Upload checkpoint-300
Browse files- .gitattributes +1 -0
- added_tokens.json +3 -0
- config.json +60 -0
- generation_config.json +13 -0
- latest +1 -0
- model-00001-of-00002.safetensors +3 -0
- model-00002-of-00002.safetensors +3 -0
- model.safetensors.index.json +891 -0
- preprocessor_config.json +29 -0
- processor_config.json +4 -0
- rng_state_0.pth +3 -0
- rng_state_1.pth +3 -0
- rng_state_2.pth +3 -0
- rng_state_3.pth +3 -0
- rng_state_4.pth +3 -0
- rng_state_5.pth +3 -0
- rng_state_6.pth +3 -0
- rng_state_7.pth +3 -0
- scheduler.pt +3 -0
- special_tokens_map.json +42 -0
- tokenizer.json +3 -0
- tokenizer.model +3 -0
- tokenizer_config.json +0 -0
- trainer_state.json +2157 -0
- training_args.bin +3 -0
- zero_to_fp32.py +760 -0
.gitattributes
CHANGED
|
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
added_tokens.json
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"<image_soft_token>": 262144
|
| 3 |
+
}
|
config.json
ADDED
|
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"architectures": [
|
| 3 |
+
"Gemma3ForConditionalGeneration"
|
| 4 |
+
],
|
| 5 |
+
"boi_token_index": 255999,
|
| 6 |
+
"eoi_token_index": 256000,
|
| 7 |
+
"hidden_size": 2560,
|
| 8 |
+
"image_token_index": 262144,
|
| 9 |
+
"initializer_range": 0.02,
|
| 10 |
+
"mm_tokens_per_image": 256,
|
| 11 |
+
"model_type": "gemma3",
|
| 12 |
+
"text_config": {
|
| 13 |
+
"attention_bias": false,
|
| 14 |
+
"attention_dropout": 0.0,
|
| 15 |
+
"attn_logit_softcapping": null,
|
| 16 |
+
"cache_implementation": "hybrid",
|
| 17 |
+
"final_logit_softcapping": null,
|
| 18 |
+
"head_dim": 256,
|
| 19 |
+
"hidden_activation": "gelu_pytorch_tanh",
|
| 20 |
+
"hidden_size": 2560,
|
| 21 |
+
"initializer_range": 0.02,
|
| 22 |
+
"intermediate_size": 10240,
|
| 23 |
+
"max_position_embeddings": 131072,
|
| 24 |
+
"model_type": "gemma3_text",
|
| 25 |
+
"num_attention_heads": 8,
|
| 26 |
+
"num_hidden_layers": 34,
|
| 27 |
+
"num_key_value_heads": 4,
|
| 28 |
+
"query_pre_attn_scalar": 256,
|
| 29 |
+
"rms_norm_eps": 1e-06,
|
| 30 |
+
"rope_local_base_freq": 10000.0,
|
| 31 |
+
"rope_scaling": {
|
| 32 |
+
"factor": 8.0,
|
| 33 |
+
"rope_type": "linear"
|
| 34 |
+
},
|
| 35 |
+
"rope_theta": 1000000.0,
|
| 36 |
+
"sliding_window": 1024,
|
| 37 |
+
"sliding_window_pattern": 6,
|
| 38 |
+
"torch_dtype": "bfloat16",
|
| 39 |
+
"use_cache": true,
|
| 40 |
+
"vocab_size": 262208
|
| 41 |
+
},
|
| 42 |
+
"torch_dtype": "bfloat16",
|
| 43 |
+
"transformers_version": "4.50.0.dev0",
|
| 44 |
+
"use_cache": false,
|
| 45 |
+
"vision_config": {
|
| 46 |
+
"attention_dropout": 0.0,
|
| 47 |
+
"hidden_act": "gelu_pytorch_tanh",
|
| 48 |
+
"hidden_size": 1152,
|
| 49 |
+
"image_size": 896,
|
| 50 |
+
"intermediate_size": 4304,
|
| 51 |
+
"layer_norm_eps": 1e-06,
|
| 52 |
+
"model_type": "siglip_vision_model",
|
| 53 |
+
"num_attention_heads": 16,
|
| 54 |
+
"num_channels": 3,
|
| 55 |
+
"num_hidden_layers": 27,
|
| 56 |
+
"patch_size": 14,
|
| 57 |
+
"torch_dtype": "bfloat16",
|
| 58 |
+
"vision_use_head": false
|
| 59 |
+
}
|
| 60 |
+
}
|
generation_config.json
ADDED
|
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"bos_token_id": 2,
|
| 3 |
+
"cache_implementation": "hybrid",
|
| 4 |
+
"do_sample": true,
|
| 5 |
+
"eos_token_id": [
|
| 6 |
+
1,
|
| 7 |
+
106
|
| 8 |
+
],
|
| 9 |
+
"pad_token_id": 0,
|
| 10 |
+
"top_k": 64,
|
| 11 |
+
"top_p": 0.95,
|
| 12 |
+
"transformers_version": "4.50.0.dev0"
|
| 13 |
+
}
|
latest
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
global_step300
|
model-00001-of-00002.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:43b3113767bd3a2b901d3f2e73418043d1063a2fd5b72d72b73c1b68e464dc32
|
| 3 |
+
size 4961251752
|
model-00002-of-00002.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:b5b33286a295cbb40ded06eef3afed8c18e7be1bc66fbbf61e0b5bcb02aef93d
|
| 3 |
+
size 4981531360
|
model.safetensors.index.json
ADDED
|
@@ -0,0 +1,891 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"metadata": {
|
| 3 |
+
"total_size": 9942663904
|
| 4 |
+
},
|
| 5 |
+
"weight_map": {
|
| 6 |
+
"language_model.lm_head.weight": "model-00002-of-00002.safetensors",
|
| 7 |
+
"language_model.model.embed_tokens.weight": "model-00001-of-00002.safetensors",
|
| 8 |
+
"language_model.model.layers.0.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 9 |
+
"language_model.model.layers.0.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 10 |
+
"language_model.model.layers.0.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 11 |
+
"language_model.model.layers.0.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 12 |
+
"language_model.model.layers.0.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 13 |
+
"language_model.model.layers.0.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 14 |
+
"language_model.model.layers.0.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 15 |
+
"language_model.model.layers.0.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
| 16 |
+
"language_model.model.layers.0.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 17 |
+
"language_model.model.layers.0.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 18 |
+
"language_model.model.layers.0.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
| 19 |
+
"language_model.model.layers.0.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 20 |
+
"language_model.model.layers.0.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 21 |
+
"language_model.model.layers.1.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 22 |
+
"language_model.model.layers.1.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 23 |
+
"language_model.model.layers.1.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 24 |
+
"language_model.model.layers.1.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 25 |
+
"language_model.model.layers.1.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 26 |
+
"language_model.model.layers.1.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 27 |
+
"language_model.model.layers.1.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 28 |
+
"language_model.model.layers.1.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
| 29 |
+
"language_model.model.layers.1.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 30 |
+
"language_model.model.layers.1.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 31 |
+
"language_model.model.layers.1.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
| 32 |
+
"language_model.model.layers.1.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 33 |
+
"language_model.model.layers.1.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 34 |
+
"language_model.model.layers.10.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 35 |
+
"language_model.model.layers.10.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 36 |
+
"language_model.model.layers.10.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 37 |
+
"language_model.model.layers.10.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 38 |
+
"language_model.model.layers.10.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 39 |
+
"language_model.model.layers.10.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 40 |
+
"language_model.model.layers.10.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 41 |
+
"language_model.model.layers.10.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
| 42 |
+
"language_model.model.layers.10.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 43 |
+
"language_model.model.layers.10.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 44 |
+
"language_model.model.layers.10.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
| 45 |
+
"language_model.model.layers.10.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 46 |
+
"language_model.model.layers.10.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 47 |
+
"language_model.model.layers.11.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 48 |
+
"language_model.model.layers.11.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 49 |
+
"language_model.model.layers.11.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 50 |
+
"language_model.model.layers.11.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 51 |
+
"language_model.model.layers.11.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 52 |
+
"language_model.model.layers.11.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 53 |
+
"language_model.model.layers.11.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 54 |
+
"language_model.model.layers.11.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
| 55 |
+
"language_model.model.layers.11.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 56 |
+
"language_model.model.layers.11.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 57 |
+
"language_model.model.layers.11.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
| 58 |
+
"language_model.model.layers.11.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 59 |
+
"language_model.model.layers.11.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 60 |
+
"language_model.model.layers.12.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 61 |
+
"language_model.model.layers.12.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 62 |
+
"language_model.model.layers.12.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 63 |
+
"language_model.model.layers.12.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 64 |
+
"language_model.model.layers.12.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 65 |
+
"language_model.model.layers.12.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 66 |
+
"language_model.model.layers.12.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 67 |
+
"language_model.model.layers.12.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
| 68 |
+
"language_model.model.layers.12.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 69 |
+
"language_model.model.layers.12.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 70 |
+
"language_model.model.layers.12.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
| 71 |
+
"language_model.model.layers.12.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 72 |
+
"language_model.model.layers.12.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 73 |
+
"language_model.model.layers.13.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 74 |
+
"language_model.model.layers.13.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 75 |
+
"language_model.model.layers.13.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 76 |
+
"language_model.model.layers.13.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 77 |
+
"language_model.model.layers.13.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 78 |
+
"language_model.model.layers.13.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 79 |
+
"language_model.model.layers.13.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 80 |
+
"language_model.model.layers.13.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
| 81 |
+
"language_model.model.layers.13.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 82 |
+
"language_model.model.layers.13.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 83 |
+
"language_model.model.layers.13.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
| 84 |
+
"language_model.model.layers.13.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 85 |
+
"language_model.model.layers.13.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 86 |
+
"language_model.model.layers.14.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 87 |
+
"language_model.model.layers.14.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
| 88 |
+
"language_model.model.layers.14.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 89 |
+
"language_model.model.layers.14.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 90 |
+
"language_model.model.layers.14.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 91 |
+
"language_model.model.layers.14.post_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 92 |
+
