dim)
         | 
| 764 | 
            +
             | 
| 765 | 
            +
                def forward(self, x, atts):
         | 
| 766 | 
            +
                    batch_size, seq_len, dim = x.size()
         | 
| 767 | 
            +
                    nblocks = math.ceil(seq_len / self.window_size)
         | 
| 768 | 
            +
                    pad = nblocks * self.window_size - seq_len
         | 
| 769 | 
            +
                    x = nn.functional.pad(x, (0, 0, 0, pad), "constant", 0)
         | 
| 770 | 
            +
                    x = x.view(batch_size * nblocks, self.window_size, dim)
         | 
| 771 | 
            +
             | 
| 772 | 
            +
                    query_output = self.qformer(
         | 
| 773 | 
            +
                        query_embeds=self.query.data,
         | 
| 774 | 
            +
                        encoder_hidden_states=x,
         | 
| 775 | 
            +
                        encoder_attention_mask=atts,
         | 
| 776 | 
            +
                        return_dict=True,
         | 
| 777 | 
            +
                    )
         | 
| 778 | 
            +
                    query_proj = self.linear(
         | 
| 779 | 
            +
                        query_output.last_hidden_state.view(batch_size, nblocks * self.window_size // self.ds_rate, -1)
         | 
| 780 | 
            +
                    )
         | 
| 781 | 
            +
                    return query_proj
         | 
| 782 | 
            +
             | 
| 783 | 
            +
             | 
| 784 | 
            +
            ### Encoder
         | 
| 785 | 
            +
            class GraniteSpeechCTCModel(nn.Module):
         | 
| 786 | 
            +
                def __init__(self, config: GraniteSpeechEncoderConfig):
         | 
| 787 | 
            +
                    super(GraniteSpeechCTCModel, self).__init__()
         | 
| 788 | 
            +
             | 
| 789 | 
            +
                    self.rnn_tr = nn.ModuleList(
         | 
| 790 | 
            +
                        [nn.Linear(config.input_dim, config.hidden_dim, bias=True)]
         | 
| 791 | 
            +
                        + [
         | 
| 792 | 
            +
                            GraniteSpeechConformerBlock(
         | 
| 793 | 
            +
                                dim=config.hidden_dim,
         | 
| 794 | 
            +
                                dim_head=config.dim_head,
         | 
| 795 | 
            +
                                heads=config.num_heads,
         | 
| 796 | 
            +
                                ff_mult=config.feedforward_mult,
         | 
| 797 | 
            +
                                conv_expansion_factor=config.conv_expansion_factor,
         | 
| 798 | 
            +
                                conv_kernel_size=config.conv_kernel_size,
         | 
| 799 | 
            +
                                context_size=config.context_size,  # attention context size
         | 
| 800 | 
            +
                                attn_dropout=config.dropout,
         | 
| 801 | 
            +
                                ff_dropout=config.dropout,
         | 
| 802 | 
            +
                                conv_dropout=config.dropout,
         | 
| 803 | 
            +
                            )
         | 
| 804 | 
            +
                            for layer_idx in range(config.num_layers)
         | 
| 805 | 
            +
                        ]
         | 
| 806 | 
            +
                    )
         | 
| 807 | 
            +
             | 
| 808 | 
            +
                    self.out = nn.Linear(config.hidden_dim, config.output_dim, bias=True)
         | 
| 809 | 
            +
                    self.out_mid = nn.Linear(config.output_dim, config.hidden_dim, bias=True)
         | 
| 810 | 
            +
                    self.context_size = config.context_size
         | 
| 811 | 
            +
                    self.input_dim = config.input_dim
         | 
| 812 | 
            +
                    self.num_layers = config.num_layers
         | 
| 813 | 
            +
                    self.hidden_dim = config.hidden_dim
         | 
| 814 | 
            +
                    self.output_dim = config.output_dim
         | 
| 815 | 
            +
             | 
| 816 | 
            +
                def forward(self, x: torch.Tensor):
         | 
| 817 | 
            +
                    x = self.rnn_tr[0](x)
         | 
| 818 | 
            +
                    for idx, layer in enumerate(self.rnn_tr[1:], start=1):
         | 
| 819 | 
            +
                        x = layer(x, self.context_size)
         | 
| 820 | 
            +
                        if idx == self.num_layers // 2:
         | 
| 821 | 
            +
                            x_mid = x.clone()
         | 
| 822 | 
            +
                            x_mid = self.out(x_mid)
         | 
| 823 | 
            +
                            x += self.out_mid(nn.Softmax(dim=-1)(x_mid))
         | 
| 824 | 
            +
                    return x
         | 
| 825 | 
            +
             | 
| 826 | 
            +
             | 
| 827 | 
            +
            # NOTE: Conformer adapated from: https://github.com/lucidrains/conformer.git
         | 
| 828 | 
            +
            class GraniteSpeechConformerPermute(nn.Module):
         | 
| 829 | 
            +
                def __init__(self, dims):
         | 
| 830 | 
            +
                    super().__init__()
         | 
| 831 | 
            +
                    self.dims = dims
         | 
| 832 | 
            +
             | 
| 833 | 
            +
                def forward(self, x):
         | 
| 834 | 
            +
                    x = x.permute(self.dims)
         | 
| 835 | 
            +
                    return x
         | 
| 836 | 
            +
             | 
| 837 | 
            +
             | 
| 838 | 
            +
            class GraniteSpeechConformerDepthWiseConv1d(nn.Module):
         | 
| 839 | 
            +
                def __init__(self, chan_in, chan_out, kernel_size, padding):
         | 
| 840 | 
            +
                    super().__init__()
         | 
| 841 | 
            +
                    self.padding = padding
         | 
| 842 | 
            +
                    self.conv = nn.Conv1d(chan_in, chan_out, kernel_size, groups=chan_in, bias=False)
         | 
| 843 | 
            +
             | 
| 844 | 
            +
                def forward(self, x):
         | 
| 845 | 
            +
                    x = F.pad(x, self.padding)
         | 
| 846 | 
            +
                    return self.conv(x)
         | 
| 847 | 
            +
             | 
| 848 | 
            +
             | 
| 849 | 
            +
            class GraniteSpeechConformerScale(nn.Module):
         | 
| 850 | 
            +
                def __init__(self, scale, fn):
         | 
| 851 | 
            +
                    super().__init__()
         | 
| 852 | 
            +
                    self.fn = fn
         | 
| 853 | 
            +
                    self.scale = scale
         | 
| 854 | 
            +
             | 
| 855 | 
            +
                def forward(self, x, **kwargs):
         | 
| 856 | 
            +
                    return self.fn(x, **kwargs) * self.scale
         | 
| 857 | 
            +
             | 
| 858 | 
            +
             | 
| 859 | 
            +
            class GraniteSpeechConformerPreNorm(nn.Module):
         | 
| 860 | 
            +
                def __init__(self, dim, fn):
         | 
| 861 | 
            +
                    super().__init__()
         | 
| 862 | 
            +
                    self.fn = fn
         | 
| 863 | 
            +
                    self.norm = nn.LayerNorm(dim)
         | 
| 864 | 
            +
             | 
| 865 | 
            +
                def forward(self, x, **kwargs):
         | 
| 866 | 
            +
                    x = self.norm(x)
         | 
| 867 | 
            +
                    return self.fn(x, **kwargs)
         | 
| 868 | 
            +
             | 
| 869 | 
            +
             | 
| 870 | 
            +
            class GraniteSpeechConformerPreNormAttn(nn.Module):
         | 
| 871 | 
            +
                def __init__(self, dim, fn):
         | 
| 872 | 
            +
                    super().__init__()
         | 
| 873 | 
            +
                    self.fn = fn
         | 
| 874 | 
            +
                    self.norm = nn.LayerNorm(dim)
         | 
| 875 | 
            +
             | 
| 876 | 
            +
                def forward(self, x, context_size, **kwargs):
         | 
| 877 | 
            +
                    x = self.norm(x)
         | 
| 878 | 
            +
                    return self.fn(x, context_size, **kwargs)
         | 
| 879 | 
            +
             | 
| 880 | 
            +
             | 
| 881 | 
            +
            class GraniteSpeechConformerAttention(nn.Module):
         | 
| 882 | 
            +
                def __init__(
         | 
| 883 | 
            +
                    self,
         | 
| 884 | 
            +
                    dim,
         | 
| 885 | 
            +
                    heads=8,
         | 
| 886 | 
            +
                    dim_head=64,
         | 
| 887 | 
            +
                    dropout=0.0,
         | 
| 888 | 
            +
                    context_size=200,
         | 
| 889 | 
            +
                    max_pos_emb=512,
         | 
| 890 | 
            +
                ):
         | 
| 891 | 
            +
                    super().__init__()
         | 
| 892 | 
            +
                    inner_dim = dim_head * heads
         | 
| 893 | 
            +
                    self.heads = heads
         | 
| 894 | 
            +
                    self.dim_head = dim_head
         | 
| 895 | 
            +
                    self.scale = dim_head**-0.5
         | 
| 896 | 
            +
                    self.to_q = nn.Linear(dim, inner_dim, bias=False)
         | 
| 897 | 
            +
                    self.to_kv = nn.Linear(dim, inner_dim * 2, bias=False)
         | 
| 898 | 
            +
                    self.to_out = nn.Linear(inner_dim, dim)
         | 
| 899 | 
            +
             | 
| 900 | 
            +
                    self.max_pos_emb = max_pos_emb
         | 
| 901 | 
            +
                    self.rel_pos_emb = nn.Embedding(2 * max_pos_emb + 1, dim_head)
         | 
| 902 | 
            +
