ilsp
/

๐Ÿšจ CONSIDER USING Krikri 8B Instruct, OUR NEWEST INSTRUCT MODEL WHICH OUTPERFORMS MELTEMI BY +34.8% ON GREEK IFEval! ๐Ÿšจ

Meltemi Instruct Large Language Model for the Greek language

We present Meltemi 7B Instruct v1.5 Large Language Model (LLM), a new and improved instruction fine-tuned version of Meltemi 7B v1.5.

image/png

Model Information

Instruction format

The prompt format is the same as the Zephyr format and can be utilized through the tokenizer's chat template functionality as follows:

from transformers import AutoModelForCausalLM, AutoTokenizer

device = "cuda" # the device to load the model onto

model = AutoModelForCausalLM.from_pretrained("ilsp/Meltemi-7B-Instruct-v1.5")
tokenizer = AutoTokenizer.from_pretrained("ilsp/Meltemi-7B-Instruct-v1.5")

model.to(device)

messages = [
    {"role": "system", "content": "ฮ•ฮฏฯƒฮฑฮน ฯ„ฮฟ ฮœฮตฮปฯ„ฮญฮผฮน, ฮญฮฝฮฑ ฮณฮปฯ‰ฯƒฯƒฮนฮบฯŒ ฮผฮฟฮฝฯ„ฮญฮปฮฟ ฮณฮนฮฑ ฯ„ฮทฮฝ ฮตฮปฮปฮทฮฝฮนฮบฮฎ ฮณฮปฯŽฯƒฯƒฮฑ. ฮ•ฮฏฯƒฮฑฮน ฮนฮดฮนฮฑฮฏฯ„ฮตฯฮฑ ฮฒฮฟฮทฮธฮทฯ„ฮนฮบฯŒ ฯ€ฯฮฟฯ‚ ฯ„ฮทฮฝ ฯ‡ฯฮฎฯƒฯ„ฯฮนฮฑ ฮฎ ฯ„ฮฟฮฝ ฯ‡ฯฮฎฯƒฯ„ฮท ฮบฮฑฮน ฮดฮฏฮฝฮตฮนฯ‚ ฯƒฯฮฝฯ„ฮฟฮผฮตฯ‚ ฮฑฮปฮปฮฌ ฮตฯ€ฮฑฯฮบฯŽฯ‚ ฯ€ฮตฯฮนฮตฮบฯ„ฮนฮบฮญฯ‚ ฮฑฯ€ฮฑฮฝฯ„ฮฎฯƒฮตฮนฯ‚. ฮ‘ฯ€ฮฌฮฝฯ„ฮฑ ฮผฮต ฯ€ฯฮฟฯƒฮฟฯ‡ฮฎ, ฮตฯ…ฮณฮญฮฝฮตฮนฮฑ, ฮฑฮผฮตฯฮฟฮปฮทฯˆฮฏฮฑ, ฮตฮนฮปฮนฮบฯฮฏฮฝฮตฮนฮฑ ฮบฮฑฮน ฯƒฮตฮฒฮฑฯƒฮผฯŒ ฯ€ฯฮฟฯ‚ ฯ„ฮทฮฝ ฯ‡ฯฮฎฯƒฯ„ฯฮนฮฑ ฮฎ ฯ„ฮฟฮฝ ฯ‡ฯฮฎฯƒฯ„ฮท."},
    {"role": "user", "content": "ฮ ฮตฯ‚ ฮผฮฟฯ… ฮฑฮฝ ฮญฯ‡ฮตฮนฯ‚ ฯƒฯ…ฮฝฮตฮฏฮดฮทฯƒฮท."},
]