"language_model.model.layers.14.pre_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 93 |
+
"language_model.model.layers.14.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
| 94 |
+
"language_model.model.layers.14.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 95 |
+
"language_model.model.layers.14.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 96 |
+
"language_model.model.layers.14.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
| 97 |
+
"language_model.model.layers.14.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 98 |
+
"language_model.model.layers.14.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 99 |
+
"language_model.model.layers.15.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 100 |
+
"language_model.model.layers.15.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
| 101 |
+
"language_model.model.layers.15.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
| 102 |
+
"language_model.model.layers.15.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
| 103 |
+
"language_model.model.layers.15.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 104 |
+
"language_model.model.layers.15.post_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 105 |
+
"language_model.model.layers.15.pre_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 106 |
+
"language_model.model.layers.15.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
|
| 107 |
+
"language_model.model.layers.15.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
| 108 |
+
"language_model.model.layers.15.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
| 109 |
+
"language_model.model.layers.15.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
|
| 110 |
+
"language_model.model.layers.15.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
| 111 |
+
"language_model.model.layers.15.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
| 112 |
+
"language_model.model.layers.16.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 113 |
+
"language_model.model.layers.16.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
| 114 |
+
"language_model.model.layers.16.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
| 115 |
+
"language_model.model.layers.16.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
| 116 |
+
"language_model.model.layers.16.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 117 |
+
"language_model.model.layers.16.post_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 118 |
+
"language_model.model.layers.16.pre_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 119 |
+
"language_model.model.layers.16.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
|
| 120 |
+
"language_model.model.layers.16.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
| 121 |
+
"language_model.model.layers.16.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
| 122 |
+
"language_model.model.layers.16.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
|
| 123 |
+
"language_model.model.layers.16.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
| 124 |
+
"language_model.model.layers.16.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
| 125 |
+
"language_model.model.layers.17.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 126 |
+
"language_model.model.layers.17.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
| 127 |
+
"language_model.model.layers.17.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
| 128 |
+
"language_model.model.layers.17.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
| 129 |
+
"language_model.model.layers.17.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 130 |
+
"language_model.model.layers.17.post_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 131 |
+
"language_model.model.layers.17.pre_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 132 |
+
"language_model.model.layers.17.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
|
| 133 |
+
"language_model.model.layers.17.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
| 134 |
+
"language_model.model.layers.17.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
| 135 |
+
"language_model.model.layers.17.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
|
| 136 |
+
"language_model.model.layers.17.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
| 137 |
+
"language_model.model.layers.17.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
| 138 |
+
"language_model.model.layers.18.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 139 |
+
"language_model.model.layers.18.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
| 140 |
+
"language_model.model.layers.18.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
| 141 |
+
"language_model.model.layers.18.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
| 142 |
+
"language_model.model.layers.18.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 143 |
+
"language_model.model.layers.18.post_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 144 |
+
"language_model.model.layers.18.pre_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 145 |
+
"language_model.model.layers.18.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
|
| 146 |
+
"language_model.model.layers.18.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
| 147 |
+
"language_model.model.layers.18.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
| 148 |
+
"language_model.model.layers.18.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
|
| 149 |
+
"language_model.model.layers.18.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
| 150 |
+
"language_model.model.layers.18.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
| 151 |
+
"language_model.model.layers.19.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 152 |
+
"language_model.model.layers.19.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
| 153 |
+
"language_model.model.layers.19.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
| 154 |
+
"language_model.model.layers.19.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
| 155 |
+
"language_model.model.layers.19.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 156 |
+
"language_model.model.layers.19.post_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 157 |
+
"language_model.model.layers.19.pre_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 158 |
+
"language_model.model.layers.19.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
|
| 159 |
+
"language_model.model.layers.19.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
| 160 |
+
"language_model.model.layers.19.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
| 161 |
+
"language_model.model.layers.19.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
|
| 162 |
+
"language_model.model.layers.19.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
| 163 |
+
"language_model.model.layers.19.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
| 164 |
+
"language_model.model.layers.2.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 165 |
+
"language_model.model.layers.2.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 166 |
+
"language_model.model.layers.2.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 167 |
+
"language_model.model.layers.2.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 168 |
+
"language_model.model.layers.2.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 169 |
+
"language_model.model.layers.2.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 170 |
+
"language_model.model.layers.2.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 171 |
+
"language_model.model.layers.2.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
| 172 |
+
"language_model.model.layers.2.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 173 |
+
"language_model.model.layers.2.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 174 |
+
"language_model.model.layers.2.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
| 175 |
+
"language_model.model.layers.2.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 176 |
+
"language_model.model.layers.2.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 177 |
+
"language_model.model.layers.20.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 178 |
+
"language_model.model.layers.20.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
| 179 |
+
"language_model.model.layers.20.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
| 180 |
+
"language_model.model.layers.20.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
| 181 |
+
"language_model.model.layers.20.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 182 |
+
"language_model.model.layers.20.post_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 183 |
+
"language_model.model.layers.20.pre_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 184 |
+
"language_model.model.layers.20.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
|
| 185 |
+
"language_model.model.layers.20.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
| 186 |
+
"language_model.model.layers.20.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
| 187 |
+
"language_model.model.layers.20.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
|
| 188 |
+
"language_model.model.layers.20.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
| 189 |
+
"language_model.model.layers.20.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
| 190 |
+
"language_model.model.layers.21.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 191 |
+
"language_model.model.layers.21.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
| 192 |
+
"language_model.model.layers.21.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
| 193 |
+
"language_model.model.layers.21.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
| 194 |
+
"language_model.model.layers.21.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 195 |
+
"language_model.model.layers.21.post_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 196 |
+
"language_model.model.layers.21.pre_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 197 |
+
"language_model.model.layers.21.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
|
| 198 |
+
"language_model.model.layers.21.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
| 199 |
+
"language_model.model.layers.21.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
| 200 |
+
"language_model.model.layers.21.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
|
| 201 |
+
"language_model.model.layers.21.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
| 202 |
+
"language_model.model.layers.21.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
| 203 |
+
"language_model.model.layers.22.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 204 |
+
"language_model.model.layers.22.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
| 205 |
+
"language_model.model.layers.22.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
| 206 |
+
"language_model.model.layers.22.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
| 207 |
+
"language_model.model.layers.22.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 208 |
+
"language_model.model.layers.22.post_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 209 |
+
"language_model.model.layers.22.pre_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 210 |
+
"language_model.model.layers.22.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
|
| 211 |
+
"language_model.model.layers.22.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
| 212 |
+
"language_model.model.layers.22.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
| 213 |
+
"language_model.model.layers.22.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
|
| 214 |
+
"language_model.model.layers.22.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
| 215 |
+
"language_model.model.layers.22.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
| 216 |
+
"language_model.model.layers.23.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 217 |
+
"language_model.model.layers.23.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