             | 
| 903 | 
            +
                    self.dropout = nn.Dropout(dropout)
         | 
| 904 | 
            +
             | 
| 905 | 
            +
                def forward(self, x, context_size):
         | 
| 906 | 
            +
                    device, h, max_pos_emb = x.device, self.heads, self.max_pos_emb
         | 
| 907 | 
            +
                    bs, n, d = x.shape
         | 
| 908 | 
            +
                    assert context_size > 0 and context_size <= max_pos_emb
         | 
| 909 | 
            +
             | 
| 910 | 
            +
                    nb = math.ceil(n / context_size)
         | 
| 911 | 
            +
                    nr = n % context_size
         | 
| 912 | 
            +
                    if nr > 0:
         | 
| 913 | 
            +
                        # right padding to reach block size
         | 
| 914 | 
            +
                        x = torch.nn.functional.pad(x, (0, 0, 0, context_size - nr))
         | 
| 915 | 
            +
             | 
| 916 | 
            +
                    q, k, v = (self.to_q(x), *self.to_kv(x).chunk(2, dim=-1))
         | 
| 917 | 
            +
                    q, k, v = [t.reshape(bs, nb, context_size, h, -1).transpose(2, 3) for t in (q, k, v)]
         | 
| 918 | 
            +
             | 
| 919 | 
            +
                    dots = einsum("b m h i d, b m h j d -> b m h i j", q, k) * self.scale
         | 
| 920 | 
            +
             | 
| 921 | 
            +
                    # shaw's relative positional embedding
         | 
| 922 | 
            +
                    seq = torch.arange(context_size, device=device)
         | 
| 923 | 
            +
                    dist = seq.view(-1, 1) - seq.view(1, -1)
         | 
| 924 | 
            +
                    dist = torch.clamp(dist, -context_size, context_size) + max_pos_emb
         | 
| 925 | 
            +
                    rel_pos_emb = self.rel_pos_emb(dist).to(q)
         | 
| 926 | 
            +
                    pos_attn = einsum("b m h c d, c r d -> b m h c r", q, rel_pos_emb) * self.scale
         | 
| 927 | 
            +
                    dots = dots + pos_attn
         | 
| 928 | 
            +
             | 
| 929 | 
            +
                    if nr > 0:
         | 
| 930 | 
            +
                        # masked attention in the extended block
         | 
| 931 | 
            +
                        mask = torch.ones(context_size, context_size, dtype=bool, device=device)
         | 
| 932 | 
            +
                        mask[:nr, :nr] = 0
         | 
| 933 | 
            +
                        mask_value = -torch.finfo(dots.dtype).max
         | 
| 934 | 
            +
                        dots[:, -1, :].masked_fill_(mask, mask_value)
         | 
| 935 | 
            +
             | 
| 936 | 
            +
                    attn = dots.softmax(dim=-1)
         | 
| 937 | 
            +
             | 
| 938 | 
            +
                    out = einsum("b m h i j, b m h j d -> b m h i d", attn, v)
         | 
| 939 | 
            +
                    out = out.transpose(2, 3).reshape(bs, x.shape[1], -1)
         | 
| 940 | 
            +
                    out = self.to_out(out[:, :n, :])
         | 
| 941 | 
            +
                    return self.dropout(out)
         | 
| 942 | 
            +
             | 
| 943 | 
            +
             | 
| 944 | 
            +
            class GraniteSpeechConformerFeedForward(nn.Module):
         | 
| 945 | 
            +
                def __init__(self, dim, mult=4, dropout=0.0):
         | 
| 946 | 
            +
                    super().__init__()
         | 
| 947 | 
            +
                    self.net = nn.Sequential(
         | 
| 948 | 
            +
                        nn.Linear(dim, dim * mult), nn.SiLU(), nn.Dropout(dropout), nn.Linear(dim * mult, dim), nn.Dropout(dropout)
         | 
| 949 | 
            +
                    )
         | 
| 950 | 
            +
             | 
| 951 | 
            +
                def forward(self, x):
         | 
| 952 | 
            +
                    return self.net(x)
         | 
| 953 | 
            +
             | 
| 954 | 
            +
             | 
| 955 | 
            +
            class GraniteSpeechConformerConvModule(nn.Module):
         | 
| 956 | 
            +
                def __init__(self, dim, causal=False, expansion_factor=2, kernel_size=31, dropout=0.0):
         | 
| 957 | 
            +
                    super().__init__()
         | 
| 958 | 
            +
             | 
| 959 | 
            +
                    inner_dim = dim * expansion_factor
         | 
| 960 | 
            +
                    padding = self.calc_same_padding(kernel_size) if not causal else (kernel_size - 1, 0)
         | 
| 961 | 
            +
             | 
| 962 | 
            +
                    self.net = nn.Sequential(
         | 
| 963 | 
            +
                        nn.LayerNorm(dim),
         | 
| 964 | 
            +
                        GraniteSpeechConformerPermute(dims=(0, 2, 1)),
         | 
| 965 | 
            +
                        nn.Conv1d(dim, inner_dim * 2, 1),
         | 
| 966 | 
            +
                        nn.GLU(dim=1),
         | 
| 967 | 
            +
                        GraniteSpeechConformerDepthWiseConv1d(inner_dim, inner_dim, kernel_size=kernel_size, padding=padding),
         | 
| 968 | 
            +
                        nn.BatchNorm1d(inner_dim) if not causal else nn.Identity(),
         | 
| 969 | 
            +
                        nn.SiLU(),
         | 
| 970 | 
            +
                        nn.Conv1d(inner_dim, dim, 1),
         | 
| 971 | 
            +
                        GraniteSpeechConformerPermute(dims=(0, 2, 1)),
         | 
| 972 | 
            +
                        nn.Dropout(dropout),
         | 
| 973 | 
            +
                    )
         | 
| 974 | 
            +
             | 
| 975 | 
            +
                def forward(self, x):
         | 
| 976 | 
            +
                    return self.net(x)
         | 
| 977 | 
            +
             | 
| 978 | 
            +
                @staticmethod
         | 
| 979 | 
            +
                def calc_same_padding(kernel_size: int):
         | 
| 980 | 
            +
                    pad = kernel_size // 2
         | 
| 981 | 
            +
                    return (pad, pad - (kernel_size + 1) % 2)
         | 
| 982 | 
            +
             | 
| 983 | 
            +
             | 
| 984 | 
            +
            class GraniteSpeechConformerBlock(nn.Module):
         | 
| 985 | 
            +
                def __init__(
         | 
| 986 | 
            +
                    self,
         | 
| 987 | 
            +
                    *,
         | 
| 988 | 
            +
                    dim,
         | 
| 989 | 
            +
                    dim_head=64,
         | 
| 990 | 
            +
                    heads=8,
         | 
| 991 | 
            +
                    ff_mult=2,
         | 
| 992 | 
            +
                    conv_expansion_factor=2,
         | 
| 993 | 
            +
                    conv_kernel_size=31,
         | 
| 994 | 
            +
                    context_size=-1,
         | 
| 995 | 
            +
                    attn_dropout=0.0,
         | 
| 996 | 
            +
                    ff_dropout=0.0,
         | 
| 997 | 
            +
                    conv_dropout=0.0,
         | 
| 998 | 
            +
                ):
         | 
| 999 | 
            +
                    super().__init__()
         | 
| 1000 | 
            +
                    self.ff1 = GraniteSpeechConformerFeedForward(dim=dim, mult=ff_mult, dropout=ff_dropout)
         | 
| 1001 | 
            +
                    self.attn = GraniteSpeechConformerAttention(
         | 
| 1002 | 
            +
                        dim=dim,
         | 
| 1003 | 
            +
                        dim_head=dim_head,
         | 
| 1004 | 
            +
                        heads=heads,
         | 
| 1005 | 
            +
                        dropout=attn_dropout,
         | 
| 1006 | 
            +
                        context_size=context_size,
         | 
| 1007 | 
            +
                    )
         | 
| 1008 | 
            +
                    self.conv = GraniteSpeechConformerConvModule(
         | 
| 1009 | 
            +
                        dim=dim,
         | 
| 1010 | 
            +
                        causal=False,
         | 
| 1011 | 
            +
                        expansion_factor=conv_expansion_factor,
         | 
| 1012 | 
            +
                        kernel_size=conv_kernel_size,
         | 
| 1013 | 
            +
                        dropout=conv_dropout,
         | 
| 1014 | 
            +
                    )
         | 
| 1015 | 
            +
                    self.ff2 = GraniteSpeechConformerFeedForward(dim=dim, mult=ff_mult, dropout=ff_dropout)
         | 
| 1016 | 
            +
             | 
| 1017 | 
            +
                    self.attn = GraniteSpeechConformerPreNormAttn(dim, self.attn)
         | 
| 1018 | 
            +
                    self.ff1 = GraniteSpeechConformerScale(0.5, GraniteSpeechConformerPreNorm(dim, self.ff1))
         | 
| 1019 | 
            +
                    self.ff2 = GraniteSpeechConformerScale(0.5, GraniteSpeechConformerPreNorm(dim, self.ff2))
         | 
| 1020 | 
            +
             | 
| 1021 | 
            +
                    self.post_norm = nn.LayerNorm(dim)
         | 
| 1022 | 
            +
             | 
| 1023 | 
            +
                def forward(self, x, context_size):
         | 
| 1024 | 
            +
                    x = self.ff1(x) + x
         | 
| 1025 | 
            +
                    x = self.attn(x, context_size) + x
         | 
| 1026 | 
            +
                    x = self.conv(x) + x
         | 
| 1027 | 
            +
                    x = self.ff2(x) + x
         | 
| 1028 | 
            +
                    x = self.post_norm(x)
         | 
| 1029 | 
            +
                    return x
         | 
| 1030 | 
            +
             | 
| 1031 | 
            +
             | 
| 1032 | 
            +
            GRANITE_SPEECH_START_DOCSTRING = r"""
         | 
| 1033 | 
            +
                This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
         | 
| 1034 | 
            +
                library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
         | 
| 1035 | 
            +
                etc.)