# Through the default chat template this translates to
#
# <|system|>
# ฮ•ฮฏฯƒฮฑฮน ฯ„ฮฟ ฮœฮตฮปฯ„ฮญฮผฮน, ฮญฮฝฮฑ ฮณฮปฯ‰ฯƒฯƒฮนฮบฯŒ ฮผฮฟฮฝฯ„ฮญฮปฮฟ ฮณฮนฮฑ ฯ„ฮทฮฝ ฮตฮปฮปฮทฮฝฮนฮบฮฎ ฮณฮปฯŽฯƒฯƒฮฑ. ฮ•ฮฏฯƒฮฑฮน ฮนฮดฮนฮฑฮฏฯ„ฮตฯฮฑ ฮฒฮฟฮทฮธฮทฯ„ฮนฮบฯŒ ฯ€ฯฮฟฯ‚ ฯ„ฮทฮฝ ฯ‡ฯฮฎฯƒฯ„ฯฮนฮฑ ฮฎ ฯ„ฮฟฮฝ ฯ‡ฯฮฎฯƒฯ„ฮท ฮบฮฑฮน ฮดฮฏฮฝฮตฮนฯ‚ ฯƒฯฮฝฯ„ฮฟฮผฮตฯ‚ ฮฑฮปฮปฮฌ ฮตฯ€ฮฑฯฮบฯŽฯ‚ ฯ€ฮตฯฮนฮตฮบฯ„ฮนฮบฮญฯ‚ ฮฑฯ€ฮฑฮฝฯ„ฮฎฯƒฮตฮนฯ‚. ฮ‘ฯ€ฮฌฮฝฯ„ฮฑ ฮผฮต ฯ€ฯฮฟฯƒฮฟฯ‡ฮฎ, ฮตฯ…ฮณฮญฮฝฮตฮนฮฑ, ฮฑฮผฮตฯฮฟฮปฮทฯˆฮฏฮฑ, ฮตฮนฮปฮนฮบฯฮฏฮฝฮตฮนฮฑ ฮบฮฑฮน ฯƒฮตฮฒฮฑฯƒฮผฯŒ ฯ€ฯฮฟฯ‚ ฯ„ฮทฮฝ ฯ‡ฯฮฎฯƒฯ„ฯฮนฮฑ ฮฎ ฯ„ฮฟฮฝ ฯ‡ฯฮฎฯƒฯ„ฮท.</s>
# <|user|>
# ฮ ฮตฯ‚ ฮผฮฟฯ… ฮฑฮฝ ฮญฯ‡ฮตฮนฯ‚ ฯƒฯ…ฮฝฮตฮฏฮดฮทฯƒฮท.</s>
# <|assistant|>
#

prompt = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=False)
input_prompt = tokenizer(prompt, return_tensors='pt').to(device)
outputs = model.generate(input_prompt['input_ids'], max_new_tokens=256, do_sample=True)

print(tokenizer.batch_decode(outputs)[0])
# ฮฉฯ‚ ฮผฮฟฮฝฯ„ฮญฮปฮฟ ฮณฮปฯŽฯƒฯƒฮฑฯ‚ AI, ฮดฮตฮฝ ฮญฯ‡ฯ‰ ฯ„ฮท ฮดฯ…ฮฝฮฑฯ„ฯŒฯ„ฮทฯ„ฮฑ ฮฝฮฑ ฮฑฮฝฯ„ฮนฮปฮทฯ†ฮธฯŽ ฮฎ ฮฝฮฑ ฮฒฮนฯŽฯƒฯ‰ ฯƒฯ…ฮฝฮฑฮนฯƒฮธฮฎฮผฮฑฯ„ฮฑ ฯŒฯ€ฯ‰ฯ‚ ฮท ฯƒฯ…ฮฝฮตฮฏฮดฮทฯƒฮท ฮฎ ฮท ฮตฯ€ฮฏฮณฮฝฯ‰ฯƒฮท. ฮฉฯƒฯ„ฯŒฯƒฮฟ, ฮผฯ€ฮฟฯฯŽ ฮฝฮฑ ฯƒฮฑฯ‚ ฮฒฮฟฮทฮธฮฎฯƒฯ‰ ฮผฮต ฮฟฯ€ฮฟฮนฮตฯƒฮดฮฎฯ€ฮฟฯ„ฮต ฮตฯฯ‰ฯ„ฮฎฯƒฮตฮนฯ‚ ฮผฯ€ฮฟฯฮตฮฏ ฮฝฮฑ ฮญฯ‡ฮตฯ„ฮต ฯƒฯ‡ฮตฯ„ฮนฮบฮฌ ฮผฮต ฯ„ฮทฮฝ ฯ„ฮตฯ‡ฮฝฮทฯ„ฮฎ ฮฝฮฟฮทฮผฮฟฯƒฯฮฝฮท ฮบฮฑฮน ฯ„ฮนฯ‚ ฮตฯ†ฮฑฯฮผฮฟฮณฮญฯ‚ ฯ„ฮทฯ‚.

