๐จ CONSIDER USING Krikri 8B Instruct, OUR NEWEST INSTRUCT MODEL WHICH OUTPERFORMS MELTEMI BY +34.8% ON GREEK IFEval! ๐จ
Meltemi Instruct Large Language Model for the Greek language
We present Meltemi 7B Instruct v1.5 Large Language Model (LLM), a new and improved instruction fine-tuned version of Meltemi 7B v1.5.
Model Information
- Vocabulary extension of the Mistral 7b tokenizer with Greek tokens for lower costs and faster inference (1.52 vs. 6.80 tokens/word for Greek)
- 8192 context length
- Fine-tuning has been done with the Odds Ratio Preference Optimization (ORPO) algorithm using 97k preference data:
- 89,730 Greek preference data which are mostly translated versions of high-quality datasets on Hugging Face
- 7,342 English preference data
- Our alignment procedure is based on the TRL - Transformer Reinforcement Learning library and partially on the Hugging Face finetuning recipes
Instruction format
The prompt format is the same as the Zephyr format and can be utilized through the tokenizer's chat template functionality as follows:
from transformers import AutoModelForCausalLM, AutoTokenizer
device = "cuda" # the device to load the model onto
model = AutoModelForCausalLM.from_pretrained("ilsp/Meltemi-7B-Instruct-v1.5")
tokenizer = AutoTokenizer.from_pretrained("ilsp/Meltemi-7B-Instruct-v1.5")
model.to(device)
messages = [
{"role": "system", "content": "ฮฮฏฯฮฑฮน ฯฮฟ ฮฮตฮปฯฮญฮผฮน, ฮญฮฝฮฑ ฮณฮปฯฯฯฮนฮบฯ ฮผฮฟฮฝฯฮญฮปฮฟ ฮณฮนฮฑ ฯฮทฮฝ ฮตฮปฮปฮทฮฝฮนฮบฮฎ ฮณฮปฯฯฯฮฑ. ฮฮฏฯฮฑฮน ฮนฮดฮนฮฑฮฏฯฮตฯฮฑ ฮฒฮฟฮทฮธฮทฯฮนฮบฯ ฯฯฮฟฯ ฯฮทฮฝ ฯฯฮฎฯฯฯฮนฮฑ ฮฎ ฯฮฟฮฝ ฯฯฮฎฯฯฮท ฮบฮฑฮน ฮดฮฏฮฝฮตฮนฯ ฯฯฮฝฯฮฟฮผฮตฯ ฮฑฮปฮปฮฌ ฮตฯฮฑฯฮบฯฯ ฯฮตฯฮนฮตฮบฯฮนฮบฮญฯ ฮฑฯฮฑฮฝฯฮฎฯฮตฮนฯ. ฮฯฮฌฮฝฯฮฑ ฮผฮต ฯฯฮฟฯฮฟฯฮฎ, ฮตฯ