| 218 |
+
"language_model.model.layers.23.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
| 219 |
+
"language_model.model.layers.23.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
| 220 |
+
"language_model.model.layers.23.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 221 |
+
"language_model.model.layers.23.post_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 222 |
+
"language_model.model.layers.23.pre_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 223 |
+
"language_model.model.layers.23.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
|
| 224 |
+
"language_model.model.layers.23.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
| 225 |
+
"language_model.model.layers.23.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
| 226 |
+
"language_model.model.layers.23.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
|
| 227 |
+
"language_model.model.layers.23.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
| 228 |
+
"language_model.model.layers.23.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
| 229 |
+
"language_model.model.layers.24.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 230 |
+
"language_model.model.layers.24.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
| 231 |
+
"language_model.model.layers.24.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
| 232 |
+
"language_model.model.layers.24.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
| 233 |
+
"language_model.model.layers.24.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 234 |
+
"language_model.model.layers.24.post_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 235 |
+
"language_model.model.layers.24.pre_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 236 |
+
"language_model.model.layers.24.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
|
| 237 |
+
"language_model.model.layers.24.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
| 238 |
+
"language_model.model.layers.24.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
| 239 |
+
"language_model.model.layers.24.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
|
| 240 |
+
"language_model.model.layers.24.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
| 241 |
+
"language_model.model.layers.24.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
| 242 |
+
"language_model.model.layers.25.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 243 |
+
"language_model.model.layers.25.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
| 244 |
+
"language_model.model.layers.25.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
| 245 |
+
"language_model.model.layers.25.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
| 246 |
+
"language_model.model.layers.25.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 247 |
+
"language_model.model.layers.25.post_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 248 |
+
"language_model.model.layers.25.pre_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 249 |
+
"language_model.model.layers.25.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
|
| 250 |
+
"language_model.model.layers.25.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
| 251 |
+
"language_model.model.layers.25.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
| 252 |
+
"language_model.model.layers.25.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
|
| 253 |
+
"language_model.model.layers.25.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
| 254 |
+
"language_model.model.layers.25.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
| 255 |
+
"language_model.model.layers.26.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 256 |
+
"language_model.model.layers.26.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
| 257 |
+
"language_model.model.layers.26.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
| 258 |
+
"language_model.model.layers.26.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
| 259 |
+
"language_model.model.layers.26.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 260 |
+
"language_model.model.layers.26.post_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 261 |
+
"language_model.model.layers.26.pre_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 262 |
+
"language_model.model.layers.26.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
|
| 263 |
+
"language_model.model.layers.26.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
| 264 |
+
"language_model.model.layers.26.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
| 265 |
+
"language_model.model.layers.26.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
|
| 266 |
+
"language_model.model.layers.26.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
| 267 |
+
"language_model.model.layers.26.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
| 268 |
+
"language_model.model.layers.27.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 269 |
+
"language_model.model.layers.27.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
| 270 |
+
"language_model.model.layers.27.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
| 271 |
+
"language_model.model.layers.27.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
| 272 |
+
"language_model.model.layers.27.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 273 |
+
"language_model.model.layers.27.post_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 274 |
+
"language_model.model.layers.27.pre_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 275 |
+
"language_model.model.layers.27.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
|
| 276 |
+
"language_model.model.layers.27.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
| 277 |
+
"language_model.model.layers.27.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
| 278 |
+
"language_model.model.layers.27.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
|
| 279 |
+
"language_model.model.layers.27.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
| 280 |
+
"language_model.model.layers.27.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
| 281 |
+
"language_model.model.layers.28.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 282 |
+
"language_model.model.layers.28.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
| 283 |
+
"language_model.model.layers.28.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
| 284 |
+
"language_model.model.layers.28.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
| 285 |
+
"language_model.model.layers.28.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 286 |
+
"language_model.model.layers.28.post_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 287 |
+
"language_model.model.layers.28.pre_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 288 |
+
"language_model.model.layers.28.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
|
| 289 |
+
"language_model.model.layers.28.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
| 290 |
+
"language_model.model.layers.28.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
| 291 |
+
"language_model.model.layers.28.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
|
| 292 |
+
"language_model.model.layers.28.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
| 293 |
+
"language_model.model.layers.28.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
| 294 |
+
"language_model.model.layers.29.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 295 |
+
"language_model.model.layers.29.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
| 296 |
+
"language_model.model.layers.29.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
| 297 |
+
"language_model.model.layers.29.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
| 298 |
+
"language_model.model.layers.29.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 299 |
+
"language_model.model.layers.29.post_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 300 |
+
"language_model.model.layers.29.pre_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 301 |
+
"language_model.model.layers.29.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
|
| 302 |
+
"language_model.model.layers.29.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
| 303 |
+
"language_model.model.layers.29.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
| 304 |
+
"language_model.model.layers.29.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
|
| 305 |
+
"language_model.model.layers.29.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
| 306 |
+
"language_model.model.layers.29.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
| 307 |
+
"language_model.model.layers.3.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 308 |
+
"language_model.model.layers.3.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 309 |
+
"language_model.model.layers.3.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 310 |
+
"language_model.model.layers.3.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 311 |
+
"language_model.model.layers.3.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 312 |
+
"language_model.model.layers.3.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 313 |
+
"language_model.model.layers.3.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 314 |
+
"language_model.model.layers.3.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
| 315 |
+
"language_model.model.layers.3.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 316 |
+
"language_model.model.layers.3.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 317 |
+
"language_model.model.layers.3.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
| 318 |
+
"language_model.model.layers.3.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 319 |
+
"language_model.model.layers.3.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 320 |
+
"language_model.model.layers.30.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 321 |
+
"language_model.model.layers.30.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
| 322 |
+
"language_model.model.layers.30.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
| 323 |
+
"language_model.model.layers.30.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
| 324 |
+
"language_model.model.layers.30.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 325 |
+
"language_model.model.layers.30.post_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 326 |
+
"language_model.model.layers.30.pre_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 327 |
+
"language_model.model.layers.30.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
|
| 328 |
+
"language_model.model.layers.30.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
| 329 |
+
"language_model.model.layers.30.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
| 330 |
+
"language_model.model.layers.30.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
|
| 331 |
+
"language_model.model.layers.30.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
| 332 |
+
"language_model.model.layers.30.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
| 333 |
+
"language_model.model.layers.31.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 334 |
+
"language_model.model.layers.31.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
| 335 |
+
"language_model.model.layers.31.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
| 336 |
+
"language_model.model.layers.31.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
| 337 |
+
"language_model.model.layers.31.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 338 |
+
"language_model.model.layers.31.post_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 339 |
+
"language_model.model.layers.31.pre_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 340 |
+
"language_model.model.layers.31.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
|
| 341 |
+
"language_model.model.layers.31.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
| 342 |
+
"language_model.model.layers.31.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
