imdatta0 commited on
Commit
ffe1307
·
verified ·
1 Parent(s): 2d13e4a

Model save

Browse files
Files changed (6) hide show
  1. README.md +58 -0
  2. all_results.json +9 -0
  3. config.json +39 -0
  4. generation_config.json +12 -0
  5. train_results.json +9 -0
  6. trainer_state.json +260 -0
README.md ADDED
@@ -0,0 +1,58 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: meta-llama/Meta-Llama-3.1-8B-Instruct
3
+ library_name: transformers
4
+ model_name: llama_openthoughts_sorted_sft
5
+ tags:
6
+ - generated_from_trainer
7
+ - trl
8
+ - sft
9
+ licence: license
10
+ ---
11
+
12
+ # Model Card for llama_openthoughts_sorted_sft
13
+
14
+ This model is a fine-tuned version of [meta-llama/Meta-Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct).
15
+ It has been trained using [TRL](https://github.com/huggingface/trl).
16
+
17
+ ## Quick start
18
+
19
+ ```python
20
+ from transformers import pipeline
21
+
22
+ question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
23
+ generator = pipeline("text-generation", model="imdatta0/llama_openthoughts_sorted_sft", device="cuda")
24
+ output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
25
+ print(output["generated_text"])
26
+ ```
27
+
28
+ ## Training procedure
29
+
30
+ [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/imdatta0/reasoning/runs/pk2rom3s)
31
+
32
+
33
+ This model was trained with SFT.
34
+
35
+ ### Framework versions
36
+
37
+ - TRL: 0.16.0
38
+ - Transformers: 4.50.3
39
+ - Pytorch: 2.5.1
40
+ - Datasets: 3.2.0
41
+ - Tokenizers: 0.21.0
42
+
43
+ ## Citations
44
+
45
+
46
+
47
+ Cite TRL as:
48
+
49
+ ```bibtex
50
+ @misc{vonwerra2022trl,
51
+ title = {{TRL: Transformer Reinforcement Learning}},
52
+ author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
53
+ year = 2020,
54
+ journal = {GitHub repository},
55
+ publisher = {GitHub},
56
+ howpublished = {\url{https://github.com/huggingface/trl}}
57
+ }
58
+ ```
all_results.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "total_flos": 8.660994241796768e+18,
3
+ "train_loss": 0.5592288087014439,
4
+ "train_runtime": 64181.8949,
5
+ "train_samples": 113829,
6
+ "train_samples_per_second": 0.586,
7
+ "train_steps_per_second": 0.005,
8
+ "val_samples": 128
9
+ }
config.json ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "LlamaForCausalLM"
4
+ ],
5
+ "attention_bias": false,
6
+ "attention_dropout": 0.0,
7
+ "bos_token_id": 128000,
8
+ "eos_token_id": [
9
+ 128001,
10
+ 128008,
11
+ 128009
12
+ ],
13
+ "head_dim": 128,
14
+ "hidden_act": "silu",
15
+ "hidden_size": 4096,
16
+ "initializer_range": 0.02,
17
+ "intermediate_size": 14336,
18
+ "max_position_embeddings": 131072,
19
+ "mlp_bias": false,
20
+ "model_type": "llama",
21
+ "num_attention_heads": 32,
22
+ "num_hidden_layers": 32,
23
+ "num_key_value_heads": 8,
24
+ "pretraining_tp": 1,
25
+ "rms_norm_eps": 1e-05,
26
+ "rope_scaling": {
27
+ "factor": 8.0,
28
+ "high_freq_factor": 4.0,
29
+ "low_freq_factor": 1.0,
30
+ "original_max_position_embeddings": 8192,
31
+ "rope_type": "llama3"
32
+ },
33
+ "rope_theta": 500000.0,
34
+ "tie_word_embeddings": false,
35
+ "torch_dtype": "float32",
36
+ "transformers_version": "4.50.3",
37
+ "use_cache": true,
38
+ "vocab_size": 128256
39
+ }
generation_config.json ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 128000,
3
+ "do_sample": true,
4
+ "eos_token_id": [
5
+ 128001,
6
+ 128008,
7
+ 128009
8
+ ],
9
+ "temperature": 0.6,
10
+ "top_p": 0.9,
11
+ "transformers_version": "4.50.3"
12
+ }
train_results.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "total_flos": 8.660994241796768e+18,
