--- library_name: transformers license: cc-by-nc-sa-4.0 base_model: microsoft/layoutlmv3-base tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: layoutlmv3-ap7_10_stitched_16_batch_3e5 results: [] --- # layoutlmv3-ap7_10_stitched_16_batch_3e5 This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0208 - Precision: 0.7353 - Recall: 0.8621 - F1: 0.7937 - Accuracy: 0.9969 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 1000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.3001 | 50.0 | 250 | 0.0278 | 0.3939 | 0.4483 | 0.4194 | 0.9948 | | 0.0061 | 100.0 | 500 | 0.0208 | 0.7353 | 0.8621 | 0.7937 | 0.9969 | | 0.0017 | 150.0 | 750 | 0.0233 | 0.6579 | 0.8621 | 0.7463 | 0.9960 | | 0.0012 | 200.0 | 1000 | 0.0266 | 0.6571 | 0.7931 | 0.7188 | 0.9958 | ### Framework versions - Transformers 4.49.0 - Pytorch 2.6.0+cu124 - Datasets 3.4.1 - Tokenizers 0.21.1