| 343 |
+
"language_model.model.layers.31.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
|
| 344 |
+
"language_model.model.layers.31.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
| 345 |
+
"language_model.model.layers.31.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
| 346 |
+
"language_model.model.layers.32.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 347 |
+
"language_model.model.layers.32.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
| 348 |
+
"language_model.model.layers.32.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
| 349 |
+
"language_model.model.layers.32.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
| 350 |
+
"language_model.model.layers.32.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 351 |
+
"language_model.model.layers.32.post_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 352 |
+
"language_model.model.layers.32.pre_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 353 |
+
"language_model.model.layers.32.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
|
| 354 |
+
"language_model.model.layers.32.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
| 355 |
+
"language_model.model.layers.32.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
| 356 |
+
"language_model.model.layers.32.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
|
| 357 |
+
"language_model.model.layers.32.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
| 358 |
+
"language_model.model.layers.32.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
| 359 |
+
"language_model.model.layers.33.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 360 |
+
"language_model.model.layers.33.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
| 361 |
+
"language_model.model.layers.33.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
| 362 |
+
"language_model.model.layers.33.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
| 363 |
+
"language_model.model.layers.33.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 364 |
+
"language_model.model.layers.33.post_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 365 |
+
"language_model.model.layers.33.pre_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 366 |
+
"language_model.model.layers.33.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
|
| 367 |
+
"language_model.model.layers.33.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
| 368 |
+
"language_model.model.layers.33.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
| 369 |
+
"language_model.model.layers.33.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
|
| 370 |
+
"language_model.model.layers.33.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
| 371 |
+
"language_model.model.layers.33.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
| 372 |
+
"language_model.model.layers.4.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 373 |
+
"language_model.model.layers.4.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 374 |
+
"language_model.model.layers.4.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 375 |
+
"language_model.model.layers.4.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 376 |
+
"language_model.model.layers.4.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 377 |
+
"language_model.model.layers.4.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 378 |
+
"language_model.model.layers.4.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 379 |
+
"language_model.model.layers.4.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
| 380 |
+
"language_model.model.layers.4.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 381 |
+
"language_model.model.layers.4.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 382 |
+
"language_model.model.layers.4.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
| 383 |
+
"language_model.model.layers.4.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 384 |
+
"language_model.model.layers.4.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 385 |
+
"language_model.model.layers.5.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 386 |
+
"language_model.model.layers.5.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 387 |
+
"language_model.model.layers.5.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 388 |
+
"language_model.model.layers.5.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 389 |
+
"language_model.model.layers.5.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 390 |
+
"language_model.model.layers.5.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 391 |
+
"language_model.model.layers.5.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 392 |
+
"language_model.model.layers.5.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
| 393 |
+
"language_model.model.layers.5.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 394 |
+
"language_model.model.layers.5.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 395 |
+
"language_model.model.layers.5.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
| 396 |
+
"language_model.model.layers.5.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 397 |
+
"language_model.model.layers.5.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 398 |
+
"language_model.model.layers.6.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 399 |
+
"language_model.model.layers.6.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 400 |
+
"language_model.model.layers.6.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 401 |
+
"language_model.model.layers.6.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 402 |
+
"language_model.model.layers.6.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 403 |
+
"language_model.model.layers.6.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 404 |
+
"language_model.model.layers.6.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 405 |
+
"language_model.model.layers.6.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
| 406 |
+
"language_model.model.layers.6.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 407 |
+
"language_model.model.layers.6.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 408 |
+
"language_model.model.layers.6.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
| 409 |
+
"language_model.model.layers.6.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 410 |
+
"language_model.model.layers.6.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 411 |
+
"language_model.model.layers.7.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 412 |
+
"language_model.model.layers.7.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 413 |
+
"language_model.model.layers.7.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 414 |
+
"language_model.model.layers.7.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 415 |
+
"language_model.model.layers.7.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 416 |
+
"language_model.model.layers.7.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 417 |
+
"language_model.model.layers.7.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 418 |
+
"language_model.model.layers.7.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
| 419 |
+
"language_model.model.layers.7.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 420 |
+
"language_model.model.layers.7.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 421 |
+
"language_model.model.layers.7.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
| 422 |
+
"language_model.model.layers.7.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 423 |
+
"language_model.model.layers.7.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 424 |
+
"language_model.model.layers.8.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 425 |
+
"language_model.model.layers.8.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 426 |
+
"language_model.model.layers.8.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 427 |
+
"language_model.model.layers.8.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 428 |
+
"language_model.model.layers.8.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 429 |
+
"language_model.model.layers.8.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 430 |
+
"language_model.model.layers.8.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 431 |
+
"language_model.model.layers.8.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
| 432 |
+
"language_model.model.layers.8.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 433 |
+
"language_model.model.layers.8.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 434 |
+
"language_model.model.layers.8.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
| 435 |
+
"language_model.model.layers.8.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 436 |
+
"language_model.model.layers.8.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 437 |
+
"language_model.model.layers.9.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 438 |
+
"language_model.model.layers.9.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 439 |
+
"language_model.model.layers.9.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 440 |
+
"language_model.model.layers.9.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 441 |
+
"language_model.model.layers.9.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 442 |
+
"language_model.model.layers.9.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 443 |
+
"language_model.model.layers.9.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 444 |
+
"language_model.model.layers.9.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
| 445 |
+
"language_model.model.layers.9.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 446 |
+
"language_model.model.layers.9.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 447 |
+
"language_model.model.layers.9.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
| 448 |
+
"language_model.model.layers.9.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 449 |
+
"language_model.model.layers.9.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 450 |
+
"language_model.model.norm.weight": "model-00002-of-00002.safetensors",
|
| 451 |
+
"multi_modal_projector.mm_input_projection_weight": "model-00001-of-00002.safetensors",
|
| 452 |
+
"multi_modal_projector.mm_soft_emb_norm.weight": "model-00001-of-00002.safetensors",
|
| 453 |
+
"vision_tower.vision_model.embeddings.patch_embedding.bias": "model-00001-of-00002.safetensors",
|
| 454 |
+
"vision_tower.vision_model.embeddings.patch_embedding.weight": "model-00001-of-00002.safetensors",
|
| 455 |
+
"vision_tower.vision_model.embeddings.position_embedding.weight": "model-00001-of-00002.safetensors",
|
| 456 |
+
"vision_tower.vision_model.encoder.layers.0.layer_norm1.bias": "model-00001-of-00002.safetensors",
|
| 457 |
+
"vision_tower.vision_model.encoder.layers.0.layer_norm1.weight": "model-00001-of-00002.safetensors",
|
| 458 |
+
"vision_tower.vision_model.encoder.layers.0.layer_norm2.bias": "model-00001-of-00002.safetensors",
|
| 459 |
+
"vision_tower.vision_model.encoder.layers.0.layer_norm2.weight": "model-00001-of-00002.safetensors",
|
| 460 |
+
"vision_tower.vision_model.encoder.layers.0.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 461 |
+
"vision_tower.vision_model.encoder.layers.0.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 462 |
+
"vision_tower.vision_model.encoder.layers.0.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 463 |
+
"vision_tower.vision_model.encoder.layers.0.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 464 |
+
"vision_tower.vision_model.encoder.layers.0.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 465 |
+
"vision_tower.vision_model.encoder.layers.0.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 466 |
+
"vision_tower.vision_model.encoder.layers.0.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
|
| 467 |
+
"vision_tower.vision_model.encoder.layers.0.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
|
| 468 |
+