3
+ "train_loss": 0.5592288087014439,
4
+ "train_runtime": 64181.8949,
5
+ "train_samples": 113829,
6
+ "train_samples_per_second": 0.586,
7
+ "train_steps_per_second": 0.005,
8
+ "val_samples": 128
9
+ }
trainer_state.json ADDED
@@ -0,0 +1,260 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_global_step": null,
3
+ "best_metric": null,
4
+ "best_model_checkpoint": null,
5
+ "epoch": 1.0,
6
+ "eval_steps": 32,
7
+ "global_step": 294,
8
+ "is_hyper_param_search": false,
9
+ "is_local_process_zero": true,
10
+ "is_world_process_zero": true,
11
+ "log_history": [
12
+ {
13
+ "epoch": 0.05442176870748299,
14
+ "grad_norm": 1.1490706205368042,
15
+ "learning_rate": 2.6666666666666667e-05,
16
+ "loss": 0.8045,
17
+ "num_tokens": 41880570.0,
18
+ "step": 16
19
+ },
20
+ {
21
+ "epoch": 0.10884353741496598,
22
+ "grad_norm": 1.5008639097213745,
23
+ "learning_rate": 4.999291986732823e-05,
24
+ "loss": 0.665,
25
+ "step": 32
26
+ },
27
+ {
28
+ "epoch": 0.10884353741496598,
29
+ "eval_loss": 0.651832640171051,
30
+ "eval_num_tokens": 83689729.0,
31
+ "eval_runtime": 23.5652,
32
+ "eval_samples_per_second": 2.122,
33
+ "eval_steps_per_second": 0.552,
34
+ "step": 32
35
+ },
36
+ {
37
+ "epoch": 0.16326530612244897,
38
+ "grad_norm": 1.030198335647583,
39
+ "learning_rate": 4.942867164927899e-05,
40
+ "loss": 0.6176,
41
+ "num_tokens": 125570174.0,
42
+ "step": 48
43
+ },
44
+ {
45
+ "epoch": 0.21768707482993196,
46
+ "grad_norm": 1.0640579462051392,
47
+ "learning_rate": 4.798150758954164e-05,
48
+ "loss": 0.5868,
49
+ "step": 64
50
+ },
51
+ {
52
+ "epoch": 0.21768707482993196,
53
+ "eval_loss": 0.5904918909072876,
54
+ "eval_num_tokens": 167442808.0,
55
+ "eval_runtime": 18.7144,
56
+ "eval_samples_per_second": 2.672,
57
+ "eval_steps_per_second": 0.695,
58
+ "step": 64
59
+ },
60
+ {
61
+ "epoch": 0.272108843537415,
62
+ "grad_norm": 1.4152488708496094,
63
+ "learning_rate": 4.570373196778427e-05,
64
+ "loss": 0.5753,
65
+ "num_tokens": 209308289.0,
66
+ "step": 80
67
+ },
68
+ {
69
+ "epoch": 0.32653061224489793,
70
+ "grad_norm": 0.6098703145980835,
71
+ "learning_rate": 4.267766952966369e-05,
72
+ "loss": 0.561,
73
+ "step": 96
74
+ },
75
+ {
76
+ "epoch": 0.32653061224489793,
77
+ "eval_loss": 0.5666875839233398,
78
+ "eval_num_tokens": 251165748.0,
79
+ "eval_runtime": 40.4906,
80
+ "eval_samples_per_second": 1.235,
81
+ "eval_steps_per_second": 0.321,
82
+ "step": 96
83
+ },
84
+ {
85
+ "epoch": 0.38095238095238093,
86
+ "grad_norm": 0.9113028049468994,
87
+ "learning_rate": 3.901269005602235e-05,
88
+ "loss": 0.5498,
89
+ "num_tokens": 293026285.0,
90
+ "step": 112
91
+ },
92
+ {
93
+ "epoch": 0.43537414965986393,
94
+ "grad_norm": 0.38898423314094543,
95
+ "learning_rate": 3.484125545404854e-05,
96
+ "loss": 0.5403,
97
+ "step": 128
98
+ },
99
+ {
100
+ "epoch": 0.43537414965986393,
101
+ "eval_loss": 0.552385151386261,
102
+ "eval_num_tokens": 334905303.0,
103
+ "eval_runtime": 18.667,
104
+ "eval_samples_per_second": 2.679,
105
+ "eval_steps_per_second": 0.696,
106
+ "step": 128
107
+ },
108
+ {
109
+ "epoch": 0.4897959183673469,
110
+ "grad_norm": 0.41057485342025757,
111
+ "learning_rate": 3.0314132238824415e-05,
112
+ "loss": 0.5421,
113
+ "num_tokens": 376761979.0,
114
+ "step": 144
115
+ },
116
+ {
117
+ "epoch": 0.54421768707483,
118
+ "grad_norm": 0.3121841251850128,
119
+ "learning_rate": 2.5594942438652688e-05,
120
+ "loss": 0.5327,
121
+ "step": 160
122
+ },
123
+ {
124
+ "epoch": 0.54421768707483,
125
+ "eval_loss": 0.5410001873970032,
126