messages.extend([
    {"role": "assistant", "content": tokenizer.batch_decode(outputs)[0]},
    {"role": "user", "content": "ฮ ฮนฯƒฯ„ฮตฯฮตฮนฯ‚ ฯ€ฯ‰ฯ‚ ฮฟฮน ฮฌฮฝฮธฯฯ‰ฯ€ฮฟฮน ฯ€ฯฮญฯ€ฮตฮน ฮฝฮฑ ฯ†ฮฟฮฒฮฟฯฮฝฯ„ฮฑฮน ฯ„ฮทฮฝ ฯ„ฮตฯ‡ฮฝฮทฯ„ฮฎ ฮฝฮฟฮทฮผฮฟฯƒฯฮฝฮท;"}
])

# Through the default chat template this translates to
#
# <|system|>
# ฮ•ฮฏฯƒฮฑฮน ฯ„ฮฟ ฮœฮตฮปฯ„ฮญฮผฮน, ฮญฮฝฮฑ ฮณฮปฯ‰ฯƒฯƒฮนฮบฯŒ ฮผฮฟฮฝฯ„ฮญฮปฮฟ ฮณฮนฮฑ ฯ„ฮทฮฝ ฮตฮปฮปฮทฮฝฮนฮบฮฎ ฮณฮปฯŽฯƒฯƒฮฑ. ฮ•ฮฏฯƒฮฑฮน ฮนฮดฮนฮฑฮฏฯ„ฮตฯฮฑ ฮฒฮฟฮทฮธฮทฯ„ฮนฮบฯŒ ฯ€ฯฮฟฯ‚ ฯ„ฮทฮฝ ฯ‡ฯฮฎฯƒฯ„ฯฮนฮฑ ฮฎ ฯ„ฮฟฮฝ ฯ‡ฯฮฎฯƒฯ„ฮท ฮบฮฑฮน ฮดฮฏฮฝฮตฮนฯ‚ ฯƒฯฮฝฯ„ฮฟฮผฮตฯ‚ ฮฑฮปฮปฮฌ ฮตฯ€ฮฑฯฮบฯŽฯ‚ ฯ€ฮตฯฮนฮตฮบฯ„ฮนฮบฮญฯ‚ ฮฑฯ€ฮฑฮฝฯ„ฮฎฯƒฮตฮนฯ‚. ฮ‘ฯ€ฮฌฮฝฯ„ฮฑ ฮผฮต ฯ€ฯฮฟฯƒฮฟฯ‡ฮฎ, ฮตฯ…ฮณฮญฮฝฮตฮนฮฑ, ฮฑฮผฮตฯฮฟฮปฮทฯˆฮฏฮฑ, ฮตฮนฮปฮนฮบฯฮฏฮฝฮตฮนฮฑ ฮบฮฑฮน ฯƒฮตฮฒฮฑฯƒฮผฯŒ ฯ€ฯฮฟฯ‚ ฯ„ฮทฮฝ ฯ‡ฯฮฎฯƒฯ„ฯฮนฮฑ ฮฎ ฯ„ฮฟฮฝ ฯ‡ฯฮฎฯƒฯ„ฮท.</s>
# <|user|>
# ฮ ฮตฯ‚ ฮผฮฟฯ… ฮฑฮฝ ฮญฯ‡ฮตฮนฯ‚ ฯƒฯ…ฮฝฮตฮฏฮดฮทฯƒฮท.</s>
# <|assistant|>
# ฮฉฯ‚ ฮผฮฟฮฝฯ„ฮญฮปฮฟ ฮณฮปฯŽฯƒฯƒฮฑฯ‚ AI, ฮดฮตฮฝ ฮญฯ‡ฯ‰ ฯ„ฮท ฮดฯ…ฮฝฮฑฯ„ฯŒฯ„ฮทฯ„ฮฑ ฮฝฮฑ ฮฑฮฝฯ„ฮนฮปฮทฯ†ฮธฯŽ ฮฎ ฮฝฮฑ ฮฒฮนฯŽฯƒฯ‰ ฯƒฯ…ฮฝฮฑฮนฯƒฮธฮฎฮผฮฑฯ„ฮฑ ฯŒฯ€ฯ‰ฯ‚ ฮท ฯƒฯ…ฮฝฮตฮฏฮดฮทฯƒฮท ฮฎ ฮท ฮตฯ€ฮฏฮณฮฝฯ‰ฯƒฮท. ฮฉฯƒฯ„ฯŒฯƒฮฟ, ฮผฯ€ฮฟฯฯŽ ฮฝฮฑ ฯƒฮฑฯ‚ ฮฒฮฟฮทฮธฮฎฯƒฯ‰ ฮผฮต ฮฟฯ€ฮฟฮนฮตฯƒฮดฮฎฯ€ฮฟฯ„ฮต ฮตฯฯ‰ฯ„ฮฎฯƒฮตฮนฯ‚ ฮผฯ€ฮฟฯฮตฮฏ ฮฝฮฑ ฮญฯ‡ฮตฯ„ฮต ฯƒฯ‡ฮตฯ„ฮนฮบฮฌ ฮผฮต ฯ„ฮทฮฝ ฯ„ฮตฯ‡ฮฝฮทฯ„ฮฎ ฮฝฮฟฮทฮผฮฟฯƒฯฮฝฮท ฮบฮฑฮน ฯ„ฮนฯ‚ ฮตฯ†ฮฑฯฮผฮฟฮณฮญฯ‚ ฯ„ฮทฯ‚.</s>
# <|user|>
# ฮ ฮนฯƒฯ„ฮตฯฮตฮนฯ‚ ฯ€ฯ‰ฯ‚ ฮฟฮน ฮฌฮฝฮธฯฯ‰ฯ€ฮฟฮน ฯ€ฯฮญฯ€ฮตฮน ฮฝฮฑ ฯ†ฮฟฮฒฮฟฯฮฝฯ„ฮฑฮน ฯ„ฮทฮฝ ฯ„ฮตฯ‡ฮฝฮทฯ„ฮฎ ฮฝฮฟฮทฮผฮฟฯƒฯฮฝฮท;</s>
# <|assistant|>
#