"vision_tower.vision_model.encoder.layers.0.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 469 |
+
"vision_tower.vision_model.encoder.layers.0.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 470 |
+
"vision_tower.vision_model.encoder.layers.0.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 471 |
+
"vision_tower.vision_model.encoder.layers.0.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 472 |
+
"vision_tower.vision_model.encoder.layers.1.layer_norm1.bias": "model-00001-of-00002.safetensors",
|
| 473 |
+
"vision_tower.vision_model.encoder.layers.1.layer_norm1.weight": "model-00001-of-00002.safetensors",
|
| 474 |
+
"vision_tower.vision_model.encoder.layers.1.layer_norm2.bias": "model-00001-of-00002.safetensors",
|
| 475 |
+
"vision_tower.vision_model.encoder.layers.1.layer_norm2.weight": "model-00001-of-00002.safetensors",
|
| 476 |
+
"vision_tower.vision_model.encoder.layers.1.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 477 |
+
"vision_tower.vision_model.encoder.layers.1.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 478 |
+
"vision_tower.vision_model.encoder.layers.1.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 479 |
+
"vision_tower.vision_model.encoder.layers.1.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 480 |
+
"vision_tower.vision_model.encoder.layers.1.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 481 |
+
"vision_tower.vision_model.encoder.layers.1.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 482 |
+
"vision_tower.vision_model.encoder.layers.1.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
|
| 483 |
+
"vision_tower.vision_model.encoder.layers.1.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
|
| 484 |
+
"vision_tower.vision_model.encoder.layers.1.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 485 |
+
"vision_tower.vision_model.encoder.layers.1.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 486 |
+
"vision_tower.vision_model.encoder.layers.1.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 487 |
+
"vision_tower.vision_model.encoder.layers.1.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 488 |
+
"vision_tower.vision_model.encoder.layers.10.layer_norm1.bias": "model-00001-of-00002.safetensors",
|
| 489 |
+
"vision_tower.vision_model.encoder.layers.10.layer_norm1.weight": "model-00001-of-00002.safetensors",
|
| 490 |
+
"vision_tower.vision_model.encoder.layers.10.layer_norm2.bias": "model-00001-of-00002.safetensors",
|
| 491 |
+
"vision_tower.vision_model.encoder.layers.10.layer_norm2.weight": "model-00001-of-00002.safetensors",
|
| 492 |
+
"vision_tower.vision_model.encoder.layers.10.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 493 |
+
"vision_tower.vision_model.encoder.layers.10.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 494 |
+
"vision_tower.vision_model.encoder.layers.10.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 495 |
+
"vision_tower.vision_model.encoder.layers.10.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 496 |
+
"vision_tower.vision_model.encoder.layers.10.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 497 |
+
"vision_tower.vision_model.encoder.layers.10.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 498 |
+
"vision_tower.vision_model.encoder.layers.10.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
|
| 499 |
+
"vision_tower.vision_model.encoder.layers.10.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
|
| 500 |
+
"vision_tower.vision_model.encoder.layers.10.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 501 |
+
"vision_tower.vision_model.encoder.layers.10.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 502 |
+
"vision_tower.vision_model.encoder.layers.10.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 503 |
+
"vision_tower.vision_model.encoder.layers.10.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 504 |
+
"vision_tower.vision_model.encoder.layers.11.layer_norm1.bias": "model-00001-of-00002.safetensors",
|
| 505 |
+
"vision_tower.vision_model.encoder.layers.11.layer_norm1.weight": "model-00001-of-00002.safetensors",
|
| 506 |
+
"vision_tower.vision_model.encoder.layers.11.layer_norm2.bias": "model-00001-of-00002.safetensors",
|
| 507 |
+
"vision_tower.vision_model.encoder.layers.11.layer_norm2.weight": "model-00001-of-00002.safetensors",
|
| 508 |
+
"vision_tower.vision_model.encoder.layers.11.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 509 |
+
"vision_tower.vision_model.encoder.layers.11.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 510 |
+
"vision_tower.vision_model.encoder.layers.11.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 511 |
+
"vision_tower.vision_model.encoder.layers.11.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 512 |
+
"vision_tower.vision_model.encoder.layers.11.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 513 |
+
"vision_tower.vision_model.encoder.layers.11.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 514 |
+
"vision_tower.vision_model.encoder.layers.11.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
|
| 515 |
+
"vision_tower.vision_model.encoder.layers.11.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
|
| 516 |
+
"vision_tower.vision_model.encoder.layers.11.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 517 |
+
"vision_tower.vision_model.encoder.layers.11.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 518 |
+
"vision_tower.vision_model.encoder.layers.11.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 519 |
+
"vision_tower.vision_model.encoder.layers.11.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 520 |
+
"vision_tower.vision_model.encoder.layers.12.layer_norm1.bias": "model-00001-of-00002.safetensors",
|
| 521 |
+
"vision_tower.vision_model.encoder.layers.12.layer_norm1.weight": "model-00001-of-00002.safetensors",
|
| 522 |
+
"vision_tower.vision_model.encoder.layers.12.layer_norm2.bias": "model-00001-of-00002.safetensors",
|
| 523 |
+
"vision_tower.vision_model.encoder.layers.12.layer_norm2.weight": "model-00001-of-00002.safetensors",
|
| 524 |
+
"vision_tower.vision_model.encoder.layers.12.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 525 |
+
"vision_tower.vision_model.encoder.layers.12.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 526 |
+
"vision_tower.vision_model.encoder.layers.12.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 527 |
+
"vision_tower.vision_model.encoder.layers.12.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 528 |
+
"vision_tower.vision_model.encoder.layers.12.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 529 |
+
"vision_tower.vision_model.encoder.layers.12.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 530 |
+
"vision_tower.vision_model.encoder.layers.12.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
|
| 531 |
+
"vision_tower.vision_model.encoder.layers.12.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
|
| 532 |
+
"vision_tower.vision_model.encoder.layers.12.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 533 |
+
"vision_tower.vision_model.encoder.layers.12.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 534 |
+
"vision_tower.vision_model.encoder.layers.12.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 535 |
+
"vision_tower.vision_model.encoder.layers.12.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 536 |
+
"vision_tower.vision_model.encoder.layers.13.layer_norm1.bias": "model-00001-of-00002.safetensors",
|
| 537 |
+
"vision_tower.vision_model.encoder.layers.13.layer_norm1.weight": "model-00001-of-00002.safetensors",
|
| 538 |
+
"vision_tower.vision_model.encoder.layers.13.layer_norm2.bias": "model-00001-of-00002.safetensors",
|
| 539 |
+
"vision_tower.vision_model.encoder.layers.13.layer_norm2.weight": "model-00001-of-00002.safetensors",
|
| 540 |
+
"vision_tower.vision_model.encoder.layers.13.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 541 |
+
"vision_tower.vision_model.encoder.layers.13.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 542 |
+
"vision_tower.vision_model.encoder.layers.13.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 543 |
+
"vision_tower.vision_model.encoder.layers.13.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 544 |
+
"vision_tower.vision_model.encoder.layers.13.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 545 |
+
"vision_tower.vision_model.encoder.layers.13.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 546 |
+
"vision_tower.vision_model.encoder.layers.13.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
|
| 547 |
+
"vision_tower.vision_model.encoder.layers.13.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
|
| 548 |
+
"vision_tower.vision_model.encoder.layers.13.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 549 |
+
"vision_tower.vision_model.encoder.layers.13.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 550 |
+
"vision_tower.vision_model.encoder.layers.13.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 551 |
+
"vision_tower.vision_model.encoder.layers.13.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 552 |
+
"vision_tower.vision_model.encoder.layers.14.layer_norm1.bias": "model-00001-of-00002.safetensors",
|
| 553 |
+
"vision_tower.vision_model.encoder.layers.14.layer_norm1.weight": "model-00001-of-00002.safetensors",
|
| 554 |
+
"vision_tower.vision_model.encoder.layers.14.layer_norm2.bias": "model-00001-of-00002.safetensors",
|
| 555 |
+
"vision_tower.vision_model.encoder.layers.14.layer_norm2.weight": "model-00001-of-00002.safetensors",
|
| 556 |
+
"vision_tower.vision_model.encoder.layers.14.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 557 |
+
"vision_tower.vision_model.encoder.layers.14.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 558 |
+
"vision_tower.vision_model.encoder.layers.14.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 559 |
+
"vision_tower.vision_model.encoder.layers.14.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 560 |
+
"vision_tower.vision_model.encoder.layers.14.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 561 |
+
"vision_tower.vision_model.encoder.layers.14.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 562 |
+
"vision_tower.vision_model.encoder.layers.14.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
|
| 563 |
+
"vision_tower.vision_model.encoder.layers.14.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
|
| 564 |
+
"vision_tower.vision_model.encoder.layers.14.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 565 |
+
"vision_tower.vision_model.encoder.layers.14.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 566 |
+
"vision_tower.vision_model.encoder.layers.14.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 567 |
+
"vision_tower.vision_model.encoder.layers.14.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 568 |
+
"vision_tower.vision_model.encoder.layers.15.layer_norm1.bias": "model-00001-of-00002.safetensors",
|
| 569 |
+
"vision_tower.vision_model.encoder.layers.15.layer_norm1.weight": "model-00001-of-00002.safetensors",
|
| 570 |
+
"vision_tower.vision_model.encoder.layers.15.layer_norm2.bias": "model-00001-of-00002.safetensors",
|
| 571 |
+
"vision_tower.vision_model.encoder.layers.15.layer_norm2.weight": "model-00001-of-00002.safetensors",
|
| 572 |
+
"vision_tower.vision_model.encoder.layers.15.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 573 |
+
"vision_tower.vision_model.encoder.layers.15.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 574 |
+
"vision_tower.vision_model.encoder.layers.15.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 575 |
+
"vision_tower.vision_model.encoder.layers.15.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 576 |
+
"vision_tower.vision_model.encoder.layers.15.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 577 |
+
"vision_tower.vision_model.encoder.layers.15.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 578 |
+
"vision_tower.vision_model.encoder.layers.15.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
|
| 579 |
+