         | 
| 1036 | 
            +
             | 
| 1037 | 
            +
                This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
         | 
| 1038 | 
            +
                Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
         | 
| 1039 | 
            +
                and behavior.
         | 
| 1040 | 
            +
             | 
| 1041 | 
            +
                Parameters:
         | 
| 1042 | 
            +
                    config (`GraniteSpeechConfig`):
         | 
| 1043 | 
            +
                        Model configuration class with all the parameters of the model. Initializing with a config file does not
         | 
| 1044 | 
            +
                        load the weights associated with the model, only the configuration. Check out the
         | 
| 1045 | 
            +
                        [`~PreTrainedModel.from_pretrained`] method to load the model weights.
         | 
| 1046 | 
            +
            """
         | 
| 1047 | 
            +
             | 
| 1048 | 
            +
             | 
| 1049 | 
            +
            @add_start_docstrings(
         | 
| 1050 | 
            +
                "The bare Granite Speech Model outputting raw hidden-states without any specific head on top.",
         | 
| 1051 | 
            +
                GRANITE_SPEECH_START_DOCSTRING,
         | 
| 1052 | 
            +
            )
         | 
| 1053 | 
            +
            class GraniteSpeechPreTrainedModel(PreTrainedModel):
         | 
| 1054 | 
            +
                config_class = GraniteSpeechConfig
         | 
| 1055 | 
            +
                _supports_cache_class = True
         | 
| 1056 | 
            +
                _supports_flash_attn_2 = True
         | 
| 1057 | 
            +
                _supports_sdpa = True
         | 
| 1058 | 
            +
             | 
| 1059 | 
            +
                def _init_weights(self, module):
         | 
| 1060 | 
            +
                    std = self.config.initializer_range
         | 
| 1061 | 
            +
                    if isinstance(module, (nn.Linear, nn.Conv1d)):
         | 
| 1062 | 
            +
                        module.weight.data.normal_(mean=0.0, std=std)
         | 
| 1063 | 
            +
                        if module.bias is not None:
         | 
| 1064 | 
            +
                            module.bias.data.zero_()
         | 
| 1065 | 
            +
                    elif isinstance(module, nn.Embedding):
         | 
| 1066 | 
            +
                        module.weight.data.normal_(mean=0.0, std=std)
         | 
| 1067 | 
            +
                        if module.padding_idx is not None:
         | 
| 1068 | 
            +
                            module.weight.data[module.padding_idx].zero_()
         | 
| 1069 | 
            +
             | 
| 1070 | 
            +
             | 
| 1071 | 
            +
            GRANITE_SPEECH_INPUTS_DOCSTRING = r"""
         | 
| 1072 | 
            +
                Args:
         | 
| 1073 | 
            +
                    input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
         | 
| 1074 | 
            +
                        Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
         | 
| 1075 | 
            +
                        it.
         | 
| 1076 | 
            +
             | 
| 1077 | 
            +
                        Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
         | 
| 1078 | 
            +
                        [`PreTrainedTokenizer.__call__`] for details.
         | 
| 1079 | 
            +
             | 
| 1080 | 
            +
                        [What are input IDs?](../glossary#input-ids)
         | 
| 1081 | 
            +
                    input_features (`torch.FloatTensor` of shape `(batch_size, audio seq len, mel feat dim)):
         | 
| 1082 | 
            +
                        The tensors corresponding to the input audios. input features can be obtained using
         | 
| 1083 | 
            +
                        [`AutoFeatureExtractor`]. See [`GraniteSpeechFeatureExtractor.__call__`] for details.
         | 
| 1084 | 
            +
                        [`GraniteSpeechProcessor`] uses [`GraniteSpeechFeatureExtractor`] for processing audio.
         | 
| 1085 | 
            +
                    input_mask (`torch.Tensor`, *optional*)
         | 
| 1086 | 
            +
                        Mask for extracted audio features that should should be ignored when creating the merged
         | 
| 1087 | 
            +
                        multimodal representation (i.e., due to padding).
         | 
| 1088 | 
            +
                    attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
         | 
| 1089 | 
            +
                        Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
         | 
| 1090 | 
            +
             | 
| 1091 | 
            +
                        - 1 for tokens that are **not masked**,
         | 
| 1092 | 
            +
                        - 0 for tokens that are **masked**.
         | 
| 1093 | 
            +
             | 
| 1094 | 
            +
                        [What are attention masks?](../glossary#attention-mask)
         | 
| 1095 | 
            +
             | 
| 1096 | 
            +
                        Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
         | 
| 1097 | 
            +
                        [`PreTrainedTokenizer.__call__`] for details.
         | 
| 1098 | 
            +
             | 
| 1099 | 
            +
                        If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
         | 
| 1100 | 
            +
                        `past_key_values`).
         | 
| 1101 | 
            +
             | 
| 1102 | 
            +
                        If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
         | 
| 1103 | 
            +
                        and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
         | 
| 1104 | 
            +
                        information on the default strategy.
         | 
| 1105 | 
            +
             | 
| 1106 | 
            +
                        - 1 indicates the head is **not masked**,
         | 
| 1107 | 
            +
                        - 0 indicates the head is **masked**.
         | 
| 1108 | 
            +
                    position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
         | 
| 1109 | 
            +
                        Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
         | 
| 1110 | 
            +
                        config.n_positions - 1]`. [What are position IDs?](../glossary#position-ids)
         | 
| 1111 | 
            +
                    past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
         | 
| 1112 | 
            +
                        Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
         | 
| 1113 | 
            +
                        `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
         | 
| 1114 | 
            +
                        `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
         | 
| 1115 | 
            +
             | 
| 1116 | 
            +
                        Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
         | 
| 1117 | 
            +
                        blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
         | 
| 1118 | 
            +
             | 
| 1119 | 
            +
                        If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
         | 
| 1120 | 
            +
                        don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
         | 
| 1121 | 
            +
                        `decoder_input_ids` of shape `(batch_size, sequence_length)`.
         | 
| 1122 | 
            +
                    inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
         | 
| 1123 | 
            +
                        Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
         | 
| 1124 | 
            +
                        is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
         | 
| 1125 | 
            +
                        model's internal embedding lookup matrix.
         | 
| 1126 | 
            +
                    use_cache (`bool`, *optional*):
         | 
| 1127 | 
            +
                        If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
         | 
| 1128 | 
            +
                        `past_key_values`).
         | 
| 1129 | 
            +
                    output_attentions (`bool`, *optional*):
         | 
| 1130 | 
            +
                        Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
         | 
| 1131 | 
            +
                        tensors for more detail.
         | 
| 1132 | 
            +
                    output_hidden_states (`bool`, *optional*):
         | 
| 1133 | 
            +
                        Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
         | 
| 1134 | 
            +
                        more detail.
         | 
| 1135 | 
            +
                    return_dict (`bool`, *optional*):
         | 
| 1136 | 
            +
                        Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
         | 
| 1137 | 
            +
                    cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
         | 
| 1138 | 
            +
                        Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`,
         | 
| 1139 | 
            +
                        this tensor is not affected by padding. It is used to update the cache in the correct position and to infer
         | 
| 1140 | 
            +
                        the complete sequence length.
         | 
| 1141 | 
            +
            """
         | 
| 1142 | 
            +
             | 
| 1143 | 
            +
             | 
| 1144 | 
            +
            @add_start_docstrings(
         | 
| 1145 | 
            +
                """The Granite Speech model, which consists of an audio encoder, projector, and language model.""",
         | 
| 1146 | 
            +
                GRANITE_SPEECH_START_DOCSTRING,
         | 
| 1147 | 
            +
            )
         | 
| 1148 | 
            +
            class GraniteSpeechForConditionalGeneration(GraniteSpeechPreTrainedModel, GenerationMixin):
         | 
| 1149 | 
            +
                def __init__(self, config: GraniteSpeechConfig):
         | 
| 1150 | 
            +
                    super().__init__(config)
         | 
| 1151 | 
            +
                    # NOTE: It doesn't matter when we initialize from config, but we should be careful
         | 
| 1152 | 
            +
                    # to make sure this does not pick up the adapter_config if in the future we use
         | 
| 1153 | 
            +
                    # from_pretrained or something similar, since that should be set by the composite
         | 
| 1154 | 
            +
                    # model; don't need to consider it twice
         | 
| 1155 | 
            +
                    self.language_model = AutoModelForCausalLM.from_config(config.text_config)
         | 
| 1156 | 
            +
             | 
| 1157 | 
            +
                    if self.language_model._tied_weights_keys is not None:
         | 
| 1158 | 
            +
                        self._tied_weights_keys = [f"language_model.{k}" for k in self.language_model._tied_weights_keys]
         | 
| 1159 | 
            +
             | 
| 1160 | 
            +
                    self.encoder = GraniteSpeechCTCModel(config.encoder_config)
         | 
| 1161 | 
            +
                    self.projector = GraniteSpeechEncoderProjectorQFormer(config.projector_config)
         | 
| 1162 | 
            +
             | 
| 1163 | 
            +
                    if config.has_lora_adapter and not is_peft_available():
         | 
| 1164 | 
            +
                        logger.warning(
         | 
| 1165 | 
            +
                            "Config indicates that a lora adapter should be present, but "
         | 
| 1166 | 
            +
                            "peft is not installed; this will cause the model to perform "
         | 
| 1167 | 
            +
                            "incorrectly when audio inputs are provided. Please install "
         | 
| 1168 | 
            +
                            "peft and reload the model!"
