--- library_name: transformers license: cc-by-nc-sa-4.0 base_model: microsoft/layoutlmv3-base tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: layoutlmv3-ap8_2_stitched_8_batch_4e5 results: [] --- # layoutlmv3-ap8_2_stitched_8_batch_4e5 This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1770 - Precision: 1.0 - Recall: 0.0291 - F1: 0.0566 - Accuracy: 0.9795 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 1000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.4099 | 16.6667 | 250 | 0.1770 | 1.0 | 0.0291 | 0.0566 | 0.9795 | | 0.0277 | 33.3333 | 500 | 0.2041 | 0.1739 | 0.0388 | 0.0635 | 0.9787 | | 0.0059 | 50.0 | 750 | 0.2190 | 0.3 | 0.0874 | 0.1353 | 0.9782 | | 0.0033 | 66.6667 | 1000 | 0.2216 | 0.1923 | 0.0485 | 0.0775 | 0.9783 | ### Framework versions - Transformers 4.49.0 - Pytorch 2.6.0+cu124 - Datasets 3.4.1 - Tokenizers 0.21.1