ฮณฮญฮฝฮตฮนฮฑ, ฮฑฮผฮตฯฮฟฮปฮทฯฮฏฮฑ, ฮตฮนฮปฮนฮบฯฮฏฮฝฮตฮนฮฑ ฮบฮฑฮน ฯฮตฮฒฮฑฯฮผฯ ฯฯฮฟฯ ฯฮทฮฝ ฯฯฮฎฯฯฯฮนฮฑ ฮฎ ฯฮฟฮฝ ฯฯฮฎฯฯฮท."},
{"role": "user", "content": "ฮ ฮตฯ ฮผฮฟฯ
ฮฑฮฝ ฮญฯฮตฮนฯ ฯฯ
ฮฝฮตฮฏฮดฮทฯฮท."},
]
# Through the default chat template this translates to
#
# <|system|>
# ฮฮฏฯฮฑฮน ฯฮฟ ฮฮตฮปฯฮญฮผฮน, ฮญฮฝฮฑ ฮณฮปฯฯฯฮนฮบฯ ฮผฮฟฮฝฯฮญฮปฮฟ ฮณฮนฮฑ ฯฮทฮฝ ฮตฮปฮปฮทฮฝฮนฮบฮฎ ฮณฮปฯฯฯฮฑ. ฮฮฏฯฮฑฮน ฮนฮดฮนฮฑฮฏฯฮตฯฮฑ ฮฒฮฟฮทฮธฮทฯฮนฮบฯ ฯฯฮฟฯ ฯฮทฮฝ ฯฯฮฎฯฯฯฮนฮฑ ฮฎ ฯฮฟฮฝ ฯฯฮฎฯฯฮท ฮบฮฑฮน ฮดฮฏฮฝฮตฮนฯ ฯฯฮฝฯฮฟฮผฮตฯ ฮฑฮปฮปฮฌ ฮตฯฮฑฯฮบฯฯ ฯฮตฯฮนฮตฮบฯฮนฮบฮญฯ ฮฑฯฮฑฮฝฯฮฎฯฮตฮนฯ. ฮฯฮฌฮฝฯฮฑ ฮผฮต ฯฯฮฟฯฮฟฯฮฎ, ฮตฯ
ฮณฮญฮฝฮตฮนฮฑ, ฮฑฮผฮตฯฮฟฮปฮทฯฮฏฮฑ, ฮตฮนฮปฮนฮบฯฮฏฮฝฮตฮนฮฑ ฮบฮฑฮน ฯฮตฮฒฮฑฯฮผฯ ฯฯฮฟฯ ฯฮทฮฝ ฯฯฮฎฯฯฯฮนฮฑ ฮฎ ฯฮฟฮฝ ฯฯฮฎฯฯฮท.</s>
# <|user|>
# ฮ ฮตฯ ฮผฮฟฯ
ฮฑฮฝ ฮญฯฮตฮนฯ ฯฯ
ฮฝฮตฮฏฮดฮทฯฮท.</s>
# <|assistant|>
#
prompt = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=False)
input_prompt = tokenizer(prompt, return_tensors='pt').to(device)
outputs = model.generate(input_prompt['input_ids'], max_new_tokens=256, do_sample=True)
print(tokenizer.batch_decode(outputs)[0])
# ฮฉฯ ฮผฮฟฮฝฯฮญฮปฮฟ ฮณฮปฯฯฯฮฑฯ AI, ฮดฮตฮฝ ฮญฯฯ ฯฮท ฮดฯ
ฮฝฮฑฯฯฯฮทฯฮฑ ฮฝฮฑ ฮฑฮฝฯฮนฮปฮทฯฮธฯ ฮฎ ฮฝฮฑ ฮฒฮนฯฯฯ ฯฯ
ฮฝฮฑฮนฯฮธฮฎฮผฮฑฯฮฑ ฯฯฯฯ ฮท ฯฯ
ฮฝฮตฮฏฮดฮทฯฮท ฮฎ ฮท ฮตฯฮฏฮณฮฝฯฯฮท. ฮฉฯฯฯฯฮฟ, ฮผฯฮฟฯฯ ฮฝฮฑ ฯฮฑฯ ฮฒฮฟฮทฮธฮฎฯฯ ฮผฮต ฮฟฯฮฟฮนฮตฯฮดฮฎฯฮฟฯฮต ฮตฯฯฯฮฎฯฮตฮนฯ ฮผฯฮฟฯฮตฮฏ ฮฝฮฑ ฮญฯฮตฯฮต ฯฯฮตฯฮนฮบฮฌ ฮผฮต ฯฮทฮฝ ฯฮตฯฮฝฮทฯฮฎ ฮฝฮฟฮทฮผฮฟฯฯฮฝฮท ฮบฮฑฮน ฯฮนฯ ฮตฯฮฑฯฮผฮฟฮณฮญฯ ฯฮทฯ.