         | 
| 1169 | 
            +
                        )
         | 
| 1170 | 
            +
             | 
| 1171 | 
            +
                    self.post_init()
         | 
| 1172 | 
            +
             | 
| 1173 | 
            +
                def set_input_embeddings(self, value):
         | 
| 1174 | 
            +
                    self.language_model.set_input_embeddings(value)
         | 
| 1175 | 
            +
             | 
| 1176 | 
            +
                def set_output_embeddings(self, new_embeddings):
         | 
| 1177 | 
            +
                    self.language_model.set_output_embeddings(new_embeddings)
         | 
| 1178 | 
            +
             | 
| 1179 | 
            +
                def get_input_embeddings(self):
         | 
| 1180 | 
            +
                    return self.language_model.get_input_embeddings()
         | 
| 1181 | 
            +
             | 
| 1182 | 
            +
                def get_output_embeddings(self):
         | 
| 1183 | 
            +
                    return self.language_model.get_output_embeddings()
         | 
| 1184 | 
            +
             | 
| 1185 | 
            +
                def get_audio_features(self, input_features):
         | 
| 1186 | 
            +
                    encoder_embeds = self.encoder(input_features)
         | 
| 1187 | 
            +
                    projected_embeds = self.projector(encoder_embeds, None)
         | 
| 1188 | 
            +
                    return projected_embeds
         | 
| 1189 | 
            +
             | 
| 1190 | 
            +
                @add_start_docstrings_to_model_forward(GRANITE_SPEECH_INPUTS_DOCSTRING)
         | 
| 1191 | 
            +
                @replace_return_docstrings(output_type=GraniteSpeechCausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
         | 
| 1192 | 
            +
                def forward(
         | 
| 1193 | 
            +
                    self,
         | 
| 1194 | 
            +
                    input_ids: torch.LongTensor = None,
         | 
| 1195 | 
            +
                    input_features: torch.FloatTensor = None,
         | 
| 1196 | 
            +
                    input_features_mask: Optional[torch.Tensor] = None,
         | 
| 1197 | 
            +
                    attention_mask: Optional[torch.Tensor] = None,
         | 
| 1198 | 
            +
                    position_ids: Optional[torch.LongTensor] = None,
         | 
| 1199 | 
            +
                    past_key_values: Optional[List[torch.FloatTensor]] = None,
         | 
| 1200 | 
            +
                    inputs_embeds: Optional[torch.FloatTensor] = None,
         | 
| 1201 | 
            +
                    labels: Optional[torch.LongTensor] = None,
         | 
| 1202 | 
            +
                    use_cache: Optional[bool] = None,
         | 
| 1203 | 
            +
                    output_attentions: Optional[bool] = None,
         | 
| 1204 | 
            +
                    output_hidden_states: Optional[bool] = None,
         | 
| 1205 | 
            +
                    return_dict: Optional[bool] = None,
         | 
| 1206 | 
            +
                    cache_position: Optional[torch.LongTensor] = None,
         | 
| 1207 | 
            +
                    logits_to_keep: Union[int, torch.Tensor] = 0,
         | 
| 1208 | 
            +
                    **lm_kwargs,
         | 
| 1209 | 
            +
                ) -> Union[Tuple[torch.Tensor], GraniteSpeechCausalLMOutputWithPast]:
         | 
| 1210 | 
            +
                    r"""
         | 
| 1211 | 
            +
                        labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
         | 
| 1212 | 
            +
                            Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
         | 
| 1213 | 
            +
                            config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
         | 
| 1214 | 
            +
                            (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
         | 
| 1215 | 
            +
             | 
| 1216 | 
            +
                        logits_to_keep (`int` or `torch.Tensor`, *optional*):
         | 
| 1217 | 
            +
                            If an `int`, compute logits for the last `logits_to_keep` tokens. If `0`, calculate logits for all
         | 
| 1218 | 
            +
                            `input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
         | 
| 1219 | 
            +
                            token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
         | 
| 1220 | 
            +
                            If a `torch.Tensor`, must be 1D corresponding to the indices to keep in the sequence length dimension.
         | 
| 1221 | 
            +
                            This is useful when using packed tensor format (single dimension for batch and sequence length).
         | 
| 1222 | 
            +
             | 
| 1223 | 
            +
                    Returns:
         | 
| 1224 | 
            +
             | 
| 1225 | 
            +
                    Example:
         | 
| 1226 | 
            +
             | 
| 1227 | 
            +
                    TODO - add example for usage.
         | 
| 1228 | 
            +
                    """
         | 
| 1229 | 
            +
                    output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
         | 
| 1230 | 
            +
                    output_hidden_states = (
         | 
| 1231 | 
            +
                        output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
         | 
| 1232 | 
            +
                    )
         | 
| 1233 | 
            +
                    return_dict = return_dict if return_dict is not None else self.config.use_return_dict
         | 
| 1234 | 
            +
             | 
| 1235 | 
            +
                    if (input_ids is None) ^ (inputs_embeds is not None):
         | 
| 1236 | 
            +
                        raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
         | 
| 1237 | 
            +
             | 
| 1238 | 
            +
                    if input_features is not None and inputs_embeds is not None:
         | 
| 1239 | 
            +
                        raise ValueError(
         | 
| 1240 | 
            +
                            "You cannot specify both input_features and inputs_embeds at the same time, and must specify either one"
         | 
| 1241 | 
            +
                        )
         | 
| 1242 | 
            +
             | 
| 1243 | 
            +
                    if inputs_embeds is None:
         | 
| 1244 | 
            +
                        # Get the base embeddings; set all audio tokens to 0 index
         | 
| 1245 | 
            +
                        # to avoid out of vocabulary issues with the LLM embedding.
         | 
| 1246 | 
            +
                        # Audio features will be masked into is_audio_idx indices later.
         | 
| 1247 | 
            +
                        is_audio_idx = input_ids == self.config.audio_token_index
         | 
| 1248 | 
            +
                        llm_input_ids = input_ids.clone()
         | 
| 1249 | 
            +
                        llm_input_ids[is_audio_idx] = 0
         | 
| 1250 | 
            +
                        inputs_embeds = self.get_input_embeddings()(llm_input_ids)
         | 
| 1251 | 
            +
             | 
| 1252 | 
            +
                    if input_features is not None:
         | 
| 1253 | 
            +
                        if input_features.dtype != self.dtype:
         | 
| 1254 | 
            +
                            logger.warning(f"input features are casted to {self.dtype}")
         | 
| 1255 | 
            +
                            input_features = input_features.to(self.dtype)
         | 
| 1256 | 
            +
                        # Get the audio features from the encoder / projector
         | 
| 1257 | 
            +
                        audio_features = self.get_audio_features(input_features)
         | 
| 1258 | 
            +
             | 
| 1259 | 
            +
                        # Merge the audio features into the LLM embeddings
         | 
| 1260 | 
            +
                        inputs_embeds = self.get_merged_audio_embeddings(
         | 
| 1261 | 
            +
                            input_ids=input_ids, audio_features=audio_features, input_features_mask=input_features_mask
         | 
| 1262 | 
            +
                        )
         | 
| 1263 | 
            +
             | 
| 1264 | 
            +
                    outputs = self.language_model(
         | 
| 1265 | 
            +
                        attention_mask=attention_mask,
         | 
| 1266 | 
            +
                        position_ids=position_ids,
         | 
| 1267 | 
            +
                        past_key_values=past_key_values,
         | 
| 1268 | 
            +
                        inputs_embeds=inputs_embeds,
         | 
| 1269 | 
            +
                        use_cache=use_cache,
         | 
| 1270 | 
            +
                        output_attentions=output_attentions,
         | 
| 1271 | 
            +
                        output_hidden_states=output_hidden_states,
         | 
| 1272 | 
            +
                        return_dict=return_dict,
         | 
| 1273 | 
            +
                        cache_position=cache_position,
         | 
| 1274 | 
            +
                        logits_to_keep=logits_to_keep,
         | 
| 1275 | 
            +
                        **lm_kwargs,
         | 
| 1276 | 
            +
                    )
         | 
| 1277 | 
            +
                    logits = outputs[0]
         | 
| 1278 | 
            +
             | 
| 1279 | 
            +
                    loss = None
         | 
| 1280 | 
            +
                    if labels is not None:
         | 
| 1281 | 
            +
                        # Shift so that tokens < n predict n
         | 
| 1282 | 
            +
                        if attention_mask is not None:
         | 
| 1283 | 
            +
                            # we use the input attention mask to shift the logits and labels, because it is 2D.
         | 
| 1284 | 
            +
                            # we also crop attn mask in case it is longer, which happens in PrefixTuning with peft
         | 
| 1285 | 
            +
                            shift_attention_mask = attention_mask[:, -(logits.shape[1] - 1) :].to(logits.device)
         | 
| 1286 | 
            +
                            shift_logits = logits[..., :-1, :][shift_attention_mask.to(logits.device) != 0].contiguous()
         | 
| 1287 | 
            +
                            shift_labels = labels[..., 1:][shift_attention_mask.to(labels.device) != 0].contiguous()
         | 
| 1288 | 
            +
                        else:
         | 
| 1289 | 
            +
                            shift_logits = logits[..., :-1, :].contiguous()
         | 
| 1290 | 
            +
                            shift_labels = labels[..., 1:].contiguous()
         | 
| 1291 | 
            +
                        # Flatten the tokens
         | 
| 1292 | 
            +
                        loss_fct = nn.CrossEntropyLoss()
         | 
| 1293 | 
            +
                        loss = loss_fct(
         | 
| 1294 | 
            +
                            shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1).to(shift_logits.device)
         | 
| 1295 | 
            +
                        )
         | 
| 1296 | 
            +
             | 
| 1297 | 
            +
                    if not return_dict:
         | 
| 1298 | 
            +
                        output = (logits,) + outputs[1:]
         | 
| 1299 | 
            +
                        return (loss,) + output if loss is not None else output
         | 
| 1300 | 
            +
             | 
| 1301 | 
            +
                    return GraniteSpeechCausalLMOutputWithPast(
         | 
| 1302 | 
            +
                        loss=loss,
         | 
| 1303 | 
            +
                        logits=logits,
         | 
| 1304 | 
            +
                        past_key_values=outputs.past_key_values,
         | 
| 1305 | 
            +
                        hidden_states=outputs.hidden_states,
         | 
| 1306 | 
            +
                        attentions=outputs.attentions,
         | 
| 1307 | 
            +
                    )
         | 
| 1308 | 
            +
             | 
| 1309 | 
            +
                def prepare_inputs_for_generation(
         | 
| 1310 | 
            +
                    self,
         | 
| 1311 | 
            +
                    input_ids,
         | 
| 1312 | 
            +
                    past_key_values=None,
         | 
| 1313 | 
            +
                    inputs_embeds=None,
         | 
| 1314 | 
            +
                    input_features=None,
         | 
| 1315 | 
            +
                    attention_mask=None,
         | 
| 1316 | 
            +
                    cache_position=None,
         | 
| 1317 | 
            +
                    logits_to_keep=None,
         | 
| 1318 | 
            +
                    **kwargs,
         | 
| 1319 | 
            +
                ):
         | 
| 1320 | 
            +
                    # Overwritten -- in specific circumstances we don't want to forward audio inputs to the model
         | 
| 1321 | 
            +
             | 
| 1322 | 
            +
                    model_inputs = self.language_model.prepare_inputs_for_generation(
         | 
| 1323 | 
            +
                        input_ids,
         | 
| 1324 | 
            +
                        past_key_values=past_key_values,
         | 
| 1325 | 
            +
                        inputs_embeds=inputs_embeds,
         | 
| 1326 | 
            +
                        attention_mask=attention_mask,
         | 
| 1327 | 
            +
                        cache_position=cache_position,
         | 
| 1328 | 
            +
                        logits_to_keep=logits_to_keep,
         | 
| 1329 | 
            +
                        **kwargs,
         | 
| 1330 | 
            +
                    )
         | 
| 1331 | 
            +
             | 
| 1332 | 
            +
                    # If we're in cached decoding stage, input_features should be None because
         | 
| 1333 | 
            +
                    # input ids do not contain special audio token anymore Otherwise we need
         | 
| 1334 | 
            +
                    # input feature values to be passed to the model
         | 
| 1335 | 
            +
                    if cache_position[0] == 0:
         | 
| 1336 | 
            +
                        model_inputs["input_features"] = input_features
         | 
| 1337 | 
            +
                    return model_inputs
         | 
| 1338 | 
            +
             | 
| 1339 | 
            +
                def get_merged_audio_embeddings(self, input_ids, audio_features, input_features_mask):
         | 
| 1340 | 
            +
                    """
         | 
| 1341 | 
            +
                    Adds the audio token to the model's LLM vocabulary so that we can pass it
         | 
| 1342 | 
            +
                    through the tokenizer; it's assumed that the embeddings corresponding to the
         | 
| 1343 | 
            +
                    <|audio|> token will be clobbered with speech features.
         | 
| 1344 | 
            +
             | 
| 1345 | 
            +
                    TODO - This needs to be adapted to handle batches of variable length sequences
         | 
| 1346 | 
            +
                    and potentially labels.
         | 
| 1347 | 
            +
                    """
         | 
| 1348 | 
            +
                    is_audio_index = input_ids == self.config.audio_token_index
         | 
| 1349 | 
            +
                    llm_input_ids = torch.where(is_audio_index, 0, input_ids)
         | 
| 1350 | 
            +
                    inputs_embeds = self.language_model.get_input_embeddings()(llm_input_ids)  # [bsz, # features, hidden size]
         | 
| 1351 | 
            +
             | 
| 1352 | 
            +
                    # Mask the audio features into the text embeddings
         | 
| 1353 | 
            +
                    special_audio_mask = is_audio_index.unsqueeze(-1)
         | 
| 1354 | 
            +
                    audio_features = audio_features.to(inputs_embeds.device, inputs_embeds.dtype)[input_features_mask]
         | 
| 1355 | 
            +
                    inputs_embeds = inputs_embeds.masked_scatter(
         | 
| 1356 | 
            +
                        special_audio_mask,
         | 
| 1357 | 
            +
                        audio_features,
         | 
| 1358 | 
            +
                    )
         | 
| 1359 | 
            +
                    return inputs_embeds
         | 
| 1360 | 
            +
             | 
| 1361 | 
            +
                def generate(self, *args, **kwargs):
         | 
| 1362 | 
            +
                    """This model is expected to have a lora adapater, which is only
         | 
| 1363 | 
            +
                    enabled when considering audio inputs. As such, we override generate
         | 
| 1364 | 
            +
                    to conditionally enable / disable the lora adapter based on whether
         | 
| 1365 | 
            +
                    or not any input features were provided.
         | 
| 1366 | 
            +
                    """
         | 
| 1367 | 
            +
                    input_features = kwargs.pop("input_features", None)
         | 
| 1368 | 
            +
                    if is_peft_available and self._hf_peft_config_loaded:
         | 
| 1369 | 
            +
                        if input_features is not None:
         | 
| 1370 | 
            +
                            self.enable_adapters()
         | 
| 1371 | 
            +
                        else:
         | 
| 1372 | 
            +
                            self.disable_adapters()
         | 
| 1373 | 
            +
                    return super().generate(*args, input_features=input_features, **kwargs)
         | 
| 1374 | 
            +
             | 
| 1375 | 
            +
                def save_pretrained(self, *args, **kwargs):
         | 
| 1376 | 
            +
                    # overwrite save_pretrained to first save the adapter if we have one
         | 
| 1377 | 
            +
                    # NOTE - this will use the base model path we are exporting in the lora
         | 
| 1378 | 
            +
                    # adapter, which may not necessarily be the best behavior, but for now
         | 
| 1379 | 
            +
                    # we keep this for portability, since using the local dir causes problems
         | 
| 1380 | 
            +
                    # if the model is loaded from outside of the current working dir.
         | 
| 1381 | 
            +
                    if is_peft_available and self._hf_peft_config_loaded:
         | 
| 1382 | 
            +
                        super().save_pretrained(*args, **kwargs)
         | 
| 1383 | 
            +
                    # Then save the base model afterwards
         | 
| 1384 | 
            +
                    self._hf_peft_config_loaded = False
         | 
| 1385 | 
            +
                    super().save_pretrained(*args, **kwargs)
         | 
| 1386 | 
            +
             | 
| 1387 | 
            +
             | 
| 1388 | 
            +
            __all__ = [
         | 
| 1389 | 
            +
                "GraniteSpeechForConditionalGeneration",
         | 
| 1390 | 
            +
                "GraniteSpeechPreTrainedModel",
         | 
| 1391 | 
            +
                "GraniteSpeechEncoderProjectorPreTrainedModel",
         | 
| 1392 | 
            +
                "GraniteSpeechQFormerModel",
         | 
| 1393 | 
            +
            ]
         | 
    	
        preprocessor_config.json
    ADDED
    
    | @@ -0,0 +1 @@ | |
|  | 
|  | |
| 1 | 
            +
            {}
         | 
    	
        processing_granite_speech.py
    ADDED
    
    | @@ -0,0 +1,158 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # coding=utf-8
         | 
| 2 | 
            +
            # Copyright 2025 The HuggingFace Inc. team.
         | 
| 3 | 
            +
            #
         | 
| 4 | 
            +
            # Licensed under the Apache License, Version 2.0 (the "License");
         | 
| 5 | 
            +
            # you may not use this file except in compliance with the License.
         | 
| 6 | 
            +
            # You may obtain a copy of the License at
         | 
| 7 | 
            +
            #
         | 
| 8 | 
            +
            #     http://www.apache.org/licenses/LICENSE-2.0
         | 
| 9 | 
            +
            #
         | 
| 10 | 
            +
            # Unless required by applicable law or agreed to in writing, software
         | 
| 11 | 
            +
            # distributed under the License is distributed on an "AS IS" BASIS,
         | 
| 12 | 
            +
            # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
         | 
| 13 | 
            +
            # See the License for the specific language governing permissions and
         | 
| 14 | 
            +
            # limitations under the License.
         | 
| 15 | 
            +
            """
         | 
| 16 | 
            +
            Processor class for Speech Granite.