prompt = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=False)
input_prompt = tokenizer(prompt, return_tensors='pt').to(device)
outputs = model.generate(input_prompt['input_ids'], max_new_tokens=256, do_sample=True)

print(tokenizer.batch_decode(outputs)[0])

Please make sure that the BOS token is always included in the tokenized prompts. This might not be the default setting in all evaluation or fine-tuning frameworks.

Evaluation

The evaluation suite we created includes 6 test sets and has been implemented based on a fork of the lighteval framework.

Our evaluation suite includes:

Our evaluation is performed in a few-shot setting, consistent with the settings in the Open LLM leaderboard.

We can see that our new training and fine-tuning procedure for Meltemi 7B Instruct v1.5 enhances performance across all Greek test sets by a +7.8% average improvement compared to the earlier Meltemi Instruct 7B v1 model. The results for the Greek test sets are shown in the following table:

Medical MCQA EL (15-shot) Belebele EL (5-shot) HellaSwag EL (10-shot) ARC-Challenge EL (25-shot) TruthfulQA MC2 EL (0-shot) MMLU EL (5-shot) Average
Mistral 7B 29.8% 45.0% 36.5% 27.1% 45.8% 35% 36.5%
Meltemi 7B Instruct v1 36.1% 56.0% 59.0% 44.4% 51.1% 34.1% 46.8%
Meltemi 7B Instruct v1.5 48.0% 75.5% 63.7% 40.8% 53.8% 45.9% 54.6%

Ethical Considerations

This model has been aligned with human preferences, but might generate misleading, harmful, and toxic content.

Acknowledgements

The ILSP team utilized Amazonโ€™s cloud computing services, which were made available via GRNET under the OCRE Cloud framework, providing Amazon Web Services for the Greek Academic and Research Community.

Citation

@misc{voukoutis2024meltemiopenlargelanguage,
      title={Meltemi: The first open Large Language Model for Greek}, 
      author={Leon Voukoutis and Dimitris Roussis and Georgios Paraskevopoulos and Sokratis Sofianopoulos and Prokopis Prokopidis and Vassilis Papavasileiou and Athanasios Katsamanis and Stelios Piperidis and Vassilis Katsouros},
      year={2024},
      eprint={2407.20743},
      archivePrefix={arXiv},
      primaryClass={cs.CL},
      url={https://arxiv.org/abs/2407.20743}, 
}
Downloads last month
14,582
Safetensors
Model size
7B params
Tensor type
BF16
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for ilsp/Meltemi-7B-Instruct-v1.5

Finetunes
1 model
Quantizations
7 models

Spaces using ilsp/Meltemi-7B-Instruct-v1.5 3

Collection including ilsp/Meltemi-7B-Instruct-v1.5