+ "eval_num_tokens": 418605392.0,
127
+ "eval_runtime": 18.6226,
128
+ "eval_samples_per_second": 2.685,
129
+ "eval_steps_per_second": 0.698,
130
+ "step": 160
131
+ },
132
+ {
133
+ "epoch": 0.5986394557823129,
134
+ "grad_norm": 0.3161534070968628,
135
+ "learning_rate": 2.085424986864065e-05,
136
+ "loss": 0.5245,
137
+ "num_tokens": 460446289.0,
138
+ "step": 176
139
+ },
140
+ {
141
+ "epoch": 0.6530612244897959,
142
+ "grad_norm": 0.3147275149822235,
143
+ "learning_rate": 1.6263395510022543e-05,
144
+ "loss": 0.52,
145
+ "step": 192
146
+ },
147
+ {
148
+ "epoch": 0.6530612244897959,
149
+ "eval_loss": 0.5329579710960388,
150
+ "eval_num_tokens": 502379615.0,
151
+ "eval_runtime": 18.5679,
152
+ "eval_samples_per_second": 2.693,
153
+ "eval_steps_per_second": 0.7,
154
+ "step": 192
155
+ },
156
+ {
157
+ "epoch": 0.7074829931972789,
158
+ "grad_norm": 0.24113914370536804,
159
+ "learning_rate": 1.1988304800673197e-05,
160
+ "loss": 0.514,
161
+ "num_tokens": 544263087.0,
162
+ "step": 208
163
+ },
164
+ {
165
+ "epoch": 0.7619047619047619,
166
+ "grad_norm": 0.2218102216720581,
167
+ "learning_rate": 8.183490657468688e-06,
168
+ "loss": 0.5106,
169
+ "step": 224
170
+ },
171
+ {
172
+ "epoch": 0.7619047619047619,
173
+ "eval_loss": 0.5261243581771851,
174
+ "eval_num_tokens": 586183588.0,
175
+ "eval_runtime": 18.6928,
176
+ "eval_samples_per_second": 2.675,
177
+ "eval_steps_per_second": 0.695,
178
+ "step": 224
179
+ },
180
+ {
181
+ "epoch": 0.8163265306122449,
182
+ "grad_norm": 0.2193211168050766,
183
+ "learning_rate": 4.986468976890993e-06,
184
+ "loss": 0.5177,
185
+ "num_tokens": 627943986.0,
186
+ "step": 240
187
+ },
188
+ {
189
+ "epoch": 0.8707482993197279,
190
+ "grad_norm": 0.19595304131507874,
191
+ "learning_rate": 2.512788452234921e-06,
192
+ "loss": 0.5101,
193
+ "step": 256
194
+ },
195
+ {
196
+ "epoch": 0.8707482993197279,
197
+ "eval_loss": 0.5228561162948608,
198
+ "eval_num_tokens": 669801067.0,
199
+ "eval_runtime": 18.6498,
200
+ "eval_samples_per_second": 2.681,
201
+ "eval_steps_per_second": 0.697,
202
+ "step": 256
203
+ },
204
+ {
205
+ "epoch": 0.9251700680272109,
206
+ "grad_norm": 0.17962999641895294,
207
+ "learning_rate": 8.51854342773295e-07,
208
+ "loss": 0.5061,
209
+ "num_tokens": 711714291.0,
210
+ "step": 272
211
+ },
212
+ {
213
+ "epoch": 0.9795918367346939,
214
+ "grad_norm": 0.17367339134216309,
215
+ "learning_rate": 6.369713474366212e-08,
216
+ "loss": 0.5074,
217
+ "step": 288
218
+ },
219
+ {
220
+ "epoch": 0.9795918367346939,
221
+ "eval_loss": 0.5216580629348755,
222
+ "eval_num_tokens": 753615032.0,
223
+ "eval_runtime": 18.6674,
224
+ "eval_samples_per_second": 2.678,
225
+ "eval_steps_per_second": 0.696,
226
+ "step": 288
227
+ },
228
+ {
229
+ "epoch": 1.0,
230
+ "num_tokens": 768687980.0,
231
+ "step": 294,
232
+ "total_flos": 8.660994241796768e+18,
233
+ "train_loss": 0.5592288087014439,
234
+ "train_runtime": 64181.8949,
235
+ "train_samples_per_second": 0.586,
236
+ "train_steps_per_second": 0.005
237
+ }
238
+ ],
239
+ "logging_steps": 16,
240
+ "max_steps": 294,
241
+ "num_input_tokens_seen": 0,
242
+ "num_train_epochs": 1,
243
+ "save_steps": 32,
244
+ "stateful_callbacks": {
245
+ "TrainerControl": {
246
+ "args": {
247
+ "should_epoch_stop": false,
248
+ "should_evaluate": false,
249
+ "should_log": false,
250
+ "should_save": true,
251
+ "should_training_stop": true
252
+ },
253
+ "attributes": {}
254
+ }
255
+ },
256
+ "total_flos": 8.660994241796768e+18,
257
+ "train_batch_size": 1,
258
+ "trial_name": null,
259
+ "trial_params": null
260
+ }