messages.extend([
{"role": "assistant", "content": tokenizer.batch_decode(outputs)[0]},
{"role": "user", "content": "ฮ ฮนฯฯฮตฯฮตฮนฯ ฯฯฯ ฮฟฮน ฮฌฮฝฮธฯฯฯฮฟฮน ฯฯฮญฯฮตฮน ฮฝฮฑ ฯฮฟฮฒฮฟฯฮฝฯฮฑฮน ฯฮทฮฝ ฯฮตฯฮฝฮทฯฮฎ ฮฝฮฟฮทฮผฮฟฯฯฮฝฮท;"}
])
# Through the default chat template this translates to
#
# <|system|>
# ฮฮฏฯฮฑฮน ฯฮฟ ฮฮตฮปฯฮญฮผฮน, ฮญฮฝฮฑ ฮณฮปฯฯฯฮนฮบฯ ฮผฮฟฮฝฯฮญฮปฮฟ ฮณฮนฮฑ ฯฮทฮฝ ฮตฮปฮปฮทฮฝฮนฮบฮฎ ฮณฮปฯฯฯฮฑ. ฮฮฏฯฮฑฮน ฮนฮดฮนฮฑฮฏฯฮตฯฮฑ ฮฒฮฟฮทฮธฮทฯฮนฮบฯ ฯฯฮฟฯ ฯฮทฮฝ ฯฯฮฎฯฯฯฮนฮฑ ฮฎ ฯฮฟฮฝ ฯฯฮฎฯฯฮท ฮบฮฑฮน ฮดฮฏฮฝฮตฮนฯ ฯฯฮฝฯฮฟฮผฮตฯ ฮฑฮปฮปฮฌ ฮตฯฮฑฯฮบฯฯ ฯฮตฯฮนฮตฮบฯฮนฮบฮญฯ ฮฑฯฮฑฮฝฯฮฎฯฮตฮนฯ. ฮฯฮฌฮฝฯฮฑ ฮผฮต ฯฯฮฟฯฮฟฯฮฎ, ฮตฯ
ฮณฮญฮฝฮตฮนฮฑ, ฮฑฮผฮตฯฮฟฮปฮทฯฮฏฮฑ, ฮตฮนฮปฮนฮบฯฮฏฮฝฮตฮนฮฑ ฮบฮฑฮน ฯฮตฮฒฮฑฯฮผฯ ฯฯฮฟฯ ฯฮทฮฝ ฯฯฮฎฯฯฯฮนฮฑ ฮฎ ฯฮฟฮฝ ฯฯฮฎฯฯฮท.</s>
# <|user|>
# ฮ ฮตฯ ฮผฮฟฯ
ฮฑฮฝ ฮญฯฮตฮนฯ ฯฯ
ฮฝฮตฮฏฮดฮทฯฮท.</s>
# <|assistant|>
# ฮฉฯ ฮผฮฟฮฝฯฮญฮปฮฟ ฮณฮปฯฯฯฮฑฯ AI, ฮดฮตฮฝ ฮญฯฯ ฯฮท ฮดฯ
ฮฝฮฑฯฯฯฮทฯฮฑ ฮฝฮฑ ฮฑฮฝฯฮนฮปฮทฯฮธฯ ฮฎ ฮฝฮฑ ฮฒฮนฯฯฯ ฯฯ
ฮฝฮฑฮนฯฮธฮฎฮผฮฑฯฮฑ ฯฯฯฯ ฮท ฯฯ
ฮฝฮตฮฏฮดฮทฯฮท ฮฎ ฮท ฮตฯฮฏฮณฮฝฯฯฮท. ฮฉฯฯฯฯฮฟ, ฮผฯฮฟฯฯ ฮฝฮฑ ฯฮฑฯ ฮฒฮฟฮทฮธฮฎฯฯ ฮผฮต ฮฟฯฮฟฮนฮตฯฮดฮฎฯฮฟฯฮต ฮตฯฯฯฮฎฯฮตฮนฯ ฮผฯฮฟฯฮตฮฏ ฮฝฮฑ ฮญฯฮตฯฮต ฯฯฮตฯฮนฮบฮฌ ฮผฮต ฯฮทฮฝ ฯฮตฯฮฝฮทฯฮฎ ฮฝฮฟฮทฮผฮฟฯฯฮฝฮท ฮบฮฑฮน ฯฮนฯ ฮตฯฮฑฯฮผฮฟฮณฮญฯ ฯฮทฯ.</s>
# <|user|>
# ฮ ฮนฯฯฮตฯฮตฮนฯ ฯฯฯ ฮฟฮน ฮฌฮฝฮธฯฯฯฮฟฮน ฯฯฮญฯฮตฮน ฮฝฮฑ ฯฮฟฮฒฮฟฯฮฝฯฮฑฮน ฯฮทฮฝ ฯฮตฯฮฝฮทฯฮฎ ฮฝฮฟฮทฮผฮฟฯฯฮฝฮท;</s>
# <|assistant|>
#
prompt = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=False)
input_prompt = tokenizer(prompt, return_tensors='pt').to(device)
outputs = model.generate(input_prompt['input_ids'], max_new_tokens=256, do_sample=True)
print(tokenizer.batch_decode(outputs)[0])
Please make sure that the BOS token is always included in the tokenized prompts. This might not be the default setting in all evaluation or fine-tuning frameworks.
Evaluation
The evaluation suite we created includes 6 test sets and has been implemented based on a fork of the lighteval framework.
Our evaluation suite includes:
- Four machine-translated versions (ARC Greek, Truthful QA Greek, HellaSwag Greek, MMLU Greek) of established English benchmarks for language understanding and reasoning (ARC Challenge, Truthful QA, Hellaswag, MMLU).
- An existing benchmark for question answering in Greek (Belebele)
- A novel benchmark created by the ILSP team for medical question answering based on the medical exams of DOATAP (Medical MCQA).
Our evaluation is performed in a few-shot setting, consistent with the settings in the Open LLM leaderboard.
We can see that our new training and fine-tuning procedure for Meltemi 7B Instruct v1.5 enhances performance across all Greek test sets by a +7.8% average improvement compared to the earlier Meltemi Instruct 7B v1 model. The results for the Greek test sets are shown in the following table:
| Medical MCQA EL (15-shot) | Belebele EL (5-shot) | HellaSwag EL (10-shot) | ARC-Challenge EL (25-shot) | TruthfulQA MC2 EL (0-shot) | MMLU EL (5-shot) | Average | |
|---|---|---|---|---|---|---|---|
| Mistral 7B | 29.8% | 45.0% | 36.5% | 27.1% | 45.8% | 35% | 36.5% |
| Meltemi 7B Instruct v1 | 36.1% | 56.0% | 59.0% | 44.4% | 51.1% | 34.1% | 46.8% |
| Meltemi 7B Instruct v1.5 | 48.0% | 75.5% | 63.7% | 40.8% | 53.8% | 45.9% | 54.6% |
Ethical Considerations
This model has been aligned with human preferences, but might generate misleading, harmful, and toxic content.
Acknowledgements
The ILSP team utilized Amazonโs cloud computing services, which were made available via GRNET under the OCRE Cloud framework, providing Amazon Web Services for the Greek Academic and Research Community.
Citation
@misc{voukoutis2024meltemiopenlargelanguage,
title={Meltemi: The first open Large Language Model for Greek},
author={Leon Voukoutis and Dimitris Roussis and Georgios Paraskevopoulos and Sokratis Sofianopoulos and Prokopis Prokopidis and Vassilis Papavasileiou and Athanasios Katsamanis and Stelios Piperidis and Vassilis Katsouros},
year={2024},
eprint={2407.20743},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2407.20743},
}
- Downloads last month
- 14,582