         | 
| 17 | 
            +
            """
         | 
| 18 | 
            +
             | 
| 19 | 
            +
            from collections.abc import Sequence
         | 
| 20 | 
            +
            from typing import List, Union
         | 
| 21 | 
            +
             | 
| 22 | 
            +
            import numpy as np
         | 
| 23 | 
            +
            import torch
         | 
| 24 | 
            +
             | 
| 25 | 
            +
            from transformers.feature_extraction_utils import BatchFeature
         | 
| 26 | 
            +
            from transformers.processing_utils import ProcessorMixin
         | 
| 27 | 
            +
            from transformers.tokenization_utils import PreTokenizedInput, TextInput
         | 
| 28 | 
            +
            from transformers.utils import logging
         | 
| 29 | 
            +
             | 
| 30 | 
            +
             | 
| 31 | 
            +
            logger = logging.get_logger(__name__)
         | 
| 32 | 
            +
             | 
| 33 | 
            +
            # 🚨🚨🚨 HACK 🚨🚨🚨
         | 
| 34 | 
            +
            # This is needed to avoid custom registration issues for now,
         | 
| 35 | 
            +
            # since we have a custom subclass for the feature extractor as well.
         | 
| 36 | 
            +
            import transformers
         | 
| 37 | 
            +
            from .feature_extraction_granite_speech import GraniteSpeechFeatureExtractor
         | 
| 38 | 
            +
            transformers.GraniteSpeechFeatureExtractor = GraniteSpeechFeatureExtractor
         | 
| 39 | 
            +
            # The above code is the only change in the modeling code from the following
         | 
| 40 | 
            +
            # commit on Alex's fork: 397e03a4d76c5f3d8a651e47ade9f27c635e1617
         | 
| 41 | 
            +
             | 
| 42 | 
            +
            class GraniteSpeechProcessor(ProcessorMixin):
         | 
| 43 | 
            +
                attributes = ["feature_extractor", "tokenizer"]
         | 
| 44 | 
            +
                valid_kwargs = ["audio_token"]
         | 
| 45 | 
            +
             | 
| 46 | 
            +
                feature_extractor_class = "GraniteSpeechFeatureExtractor"
         | 
| 47 | 
            +
                tokenizer_class = "AutoTokenizer"
         | 
| 48 | 
            +
             | 
| 49 | 
            +
                def __init__(
         | 
| 50 | 
            +
                    self,
         | 
| 51 | 
            +
                    feature_extractor,
         | 
| 52 | 
            +
                    tokenizer,
         | 
| 53 | 
            +
                    audio_token="<|audio|>",
         | 
| 54 | 
            +
                ):
         | 
| 55 | 
            +
                    self.audio_token = tokenizer.audio_token if hasattr(tokenizer, "audio_token") else audio_token
         | 
| 56 | 
            +
                    super().__init__(feature_extractor, tokenizer)
         | 
| 57 | 
            +
             | 
| 58 | 
            +
                def __call__(
         | 
| 59 | 
            +
                    self,
         | 
| 60 | 
            +
                    text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]],
         | 
| 61 | 
            +
                    audios: Union[torch.Tensor, List[torch.Tensor]] = None,
         | 
| 62 | 
            +
                    device: str = "cpu",
         | 
| 63 | 
            +
                    **kwargs,
         | 
| 64 | 
            +
                ) -> BatchFeature:
         | 
| 65 | 
            +
                    speech_inputs = {}
         | 
| 66 | 
            +
                    text_inputs = {}
         | 
| 67 | 
            +
             | 
| 68 | 
            +
                    text = self._get_validated_text(text)
         | 
| 69 | 
            +
                    expected_num_audios = sum(t.count(self.audio_token) for t in text)
         | 
| 70 | 
            +
             | 
| 71 | 
            +
                    if audios is not None:
         | 
| 72 | 
            +
                        audios, audio_lengths = self._get_validated_audios(audios)
         | 
| 73 | 
            +
                        if any(text.count(self.audio_token) != 1 for text in text):
         | 
| 74 | 
            +
                            raise ValueError("Only one audio sample is currently supported per input")
         | 
| 75 | 
            +
                        if len(audio_lengths) != expected_num_audios:
         | 
| 76 | 
            +
                            raise ValueError("Text/Audio mismatch. The number of audios and audio tokens do not match")
         | 
| 77 | 
            +
             | 
| 78 | 
            +
                        # Calculate Mel features & the number of placeholders we will need
         | 
| 79 | 
            +
                        speech_inputs["input_features"] = self.feature_extractor(
         | 
| 80 | 
            +
                            audios,
         | 
| 81 | 
            +
                            device=device,
         | 
| 82 | 
            +
                        )
         | 
| 83 | 
            +
                        num_audio_features = self.feature_extractor._get_num_audio_features(audio_lengths)
         | 
| 84 | 
            +
                        speech_inputs["input_features_mask"] = torch.arange(max(num_audio_features)).view(1, -1) <= torch.tensor(
         | 
| 85 | 
            +
                            num_audio_features
         | 
| 86 | 
            +
                        ).view(-1, 1)
         | 
| 87 | 
            +
             | 
| 88 | 
            +
                        # duplicate the audio placeholders to match the feature dims
         | 
| 89 | 
            +
                        text = self._expand_audio_placeholders(text, num_audio_features)
         | 
| 90 | 
            +
                    else:
         | 
| 91 | 
            +
                        assert expected_num_audios == 0, "No audio is provided, expecting no audio tokens"
         | 
| 92 | 
            +
             | 
| 93 | 
            +
                    text_inputs = self.tokenizer(text, padding=True, **kwargs)
         | 
| 94 | 
            +
                    return BatchFeature(data={**text_inputs, **speech_inputs})
         | 
| 95 | 
            +
             | 
| 96 | 
            +
                def _expand_audio_placeholders(self, text: list[str], num_audio_features: List[int]):
         | 
| 97 | 
            +
                    """
         | 
| 98 | 
            +
                    Expands audio placeholders in the formatted text to match the number of
         | 
| 99 | 
            +
                    features of the corresponding embeddings; we can use the resulting text
         | 
| 100 | 
            +
                    to conveniently mask the audio features into the text embeddings.
         | 
| 101 | 
            +
                    """
         | 
| 102 | 
            +
                    prompt_strings = []
         | 
| 103 | 
            +
                    num_replaced = 0
         | 
| 104 | 
            +
                    for sample in text:
         | 
| 105 | 
            +
                        while self.audio_token in sample:
         | 
| 106 | 
            +
                            sample = sample.replace(
         | 
| 107 | 
            +
                                self.audio_token,
         | 
| 108 | 
            +
                                "<placeholder>" * num_audio_features[num_replaced],
         | 
| 109 | 
            +
                                1,
         | 
| 110 | 
            +
                            )
         | 
| 111 | 
            +
                            num_replaced += 1
         | 
| 112 | 
            +
                        prompt_strings.append(sample)
         | 
| 113 | 
            +
             | 
| 114 | 
            +
                    prompt_strings = [sample.replace("<placeholder>", self.audio_token) for sample in prompt_strings]
         | 
| 115 | 
            +
                    return prompt_strings
         | 
| 116 | 
            +
             | 
| 117 | 
            +
                ##### Validation
         | 
| 118 | 
            +
                def _get_validated_text(self, text: Union[str, list]) -> List[str]:
         | 
| 119 | 
            +
                    if isinstance(text, str):
         | 
| 120 | 
            +
                        return [text]
         | 
| 121 | 
            +
                    elif isinstance(text, list) and isinstance(text[0], str):
         | 
| 122 | 
            +
                        return text
         | 
| 123 | 
            +
                    raise TypeError("Invalid text provided! Text should be a string or list of strings.")