"vision_tower.vision_model.encoder.layers.15.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
|
| 580 |
+
"vision_tower.vision_model.encoder.layers.15.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 581 |
+
"vision_tower.vision_model.encoder.layers.15.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 582 |
+
"vision_tower.vision_model.encoder.layers.15.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 583 |
+
"vision_tower.vision_model.encoder.layers.15.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 584 |
+
"vision_tower.vision_model.encoder.layers.16.layer_norm1.bias": "model-00001-of-00002.safetensors",
|
| 585 |
+
"vision_tower.vision_model.encoder.layers.16.layer_norm1.weight": "model-00001-of-00002.safetensors",
|
| 586 |
+
"vision_tower.vision_model.encoder.layers.16.layer_norm2.bias": "model-00001-of-00002.safetensors",
|
| 587 |
+
"vision_tower.vision_model.encoder.layers.16.layer_norm2.weight": "model-00001-of-00002.safetensors",
|
| 588 |
+
"vision_tower.vision_model.encoder.layers.16.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 589 |
+
"vision_tower.vision_model.encoder.layers.16.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 590 |
+
"vision_tower.vision_model.encoder.layers.16.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 591 |
+
"vision_tower.vision_model.encoder.layers.16.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 592 |
+
"vision_tower.vision_model.encoder.layers.16.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 593 |
+
"vision_tower.vision_model.encoder.layers.16.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 594 |
+
"vision_tower.vision_model.encoder.layers.16.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
|
| 595 |
+
"vision_tower.vision_model.encoder.layers.16.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
|
| 596 |
+
"vision_tower.vision_model.encoder.layers.16.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 597 |
+
"vision_tower.vision_model.encoder.layers.16.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 598 |
+
"vision_tower.vision_model.encoder.layers.16.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 599 |
+
"vision_tower.vision_model.encoder.layers.16.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 600 |
+
"vision_tower.vision_model.encoder.layers.17.layer_norm1.bias": "model-00001-of-00002.safetensors",
|
| 601 |
+
"vision_tower.vision_model.encoder.layers.17.layer_norm1.weight": "model-00001-of-00002.safetensors",
|
| 602 |
+
"vision_tower.vision_model.encoder.layers.17.layer_norm2.bias": "model-00001-of-00002.safetensors",
|
| 603 |
+
"vision_tower.vision_model.encoder.layers.17.layer_norm2.weight": "model-00001-of-00002.safetensors",
|
| 604 |
+
"vision_tower.vision_model.encoder.layers.17.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 605 |
+
"vision_tower.vision_model.encoder.layers.17.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 606 |
+
"vision_tower.vision_model.encoder.layers.17.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 607 |
+
"vision_tower.vision_model.encoder.layers.17.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 608 |
+
"vision_tower.vision_model.encoder.layers.17.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 609 |
+
"vision_tower.vision_model.encoder.layers.17.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 610 |
+
"vision_tower.vision_model.encoder.layers.17.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
|
| 611 |
+
"vision_tower.vision_model.encoder.layers.17.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
|
| 612 |
+
"vision_tower.vision_model.encoder.layers.17.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 613 |
+
"vision_tower.vision_model.encoder.layers.17.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 614 |
+
"vision_tower.vision_model.encoder.layers.17.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 615 |
+
"vision_tower.vision_model.encoder.layers.17.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 616 |
+
"vision_tower.vision_model.encoder.layers.18.layer_norm1.bias": "model-00001-of-00002.safetensors",
|
| 617 |
+
"vision_tower.vision_model.encoder.layers.18.layer_norm1.weight": "model-00001-of-00002.safetensors",
|
| 618 |
+
"vision_tower.vision_model.encoder.layers.18.layer_norm2.bias": "model-00001-of-00002.safetensors",
|
| 619 |
+
"vision_tower.vision_model.encoder.layers.18.layer_norm2.weight": "model-00001-of-00002.safetensors",
|
| 620 |
+
"vision_tower.vision_model.encoder.layers.18.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 621 |
+
"vision_tower.vision_model.encoder.layers.18.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 622 |
+
"vision_tower.vision_model.encoder.layers.18.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 623 |
+
"vision_tower.vision_model.encoder.layers.18.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 624 |
+
"vision_tower.vision_model.encoder.layers.18.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 625 |
+
"vision_tower.vision_model.encoder.layers.18.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 626 |
+
"vision_tower.vision_model.encoder.layers.18.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
|
| 627 |
+
"vision_tower.vision_model.encoder.layers.18.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
|
| 628 |
+
"vision_tower.vision_model.encoder.layers.18.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 629 |
+
"vision_tower.vision_model.encoder.layers.18.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 630 |
+
"vision_tower.vision_model.encoder.layers.18.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 631 |
+
"vision_tower.vision_model.encoder.layers.18.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 632 |
+
"vision_tower.vision_model.encoder.layers.19.layer_norm1.bias": "model-00001-of-00002.safetensors",
|
| 633 |
+
"vision_tower.vision_model.encoder.layers.19.layer_norm1.weight": "model-00001-of-00002.safetensors",
|
| 634 |
+
"vision_tower.vision_model.encoder.layers.19.layer_norm2.bias": "model-00001-of-00002.safetensors",
|
| 635 |
+
"vision_tower.vision_model.encoder.layers.19.layer_norm2.weight": "model-00001-of-00002.safetensors",
|
| 636 |
+
"vision_tower.vision_model.encoder.layers.19.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 637 |
+
"vision_tower.vision_model.encoder.layers.19.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 638 |
+
"vision_tower.vision_model.encoder.layers.19.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 639 |
+
"vision_tower.vision_model.encoder.layers.19.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 640 |
+
"vision_tower.vision_model.encoder.layers.19.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 641 |
+
"vision_tower.vision_model.encoder.layers.19.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 642 |
+
"vision_tower.vision_model.encoder.layers.19.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
|
| 643 |
+
"vision_tower.vision_model.encoder.layers.19.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
|
| 644 |
+
"vision_tower.vision_model.encoder.layers.19.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 645 |
+
"vision_tower.vision_model.encoder.layers.19.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 646 |
+
"vision_tower.vision_model.encoder.layers.19.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 647 |
+
"vision_tower.vision_model.encoder.layers.19.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 648 |
+
"vision_tower.vision_model.encoder.layers.2.layer_norm1.bias": "model-00001-of-00002.safetensors",
|
| 649 |
+
"vision_tower.vision_model.encoder.layers.2.layer_norm1.weight": "model-00001-of-00002.safetensors",
|
| 650 |
+
"vision_tower.vision_model.encoder.layers.2.layer_norm2.bias": "model-00001-of-00002.safetensors",
|
| 651 |
+
"vision_tower.vision_model.encoder.layers.2.layer_norm2.weight": "model-00001-of-00002.safetensors",
|
| 652 |
+
"vision_tower.vision_model.encoder.layers.2.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 653 |
+
"vision_tower.vision_model.encoder.layers.2.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 654 |
+
"vision_tower.vision_model.encoder.layers.2.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 655 |
+
"vision_tower.vision_model.encoder.layers.2.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 656 |
+
"vision_tower.vision_model.encoder.layers.2.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 657 |
+
"vision_tower.vision_model.encoder.layers.2.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 658 |
+
"vision_tower.vision_model.encoder.layers.2.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
|
| 659 |
+
"vision_tower.vision_model.encoder.layers.2.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
|
| 660 |
+
"vision_tower.vision_model.encoder.layers.2.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 661 |
+
"vision_tower.vision_model.encoder.layers.2.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 662 |
+
"vision_tower.vision_model.encoder.layers.2.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 663 |
+
"vision_tower.vision_model.encoder.layers.2.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 664 |
+
"vision_tower.vision_model.encoder.layers.20.layer_norm1.bias": "model-00001-of-00002.safetensors",
|
| 665 |
+
"vision_tower.vision_model.encoder.layers.20.layer_norm1.weight": "model-00001-of-00002.safetensors",
|
| 666 |
+
"vision_tower.vision_model.encoder.layers.20.layer_norm2.bias": "model-00001-of-00002.safetensors",
|
| 667 |
+
"vision_tower.vision_model.encoder.layers.20.layer_norm2.weight": "model-00001-of-00002.safetensors",
|
| 668 |
+
"vision_tower.vision_model.encoder.layers.20.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 669 |
+
"vision_tower.vision_model.encoder.layers.20.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 670 |
+
"vision_tower.vision_model.encoder.layers.20.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 671 |
+
"vision_tower.vision_model.encoder.layers.20.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 672 |
+
"vision_tower.vision_model.encoder.layers.20.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 673 |
+
"vision_tower.vision_model.encoder.layers.20.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 674 |
+
"vision_tower.vision_model.encoder.layers.20.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
|
| 675 |
+
"vision_tower.vision_model.encoder.layers.20.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
|
| 676 |
+
"vision_tower.vision_model.encoder.layers.20.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 677 |
+
"vision_tower.vision_model.encoder.layers.20.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 678 |
+
"vision_tower.vision_model.encoder.layers.20.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 679 |
+
"vision_tower.vision_model.encoder.layers.20.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 680 |
+
"vision_tower.vision_model.encoder.layers.21.layer_norm1.bias": "model-00001-of-00002.safetensors",
|
| 681 |
+
"vision_tower.vision_model.encoder.layers.21.layer_norm1.weight": "model-00001-of-00002.safetensors",
|
| 682 |
+
"vision_tower.vision_model.encoder.layers.21.layer_norm2.bias": "model-00001-of-00002.safetensors",
|
| 683 |
+
"vision_tower.vision_model.encoder.layers.21.layer_norm2.weight": "model-00001-of-00002.safetensors",
|
| 684 |
+
"vision_tower.vision_model.encoder.layers.21.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 685 |
+
"vision_tower.vision_model.encoder.layers.21.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 686 |
+
"vision_tower.vision_model.encoder.layers.21.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 687 |
+
"vision_tower.vision_model.encoder.layers.21.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 688 |
+
"vision_tower.vision_model.encoder.layers.21.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 689 |
+
"vision_tower.vision_model.encoder.layers.21.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 690 |
