Commit
·
2cb7a68
1
Parent(s):
b743a29
update model card README.md
Browse files
README.md
ADDED
|
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: cc-by-nc-sa-4.0
|
| 3 |
+
base_model: microsoft/layoutlmv3-base
|
| 4 |
+
tags:
|
| 5 |
+
- generated_from_trainer
|
| 6 |
+
datasets:
|
| 7 |
+
- cord-layoutlmv3
|
| 8 |
+
metrics:
|
| 9 |
+
- precision
|
| 10 |
+
- recall
|
| 11 |
+
- f1
|
| 12 |
+
- accuracy
|
| 13 |
+
model-index:
|
| 14 |
+
- name: layoutlmv3-finetuned-cord_100
|
| 15 |
+
results:
|
| 16 |
+
- task:
|
| 17 |
+
name: Token Classification
|
| 18 |
+
type: token-classification
|
| 19 |
+
dataset:
|
| 20 |
+
name: cord-layoutlmv3
|
| 21 |
+
type: cord-layoutlmv3
|
| 22 |
+
config: cord
|
| 23 |
+
split: test
|
| 24 |
+
args: cord
|
| 25 |
+
metrics:
|
| 26 |
+
- name: Precision
|
| 27 |
+
type: precision
|
| 28 |
+
value: 0.9393042190969653
|
| 29 |
+
- name: Recall
|
| 30 |
+
type: recall
|
| 31 |
+
value: 0.9498502994011976
|
| 32 |
+
- name: F1
|
| 33 |
+
type: f1
|
| 34 |
+
value: 0.9445478228507629
|
| 35 |
+
- name: Accuracy
|
| 36 |
+
type: accuracy
|
| 37 |
+
value: 0.9494906621392191
|
| 38 |
+
---
|
| 39 |
+
|
| 40 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
| 41 |
+
should probably proofread and complete it, then remove this comment. -->
|
| 42 |
+
|
| 43 |
+
# layoutlmv3-finetuned-cord_100
|
| 44 |
+
|
| 45 |
+
This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the cord-layoutlmv3 dataset.
|
| 46 |
+
It achieves the following results on the evaluation set:
|
| 47 |
+
- Loss: 0.2454
|
| 48 |
+
- Precision: 0.9393
|
| 49 |
+
- Recall: 0.9499
|
| 50 |
+
- F1: 0.9445
|
| 51 |
+
- Accuracy: 0.9495
|
| 52 |
+
|
| 53 |
+
## Model description
|
| 54 |
+
|
| 55 |
+
More information needed
|
| 56 |
+
|
| 57 |
+
## Intended uses & limitations
|
| 58 |
+
|
| 59 |
+
More information needed
|
| 60 |
+
|
| 61 |
+
## Training and evaluation data
|
| 62 |
+
|
| 63 |
+
More information needed
|
| 64 |
+
|
| 65 |
+
## Training procedure
|
| 66 |
+
|
| 67 |
+
### Training hyperparameters
|
| 68 |
+
|
| 69 |
+
The following hyperparameters were used during training:
|
| 70 |
+
- learning_rate: 1e-05
|
| 71 |
+
- train_batch_size: 5
|
| 72 |
+
- eval_batch_size: 5
|
| 73 |
+
- seed: 42
|
| 74 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
| 75 |
+
- lr_scheduler_type: linear
|
| 76 |
+
- training_steps: 2500
|
| 77 |
+
|
| 78 |
+
### Training results
|
| 79 |
+
|
| 80 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
| 81 |
+
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
| 82 |
+
| No log | 2.5 | 250 | 1.0544 | 0.7297 | 0.7822 | 0.7551 | 0.7852 |
|
| 83 |
+
| 1.4348 | 5.0 | 500 | 0.5651 | 0.8477 | 0.8705 | 0.8589 | 0.8693 |
|
| 84 |
+
| 1.4348 | 7.5 | 750 | 0.4012 | 0.8833 | 0.9012 | 0.8922 | 0.9083 |
|
| 85 |
+
| 0.4052 | 10.0 | 1000 | 0.3168 | 0.9208 | 0.9311 | 0.9259 | 0.9338 |
|
| 86 |
+
| 0.4052 | 12.5 | 1250 | 0.2823 | 0.9304 | 0.9401 | 0.9352 | 0.9410 |
|
| 87 |
+
| 0.2039 | 15.0 | 1500 | 0.2626 | 0.9242 | 0.9394 | 0.9317 | 0.9397 |
|
| 88 |
+
| 0.2039 | 17.5 | 1750 | 0.2504 | 0.9305 | 0.9424 | 0.9364 | 0.9448 |
|
| 89 |
+
| 0.1333 | 20.0 | 2000 | 0.2425 | 0.9324 | 0.9491 | 0.9407 | 0.9503 |
|
| 90 |
+
| 0.1333 | 22.5 | 2250 | 0.2442 | 0.9371 | 0.9484 | 0.9427 | 0.9486 |
|
| 91 |
+
| 0.1042 | 25.0 | 2500 | 0.2454 | 0.9393 | 0.9499 | 0.9445 | 0.9495 |
|
| 92 |
+
|
| 93 |
+
|
| 94 |
+
### Framework versions
|
| 95 |
+
|
| 96 |
+
- Transformers 4.31.0
|
| 97 |
+
- Pytorch 2.0.1+cu118
|
| 98 |
+
- Datasets 2.14.4
|
| 99 |
+
- Tokenizers 0.13.3
|