         | 
| 124 | 
            +
             | 
| 125 | 
            +
                def _get_validated_audios(self, audios):
         | 
| 126 | 
            +
                    # Coerce to PyTorch tensors if we have numpy arrays, since
         | 
| 127 | 
            +
                    # currently we have a dependency on torch/torchaudio anyway
         | 
| 128 | 
            +
                    if isinstance(audios, np.ndarray):
         | 
| 129 | 
            +
                        audios = torch.from_numpy(audios)
         | 
| 130 | 
            +
                    elif isinstance(audios, Sequence) and isinstance(audios[0], np.ndarray):
         | 
| 131 | 
            +
                        audios = [torch.from_numpy(arr) for arr in audios]
         | 
| 132 | 
            +
             | 
| 133 | 
            +
                    if isinstance(audios, torch.Tensor):
         | 
| 134 | 
            +
                        if audios.ndim == 1:
         | 
| 135 | 
            +
                            audios = audios.unsqueeze(0)
         | 
| 136 | 
            +
                        if not torch.is_floating_point(audios):
         | 
| 137 | 
            +
                            raise ValueError("Invalid audio provided. Audio should be a floating point between 0 and 1")
         | 
| 138 | 
            +
             | 
| 139 | 
            +
                        if audios.shape[0] > 1:
         | 
| 140 | 
            +
                            logger.warning("Audio samples are already collated; assuming they all have the same length")
         | 
| 141 | 
            +
                        lengths = [audios.shape[-1]] * audios.shape[0]
         | 
| 142 | 
            +
                        return audios, lengths
         | 
| 143 | 
            +
             | 
| 144 | 
            +
                    elif isinstance(audios, Sequence) and isinstance(audios[0], torch.Tensor):
         | 
| 145 | 
            +
                        if not torch.is_floating_point(audios[0]):
         | 
| 146 | 
            +
                            raise ValueError("Invalid audio provided. Audio should be a floating point between 0 and 1")
         | 
| 147 | 
            +
                        lengths = [audio.shape[-1] for audio in audios]
         | 
| 148 | 
            +
                        padding = [max(lengths) - length for length in lengths]
         | 
| 149 | 
            +
                        # ensure all audios have a batch dimension:
         | 
| 150 | 
            +
                        audios = [audio.view(1, -1) for audio in audios]
         | 
| 151 | 
            +
                        padded = [torch.nn.functional.pad(audio, (0, pad)) for audio, pad in zip(audios, padding)]
         | 
| 152 | 
            +
                        audios = torch.cat(padded, dim=0)
         | 
| 153 | 
            +
                        return audios, lengths
         | 
| 154 | 
            +
             | 
| 155 | 
            +
                    raise TypeError("Invalid audio provided. Audio should be a one or more torch tensors or numpy arrays")
         | 
| 156 | 
            +
             | 
| 157 | 
            +
             | 
| 158 | 
            +
            __all__ = ["GraniteSpeechProcessor"]
         | 
    	
        special_tokens_map.json
    ADDED
    
    | @@ -0,0 +1,35 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            {
         | 
| 2 | 
            +
              "additional_special_tokens": [
         | 
| 3 | 
            +
                "<|start_of_role|>",
         | 
| 4 | 
            +
                "<|end_of_role|>",
         | 
| 5 | 
            +
                "<|tool_call|>"
         | 
| 6 | 
            +
              ],
         | 
| 7 | 
            +
              "bos_token": {
         | 
| 8 | 
            +
                "content": "<|end_of_text|>",
         | 
| 9 | 
            +
                "lstrip": false,
         | 
| 10 | 
            +
                "normalized": false,
         | 
| 11 | 
            +
                "rstrip": false,
         | 
| 12 | 
            +
                "single_word": false
         | 
| 13 | 
            +
              },
         | 
| 14 | 
            +
              "eos_token": {
         | 
| 15 | 
            +
                "content": "<|end_of_text|>",
         | 
| 16 | 
            +
                "lstrip": false,
         | 
| 17 | 
            +
                "normalized": false,
         | 
| 18 | 
            +
                "rstrip": false,
         | 
| 19 | 
            +
                "single_word": false
         | 
| 20 | 
            +
              },
         | 
| 21 | 
            +
              "pad_token": {
         | 
| 22 | 
            +
                "content": "<|end_of_text|>",
         | 
| 23 | 
            +
                "lstrip": false,
         | 
| 24 | 
            +
                "normalized": false,
         | 
| 25 | 
            +
                "rstrip": false,
         | 
| 26 | 
            +
                "single_word": false
         | 
| 27 | 
            +
              },
         | 
| 28 | 
            +
              "unk_token": {
         | 
| 29 | 
            +
                "content": "<|end_of_text|>",
         | 
| 30 | 
            +
                "lstrip": false,
         | 
| 31 | 
            +
                "normalized": false,
         | 
| 32 | 
            +
                "rstrip": false,
         | 
| 33 | 
            +
                "single_word": false
         | 
| 34 | 
            +
              }
         | 
| 35 | 
            +
            }
         | 
    	
        tokenizer.json
    ADDED
    
    | The diff for this file is too large to render. 
		See raw diff | 
|  | 
    	
        tokenizer_config.json
    ADDED
    
    | @@ -0,0 +1,207 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            {
         | 
| 2 | 
            +
              "add_bos_token": false,
         | 
| 3 | 
            +
              "add_prefix_space": false,
         | 
| 4 | 
            +
              "added_tokens_decoder": {
         | 
| 5 | 
            +
                "0": {
         | 
| 6 | 
            +
                  "content": "<|end_of_text|>",
         | 
| 7 | 
            +
                  "lstrip": false,
         | 
| 8 | 
            +
                  "normalized": false,
         | 
| 9 | 
            +
                  "rstrip": false,
         | 
| 10 | 
            +
                  "single_word": false,
         | 
| 11 | 
            +
                  "special": true
         | 
| 12 | 
            +
                },
         | 
| 13 | 
            +
                "1": {
         | 
| 14 | 
            +
                  "content": "<fim_prefix>",
         | 
| 15 | 
            +
                  "lstrip": false,
         | 
| 16 | 
            +
                  "normalized": false,
         | 
| 17 | 
            +
                  "rstrip": false,
         | 
| 18 | 
            +
                  "single_word": false,
         | 
| 19 | 
            +
                  "special": true
         | 
| 20 | 
            +
                },
         | 
| 21 | 
            +
                "2": {
         | 
| 22 | 
            +
                  "content": "<fim_middle>",
         | 
| 23 | 
            +
                  "lstrip": false,
         | 
| 24 | 
            +
                  "normalized": false,
         | 
| 25 | 
            +
                  "rstrip": false,
         | 
| 26 | 
            +
                  "single_word": false,
         | 
| 27 | 
            +
                  "special": true
         | 
| 28 | 
            +
                },
         | 
| 29 | 
            +
                "3": {
         | 
| 30 | 
            +
                  "content": "<fim_suffix>",
         | 
| 31 | 
            +
                  "lstrip": false,
         | 
| 32 | 
            +
                  "normalized": false,
         | 
| 33 | 
            +
                  "rstrip": false,
         | 
| 34 | 
            +
                  "single_word": false,
         | 
| 35 | 
            +
                  "special": true
         | 
| 36 | 
            +
                },
         | 
| 37 | 
            +
                "4": {
         | 
| 38 | 
            +
                  "content": "<fim_pad>",
         | 
| 39 | 
            +
                  "lstrip": false,
         | 
| 40 | 
            +
                  "normalized": false,
         | 
| 41 | 
            +
                  "rstrip": false,
         | 
| 42 | 
            +
                  "single_word": false,
         | 
| 43 | 
            +
                  "special": true
         | 
| 44 | 
            +
                },
         | 
| 45 | 
            +
                "5": {
         | 
| 46 | 
            +
                  "content": "<filename>",
         | 
| 47 | 
            +
                  "lstrip": false,
         | 
| 48 | 
            +
                  "normalized": false,
         | 
| 49 | 
            +
                  "rstrip": false,
         | 
| 50 | 
            +
                  "single_word": false,
         | 
| 51 | 
            +
                  "special": true
         | 
| 52 | 
            +
                },
         | 
| 53 | 
            +
                "6": {
         | 
| 54 | 
            +
                  "content": "<gh_stars>",
         | 
| 55 | 
            +
                  "lstrip": false,
         | 
| 56 | 
            +
                  "normalized": false,
         | 
| 57 | 
            +
                  "rstrip": false,
         | 
| 58 | 
            +
                  "single_word": false,
         | 
| 59 | 
            +
                  "special": true
         | 
| 60 | 
            +
                },
         | 
| 61 | 
            +
                "7": {
         | 
| 62 | 
            +
                  "content": "<issue_start>",
         | 
| 63 | 
            +
                  "lstrip": false,
         | 
| 64 | 
            +
                  "normalized": false,
         | 
| 65 | 
            +
                  "rstrip": false,
         | 
| 66 | 
            +
                  "single_word": false,
         | 
| 67 | 
            +
                  "special": true
         | 
| 68 | 
            +
                },
         | 
| 69 | 
            +
                "8": {
         | 
| 70 | 
            +
                  "content": "<issue_comment>",
         | 
| 71 | 
            +
                  "lstrip": false,
         | 
| 72 | 
            +
                  "normalized": false,
         | 
| 73 | 
            +
                  "rstrip": false,
         | 
| 74 | 
            +
                  "single_word": false,
         | 
| 75 | 
            +
                  "special": true
         | 
| 76 | 
            +
                },
         | 
| 77 | 
            +
                "9": {
         | 
| 78 | 
            +
                  "content": "<issue_closed>",
         | 
| 79 | 
            +
                  "lstrip": false,
         | 
| 80 | 
            +
                  "normalized": false,
         | 
| 81 | 
            +
                  "rstrip": false,
         | 
| 82 | 
            +
                  "single_word": false,
         | 
| 83 | 
            +
                  "special": true
         | 
| 84 | 
            +
                },
         | 
| 85 | 
            +
                "10": {
         | 
| 86 | 
            +
                  "content": "<jupyter_start>",
         | 
| 87 | 
            +
                  "lstrip": false,
         | 
| 88 | 
            +
                  "normalized": false,
         | 
| 89 | 
            +
                  "rstrip": false,
         | 
| 90 | 
            +
                  "single_word": false,
         | 
| 91 | 
            +
                  "special": true
         | 
| 92 | 
            +
                },
         | 
| 93 | 
            +
                "11": {
         | 
| 94 | 
            +
                  "content": "<jupyter_text>",
         | 
| 95 | 
            +