+
"vision_tower.vision_model.encoder.layers.21.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
|
| 691 |
+
"vision_tower.vision_model.encoder.layers.21.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
|
| 692 |
+
"vision_tower.vision_model.encoder.layers.21.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 693 |
+
"vision_tower.vision_model.encoder.layers.21.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 694 |
+
"vision_tower.vision_model.encoder.layers.21.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 695 |
+
"vision_tower.vision_model.encoder.layers.21.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 696 |
+
"vision_tower.vision_model.encoder.layers.22.layer_norm1.bias": "model-00001-of-00002.safetensors",
|
| 697 |
+
"vision_tower.vision_model.encoder.layers.22.layer_norm1.weight": "model-00001-of-00002.safetensors",
|
| 698 |
+
"vision_tower.vision_model.encoder.layers.22.layer_norm2.bias": "model-00001-of-00002.safetensors",
|
| 699 |
+
"vision_tower.vision_model.encoder.layers.22.layer_norm2.weight": "model-00001-of-00002.safetensors",
|
| 700 |
+
"vision_tower.vision_model.encoder.layers.22.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 701 |
+
"vision_tower.vision_model.encoder.layers.22.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 702 |
+
"vision_tower.vision_model.encoder.layers.22.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 703 |
+
"vision_tower.vision_model.encoder.layers.22.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 704 |
+
"vision_tower.vision_model.encoder.layers.22.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 705 |
+
"vision_tower.vision_model.encoder.layers.22.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 706 |
+
"vision_tower.vision_model.encoder.layers.22.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
|
| 707 |
+
"vision_tower.vision_model.encoder.layers.22.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
|
| 708 |
+
"vision_tower.vision_model.encoder.layers.22.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 709 |
+
"vision_tower.vision_model.encoder.layers.22.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 710 |
+
"vision_tower.vision_model.encoder.layers.22.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 711 |
+
"vision_tower.vision_model.encoder.layers.22.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 712 |
+
"vision_tower.vision_model.encoder.layers.23.layer_norm1.bias": "model-00001-of-00002.safetensors",
|
| 713 |
+
"vision_tower.vision_model.encoder.layers.23.layer_norm1.weight": "model-00001-of-00002.safetensors",
|
| 714 |
+
"vision_tower.vision_model.encoder.layers.23.layer_norm2.bias": "model-00001-of-00002.safetensors",
|
| 715 |
+
"vision_tower.vision_model.encoder.layers.23.layer_norm2.weight": "model-00001-of-00002.safetensors",
|
| 716 |
+
"vision_tower.vision_model.encoder.layers.23.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 717 |
+
"vision_tower.vision_model.encoder.layers.23.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 718 |
+
"vision_tower.vision_model.encoder.layers.23.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 719 |
+
"vision_tower.vision_model.encoder.layers.23.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 720 |
+
"vision_tower.vision_model.encoder.layers.23.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 721 |
+
"vision_tower.vision_model.encoder.layers.23.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 722 |
+
"vision_tower.vision_model.encoder.layers.23.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
|
| 723 |
+
"vision_tower.vision_model.encoder.layers.23.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
|
| 724 |
+
"vision_tower.vision_model.encoder.layers.23.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 725 |
+
"vision_tower.vision_model.encoder.layers.23.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 726 |
+
"vision_tower.vision_model.encoder.layers.23.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 727 |
+
"vision_tower.vision_model.encoder.layers.23.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 728 |
+
"vision_tower.vision_model.encoder.layers.24.layer_norm1.bias": "model-00001-of-00002.safetensors",
|
| 729 |
+
"vision_tower.vision_model.encoder.layers.24.layer_norm1.weight": "model-00001-of-00002.safetensors",
|
| 730 |
+
"vision_tower.vision_model.encoder.layers.24.layer_norm2.bias": "model-00001-of-00002.safetensors",
|
| 731 |
+
"vision_tower.vision_model.encoder.layers.24.layer_norm2.weight": "model-00001-of-00002.safetensors",
|
| 732 |
+
"vision_tower.vision_model.encoder.layers.24.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 733 |
+
"vision_tower.vision_model.encoder.layers.24.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 734 |
+
"vision_tower.vision_model.encoder.layers.24.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 735 |
+
"vision_tower.vision_model.encoder.layers.24.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 736 |
+
"vision_tower.vision_model.encoder.layers.24.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 737 |
+
"vision_tower.vision_model.encoder.layers.24.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 738 |
+
"vision_tower.vision_model.encoder.layers.24.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
|
| 739 |
+
"vision_tower.vision_model.encoder.layers.24.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
|
| 740 |
+
"vision_tower.vision_model.encoder.layers.24.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 741 |
+
"vision_tower.vision_model.encoder.layers.24.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 742 |
+
"vision_tower.vision_model.encoder.layers.24.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 743 |
+
"vision_tower.vision_model.encoder.layers.24.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 744 |
+
"vision_tower.vision_model.encoder.layers.25.layer_norm1.bias": "model-00001-of-00002.safetensors",
|
| 745 |
+
"vision_tower.vision_model.encoder.layers.25.layer_norm1.weight": "model-00001-of-00002.safetensors",
|
| 746 |
+
"vision_tower.vision_model.encoder.layers.25.layer_norm2.bias": "model-00001-of-00002.safetensors",
|
| 747 |
+
"vision_tower.vision_model.encoder.layers.25.layer_norm2.weight": "model-00001-of-00002.safetensors",
|
| 748 |
+
"vision_tower.vision_model.encoder.layers.25.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 749 |
+
"vision_tower.vision_model.encoder.layers.25.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 750 |
+
"vision_tower.vision_model.encoder.layers.25.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 751 |
+
"vision_tower.vision_model.encoder.layers.25.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 752 |
+
"vision_tower.vision_model.encoder.layers.25.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 753 |
+
"vision_tower.vision_model.encoder.layers.25.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 754 |
+
"vision_tower.vision_model.encoder.layers.25.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
|
| 755 |
+
"vision_tower.vision_model.encoder.layers.25.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
|
| 756 |
+
"vision_tower.vision_model.encoder.layers.25.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 757 |
+
"vision_tower.vision_model.encoder.layers.25.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 758 |
+
"vision_tower.vision_model.encoder.layers.25.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 759 |
+
"vision_tower.vision_model.encoder.layers.25.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 760 |
+
"vision_tower.vision_model.encoder.layers.26.layer_norm1.bias": "model-00001-of-00002.safetensors",
|
| 761 |
+
"vision_tower.vision_model.encoder.layers.26.layer_norm1.weight": "model-00001-of-00002.safetensors",
|
| 762 |
+
"vision_tower.vision_model.encoder.layers.26.layer_norm2.bias": "model-00001-of-00002.safetensors",
|
| 763 |
+
"vision_tower.vision_model.encoder.layers.26.layer_norm2.weight": "model-00001-of-00002.safetensors",
|
| 764 |
+
"vision_tower.vision_model.encoder.layers.26.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 765 |
+
"vision_tower.vision_model.encoder.layers.26.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 766 |
+
"vision_tower.vision_model.encoder.layers.26.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 767 |
+
"vision_tower.vision_model.encoder.layers.26.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 768 |
+
"vision_tower.vision_model.encoder.layers.26.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 769 |
+
"vision_tower.vision_model.encoder.layers.26.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 770 |
+
"vision_tower.vision_model.encoder.layers.26.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
|
| 771 |
+
"vision_tower.vision_model.encoder.layers.26.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
|
| 772 |
+
"vision_tower.vision_model.encoder.layers.26.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 773 |
+
"vision_tower.vision_model.encoder.layers.26.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 774 |
+
"vision_tower.vision_model.encoder.layers.26.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 775 |
+
"vision_tower.vision_model.encoder.layers.26.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 776 |
+
"vision_tower.vision_model.encoder.layers.3.layer_norm1.bias": "model-00001-of-00002.safetensors",
|
| 777 |
+
"vision_tower.vision_model.encoder.layers.3.layer_norm1.weight": "model-00001-of-00002.safetensors",
|
| 778 |
+
"vision_tower.vision_model.encoder.layers.3.layer_norm2.bias": "model-00001-of-00002.safetensors",
|
| 779 |
+
"vision_tower.vision_model.encoder.layers.3.layer_norm2.weight": "model-00001-of-00002.safetensors",
|
| 780 |
+
"vision_tower.vision_model.encoder.layers.3.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 781 |
+
"vision_tower.vision_model.encoder.layers.3.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 782 |
+
"vision_tower.vision_model.encoder.layers.3.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 783 |
+
"vision_tower.vision_model.encoder.layers.3.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 784 |
+
"vision_tower.vision_model.encoder.layers.3.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 785 |
+
"vision_tower.vision_model.encoder.layers.3.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 786 |
+
"vision_tower.vision_model.encoder.layers.3.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
|
| 787 |
+
"vision_tower.vision_model.encoder.layers.3.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
|
| 788 |
+
"vision_tower.vision_model.encoder.layers.3.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 789 |
+
"vision_tower.vision_model.encoder.layers.3.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 790 |
+
"vision_tower.vision_model.encoder.layers.3.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 791 |
+
"vision_tower.vision_model.encoder.layers.3.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 792 |
+
"vision_tower.vision_model.encoder.layers.4.layer_norm1.bias": "model-00001-of-00002.safetensors",
|
| 793 |
+
"vision_tower.vision_model.encoder.layers.4.layer_norm1.weight": "model-00001-of-00002.safetensors",
|
| 794 |
+
"vision_tower.vision_model.encoder.layers.4.layer_norm2.bias": "model-00001-of-00002.safetensors",
|
| 795 |
+
"vision_tower.vision_model.encoder.layers.4.layer_norm2.weight": "model-00001-of-00002.safetensors",
|
| 796 |
+
"vision_tower.vision_model.encoder.layers.4.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 797 |
+
"vision_tower.vision_model.encoder.layers.4.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 798 |
+
"vision_tower.vision_model.encoder.layers.4.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 799 |
+
"vision_tower.vision_model.encoder.layers.4.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 800 |
+