                  "lstrip": false,
         | 
| 96 | 
            +
                  "normalized": false,
         | 
| 97 | 
            +
                  "rstrip": false,
         | 
| 98 | 
            +
                  "single_word": false,
         | 
| 99 | 
            +
                  "special": true
         | 
| 100 | 
            +
                },
         | 
| 101 | 
            +
                "12": {
         | 
| 102 | 
            +
                  "content": "<jupyter_code>",
         | 
| 103 | 
            +
                  "lstrip": false,
         | 
| 104 | 
            +
                  "normalized": false,
         | 
| 105 | 
            +
                  "rstrip": false,
         | 
| 106 | 
            +
                  "single_word": false,
         | 
| 107 | 
            +
                  "special": true
         | 
| 108 | 
            +
                },
         | 
| 109 | 
            +
                "13": {
         | 
| 110 | 
            +
                  "content": "<jupyter_output>",
         | 
| 111 | 
            +
                  "lstrip": false,
         | 
| 112 | 
            +
                  "normalized": false,
         | 
| 113 | 
            +
                  "rstrip": false,
         | 
| 114 | 
            +
                  "single_word": false,
         | 
| 115 | 
            +
                  "special": true
         | 
| 116 | 
            +
                },
         | 
| 117 | 
            +
                "14": {
         | 
| 118 | 
            +
                  "content": "<empty_output>",
         | 
| 119 | 
            +
                  "lstrip": false,
         | 
| 120 | 
            +
                  "normalized": false,
         | 
| 121 | 
            +
                  "rstrip": false,
         | 
| 122 | 
            +
                  "single_word": false,
         | 
| 123 | 
            +
                  "special": true
         | 
| 124 | 
            +
                },
         | 
| 125 | 
            +
                "15": {
         | 
| 126 | 
            +
                  "content": "<commit_before>",
         | 
| 127 | 
            +
                  "lstrip": false,
         | 
| 128 | 
            +
                  "normalized": false,
         | 
| 129 | 
            +
                  "rstrip": false,
         | 
| 130 | 
            +
                  "single_word": false,
         | 
| 131 | 
            +
                  "special": true
         | 
| 132 | 
            +
                },
         | 
| 133 | 
            +
                "16": {
         | 
| 134 | 
            +
                  "content": "<commit_msg>",
         | 
| 135 | 
            +
                  "lstrip": false,
         | 
| 136 | 
            +
                  "normalized": false,
         | 
| 137 | 
            +
                  "rstrip": false,
         | 
| 138 | 
            +
                  "single_word": false,
         | 
| 139 | 
            +
                  "special": true
         | 
| 140 | 
            +
                },
         | 
| 141 | 
            +
                "17": {
         | 
| 142 | 
            +
                  "content": "<commit_after>",
         | 
| 143 | 
            +
                  "lstrip": false,
         | 
| 144 | 
            +
                  "normalized": false,
         | 
| 145 | 
            +
                  "rstrip": false,
         | 
| 146 | 
            +
                  "single_word": false,
         | 
| 147 | 
            +
                  "special": true
         | 
| 148 | 
            +
                },
         | 
| 149 | 
            +
                "18": {
         | 
| 150 | 
            +
                  "content": "<reponame>",
         | 
| 151 | 
            +
                  "lstrip": false,
         | 
| 152 | 
            +
                  "normalized": false,
         | 
| 153 | 
            +
                  "rstrip": false,
         | 
| 154 | 
            +
                  "single_word": false,
         | 
| 155 | 
            +
                  "special": true
         | 
| 156 | 
            +
                },
         | 
| 157 | 
            +
                "49152": {
         | 
| 158 | 
            +
                  "content": "<|start_of_role|>",
         | 
| 159 | 
            +
                  "lstrip": false,
         | 
| 160 | 
            +
                  "normalized": false,
         | 
| 161 | 
            +
                  "rstrip": false,
         | 
| 162 | 
            +
                  "single_word": false,
         | 
| 163 | 
            +
                  "special": true
         | 
| 164 | 
            +
                },
         | 
| 165 | 
            +
                "49153": {
         | 
| 166 | 
            +
                  "content": "<|end_of_role|>",
         | 
| 167 | 
            +
                  "lstrip": false,
         | 
| 168 | 
            +
                  "normalized": false,
         | 
| 169 | 
            +
                  "rstrip": false,
         | 
| 170 | 
            +
                  "single_word": false,
         | 
| 171 | 
            +
                  "special": true
         | 
| 172 | 
            +
                },
         | 
| 173 | 
            +
                "49154": {
         | 
| 174 | 
            +
                  "content": "<|tool_call|>",
         | 
| 175 | 
            +
                  "lstrip": false,
         | 
| 176 | 
            +
                  "normalized": false,
         | 
| 177 | 
            +
                  "rstrip": false,
         | 
| 178 | 
            +
                  "single_word": false,
         | 
| 179 | 
            +
                  "special": true
         | 
| 180 | 
            +
                },
         | 
| 181 | 
            +
                "49155": {
         | 
| 182 | 
            +
                  "content": "<|audio|>",
         | 
| 183 | 
            +
                  "lstrip": false,
         | 
| 184 | 
            +
                  "normalized": false,
         | 
| 185 | 
            +
                  "rstrip": false,
         | 
| 186 | 
            +
                  "single_word": false,
         | 
| 187 | 
            +
                  "special": true
         | 
| 188 | 
            +
                }
         | 
| 189 | 
            +
              },
         | 
| 190 | 
            +
              "additional_special_tokens": [
         | 
| 191 | 
            +
                "<|start_of_role|>",
         | 
| 192 | 
            +
                "<|end_of_role|>",
         | 
| 193 | 
            +
                "<|tool_call|>"
         | 
| 194 | 
            +
              ],
         | 
| 195 | 
            +
              "bos_token": "<|end_of_text|>",
         | 
| 196 | 
            +
              "chat_template": "{%- if messages[0]['role'] == 'system' %}\n    {%- set system_message = messages[0]['content'] %}\n    {%- set loop_messages = messages[1:] %}\n{%- else %}\n    {%- set system_message = \"Knowledge Cutoff Date: April 2024.\nToday's Date: \" + strftime_now('%B %d, %Y') + \".\nYou are Granite, developed by IBM.\" %}\n    {%- if tools and documents %}\n        {%- set system_message = system_message + \" You are a helpful AI assistant with access to the following tools. When a tool is required to answer the user's query, respond with <|tool_call|> followed by a JSON list of tools used. If a tool does not exist in the provided list of tools, notify the user that you do not have the ability to fulfill the request.\n\nWrite the response to the user's input by strictly aligning with the facts in the provided documents. If the information needed to answer the question is not available in the documents, inform the user that the question cannot be answered based on the available data.\" %}\n    {%- elif tools %}\n        {%- set system_message = system_message + \" You are a helpful AI assistant with access to the following tools. When a tool is required to answer the user's query, respond with <|tool_call|> followed by a JSON list of tools used. If a tool does not exist in the provided list of tools, notify the user that you do not have the ability to fulfill the request.\" %}\n    {%- elif documents %}\n        {%- set system_message = system_message + \" Write the response to the user's input by strictly aligning with the facts in the provided documents. If the information needed to answer the question is not available in the documents, inform the user that the question cannot be answered based on the available data.\" %}\n    {%- elif thinking %}\n    {%- set system_message = system_message + \" You are a helpful AI assistant.\nRespond to every user query in a comprehensive and detailed way. You can write down your thoughts and reasoning process before responding. In the thought process, engage in a comprehensive cycle of analysis, summarization, exploration, reassessment, reflection, backtracing, and iteration to develop well-considered thinking process. In the response section, based on various attempts, explorations, and reflections from the thoughts section, systematically present the final solution that you deem correct. The response should summarize the thought process. Write your thoughts after 'Here is my thought process:' and write your response after 'Here is my response:' for each user query.\" %}\n    {%- else %}\n        {%- set system_message = system_message + \" You are a helpful AI assistant.\" %}    \n    {%- endif %}\n    {%- if 'citations' in controls and documents %}\n        {%- set system_message = system_message + '\n\nIn your response, use the symbols <co> and </co> to indicate when a fact comes from a document in the search result, e.g <co>0</co> for a fact from document 0. Afterwards, list all the citations with their corresponding documents in an ordered list.' %}\n    {%- endif %}\n    {%- if 'hallucinations' in controls and documents %}\n        {%- set system_message = system_message + '\n\nFinally, after the response is written, include a numbered list of sentences from the response that are potentially hallucinated and not based in the documents.' %}\n    {%- endif %}\n    {%- set loop_messages = messages %}\n{%- endif %}\n{{- '<|start_of_role|>system<|end_of_role|>' + system_message + '<|end_of_text|>\n' }}\n{%- if tools %}\n    {{- '<|start_of_role|>tools<|end_of_role|>' }}\n    {{- tools | tojson(indent=4) }}\n    {{- '<|end_of_text|>\n' }}\n{%- endif %}\n{%- if documents %}\n    {{- '<|start_of_role|>documents<|end_of_role|>' }}\n    {%- for document in documents %}\n        {{- 'Document ' + loop.index0 | string + '\n' }}\n        {{- document['text'] }}\n        {%- if not loop.last %}\n            {{- '\n\n'}}\n        {%- endif%}\n    {%- endfor %}\n    {{- '<|end_of_text|>\n' }}\n{%- endif %}\n{%- for message in loop_messages %}\n    {{- '<|start_of_role|>' + message['role'] + '<|end_of_role|>' + message['content'] + '<|end_of_text|>\n' }}\n    {%- if loop.last and add_generation_prompt %}\n        {{- '<|start_of_role|>assistant' }}\n            {%- if controls %}\n                {{- ' ' + controls | tojson()}}\n            {%- endif %}\n        {{- '<|end_of_role|>' }}\n    {%- endif %}\n{%- endfor %}",
         | 
| 197 | 
            +
              "clean_up_tokenization_spaces": true,
         | 
| 198 | 
            +
              "eos_token": "<|end_of_text|>",
         | 
| 199 | 
            +
              "errors": "replace",
         | 
| 200 | 
            +
              "extra_special_tokens": {},
         | 
| 201 | 
            +
              "model_max_length": 9223372036854775807,
         | 
| 202 | 
            +
              "pad_token": "<|end_of_text|>",
         | 
| 203 | 
            +
              "padding_side": "left",
         | 
| 204 | 
            +
              "tokenizer_class": "GPT2Tokenizer",
         | 
| 205 | 
            +
              "unk_token": "<|end_of_text|>",
         | 
| 206 | 
            +
              "vocab_size": 49152
         | 
| 207 | 
            +
            }
         | 
    	
        vocab.json
    ADDED
    
    | The diff for this file is too large to render. 
		See raw diff | 
|  | 