"vision_tower.vision_model.encoder.layers.4.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 801 |
+
"vision_tower.vision_model.encoder.layers.4.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 802 |
+
"vision_tower.vision_model.encoder.layers.4.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
|
| 803 |
+
"vision_tower.vision_model.encoder.layers.4.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
|
| 804 |
+
"vision_tower.vision_model.encoder.layers.4.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 805 |
+
"vision_tower.vision_model.encoder.layers.4.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 806 |
+
"vision_tower.vision_model.encoder.layers.4.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 807 |
+
"vision_tower.vision_model.encoder.layers.4.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 808 |
+
"vision_tower.vision_model.encoder.layers.5.layer_norm1.bias": "model-00001-of-00002.safetensors",
|
| 809 |
+
"vision_tower.vision_model.encoder.layers.5.layer_norm1.weight": "model-00001-of-00002.safetensors",
|
| 810 |
+
"vision_tower.vision_model.encoder.layers.5.layer_norm2.bias": "model-00001-of-00002.safetensors",
|
| 811 |
+
"vision_tower.vision_model.encoder.layers.5.layer_norm2.weight": "model-00001-of-00002.safetensors",
|
| 812 |
+
"vision_tower.vision_model.encoder.layers.5.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 813 |
+
"vision_tower.vision_model.encoder.layers.5.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 814 |
+
"vision_tower.vision_model.encoder.layers.5.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 815 |
+
"vision_tower.vision_model.encoder.layers.5.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 816 |
+
"vision_tower.vision_model.encoder.layers.5.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 817 |
+
"vision_tower.vision_model.encoder.layers.5.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 818 |
+
"vision_tower.vision_model.encoder.layers.5.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
|
| 819 |
+
"vision_tower.vision_model.encoder.layers.5.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
|
| 820 |
+
"vision_tower.vision_model.encoder.layers.5.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 821 |
+
"vision_tower.vision_model.encoder.layers.5.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 822 |
+
"vision_tower.vision_model.encoder.layers.5.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 823 |
+
"vision_tower.vision_model.encoder.layers.5.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 824 |
+
"vision_tower.vision_model.encoder.layers.6.layer_norm1.bias": "model-00001-of-00002.safetensors",
|
| 825 |
+
"vision_tower.vision_model.encoder.layers.6.layer_norm1.weight": "model-00001-of-00002.safetensors",
|
| 826 |
+
"vision_tower.vision_model.encoder.layers.6.layer_norm2.bias": "model-00001-of-00002.safetensors",
|
| 827 |
+
"vision_tower.vision_model.encoder.layers.6.layer_norm2.weight": "model-00001-of-00002.safetensors",
|
| 828 |
+
"vision_tower.vision_model.encoder.layers.6.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 829 |
+
"vision_tower.vision_model.encoder.layers.6.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 830 |
+
"vision_tower.vision_model.encoder.layers.6.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 831 |
+
"vision_tower.vision_model.encoder.layers.6.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 832 |
+
"vision_tower.vision_model.encoder.layers.6.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 833 |
+
"vision_tower.vision_model.encoder.layers.6.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 834 |
+
"vision_tower.vision_model.encoder.layers.6.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
|
| 835 |
+
"vision_tower.vision_model.encoder.layers.6.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
|
| 836 |
+
"vision_tower.vision_model.encoder.layers.6.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 837 |
+
"vision_tower.vision_model.encoder.layers.6.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 838 |
+
"vision_tower.vision_model.encoder.layers.6.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 839 |
+
"vision_tower.vision_model.encoder.layers.6.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 840 |
+
"vision_tower.vision_model.encoder.layers.7.layer_norm1.bias": "model-00001-of-00002.safetensors",
|
| 841 |
+
"vision_tower.vision_model.encoder.layers.7.layer_norm1.weight": "model-00001-of-00002.safetensors",
|
| 842 |
+
"vision_tower.vision_model.encoder.layers.7.layer_norm2.bias": "model-00001-of-00002.safetensors",
|
| 843 |
+
"vision_tower.vision_model.encoder.layers.7.layer_norm2.weight": "model-00001-of-00002.safetensors",
|
| 844 |
+
"vision_tower.vision_model.encoder.layers.7.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 845 |
+
"vision_tower.vision_model.encoder.layers.7.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 846 |
+
"vision_tower.vision_model.encoder.layers.7.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 847 |
+
"vision_tower.vision_model.encoder.layers.7.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 848 |
+
"vision_tower.vision_model.encoder.layers.7.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 849 |
+
"vision_tower.vision_model.encoder.layers.7.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 850 |
+
"vision_tower.vision_model.encoder.layers.7.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
|
| 851 |
+
"vision_tower.vision_model.encoder.layers.7.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
|
| 852 |
+
"vision_tower.vision_model.encoder.layers.7.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 853 |
+
"vision_tower.vision_model.encoder.layers.7.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 854 |
+
"vision_tower.vision_model.encoder.layers.7.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 855 |
+
"vision_tower.vision_model.encoder.layers.7.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 856 |
+
"vision_tower.vision_model.encoder.layers.8.layer_norm1.bias": "model-00001-of-00002.safetensors",
|
| 857 |
+
"vision_tower.vision_model.encoder.layers.8.layer_norm1.weight": "model-00001-of-00002.safetensors",
|
| 858 |
+
"vision_tower.vision_model.encoder.layers.8.layer_norm2.bias": "model-00001-of-00002.safetensors",
|
| 859 |
+
"vision_tower.vision_model.encoder.layers.8.layer_norm2.weight": "model-00001-of-00002.safetensors",
|
| 860 |
+
"vision_tower.vision_model.encoder.layers.8.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 861 |
+
"vision_tower.vision_model.encoder.layers.8.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 862 |
+
"vision_tower.vision_model.encoder.layers.8.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 863 |
+
"vision_tower.vision_model.encoder.layers.8.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 864 |
+
"vision_tower.vision_model.encoder.layers.8.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 865 |
+
"vision_tower.vision_model.encoder.layers.8.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 866 |
+
"vision_tower.vision_model.encoder.layers.8.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
|
| 867 |
+
"vision_tower.vision_model.encoder.layers.8.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
|
| 868 |
+
"vision_tower.vision_model.encoder.layers.8.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 869 |
+
"vision_tower.vision_model.encoder.layers.8.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 870 |
+
"vision_tower.vision_model.encoder.layers.8.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 871 |
+
"vision_tower.vision_model.encoder.layers.8.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 872 |
+
"vision_tower.vision_model.encoder.layers.9.layer_norm1.bias": "model-00001-of-00002.safetensors",
|
| 873 |
+
"vision_tower.vision_model.encoder.layers.9.layer_norm1.weight": "model-00001-of-00002.safetensors",
|
| 874 |
+
"vision_tower.vision_model.encoder.layers.9.layer_norm2.bias": "model-00001-of-00002.safetensors",
|
| 875 |
+
"vision_tower.vision_model.encoder.layers.9.layer_norm2.weight": "model-00001-of-00002.safetensors",
|
| 876 |
+
"vision_tower.vision_model.encoder.layers.9.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 877 |
+
"vision_tower.vision_model.encoder.layers.9.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 878 |
+
"vision_tower.vision_model.encoder.layers.9.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 879 |
+
"vision_tower.vision_model.encoder.layers.9.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 880 |
+
"vision_tower.vision_model.encoder.layers.9.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 881 |
+
"vision_tower.vision_model.encoder.layers.9.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 882 |
+
"vision_tower.vision_model.encoder.layers.9.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
|
| 883 |
+
"vision_tower.vision_model.encoder.layers.9.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
|
| 884 |
+
"vision_tower.vision_model.encoder.layers.9.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 885 |
+
"vision_tower.vision_model.encoder.layers.9.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 886 |
+
"vision_tower.vision_model.encoder.layers.9.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 887 |
+
"vision_tower.vision_model.encoder.layers.9.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 888 |
+
"vision_tower.vision_model.post_layernorm.bias": "model-00001-of-00002.safetensors",
|
| 889 |
+
"vision_tower.vision_model.post_layernorm.weight": "model-00001-of-00002.safetensors"
|
| 890 |
+
}
|
| 891 |
+
}
|
preprocessor_config.json
ADDED
|
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"do_convert_rgb": null,
|
| 3 |
+
"do_normalize": true,
|
| 4 |
+
"do_pan_and_scan": null,
|
| 5 |
+
"do_rescale": true,
|
| 6 |
+
"do_resize": true,
|
| 7 |
+
"image_mean": [
|
| 8 |
+
0.5,
|
| 9 |
+
0.5,
|
| 10 |
+
0.5
|
| 11 |
+
],
|
| 12 |
+
"image_processor_type": "Gemma3ImageProcessor",
|
| 13 |
+
"image_seq_length": 256,
|
| 14 |
+
"image_std": [
|
| 15 |
+
0.5,
|
| 16 |
+
0.5,
|
| 17 |
+
0.5
|
| 18 |
+
],
|
| 19 |
+
"pan_and_scan_max_num_crops": null,
|
| 20 |
+
"pan_and_scan_min_crop_size": null,
|
| 21 |
+
"pan_and_scan_min_ratio_to_activate": null,
|
| 22 |
+
"processor_class": "Gemma3Processor",
|
| 23 |
+
"resample": 2,
|
| 24 |
+
"rescale_factor": 0.00392156862745098,
|
| 25 |
+
"size": {
|
| 26 |
+
"height": 896,
|
| 27 |
+
"width": 896
|
| 28 |
+
}
|
| 29 |
+
}
|
processor_config.json
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"image_seq_length": 256,
|
| 3 |
+
"processor_class": "Gemma3Processor"
|
| 4 |
+
}
|
rng_state_0.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:5a0ef6f96a48e59aa52c4b471312c2a62378c19acc7ebbae839612b03a7d775a
|
| 3 |
+
size 15984
|
rng_state_1.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:ab11d533c0fdad46ea8b8e295ba5fdb705e078eeb88cc28f37d82913508766e9
|
| 3 |
+
size 15984
|
rng_state_2.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:615c168147e3465ce5bfab6da2ff4afc68566ce00ec0f0c6c9fc988038a58d0a
|
| 3 |
+
size 15984
|
rng_state_3.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:79f71e8f8674ecaef9f8cdcbf7ac457a8b8ff15b12694ba2a2fffcb4b43f0f08
|
| 3 |
+
size 15984
|
rng_state_4.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:88cf6d674dab5545c300a55135f08ca935730a3d35e2c419fb0b333f19482c19
|
| 3 |
+
size 15984
|
rng_state_5.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:2754f2cd8824702f027870d93748b3c0491b0ecd30f1e3d8e937116b2be6151f
|
| 3 |
+
size 15984
|
rng_state_6.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:1385124ac55604598f45ea6e2d141f29456647d3e7c10d12ca64ec93d312be8d
|
| 3 |
+
size 15984
|
rng_state_7.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:416538efaec7391fa8fe782fb15146b83e5612d9e1961292c34c53e964806873
|
| 3 |
+
size 15984
|
scheduler.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:418a3e6896d4c0199d7c76069e3679f58f83189aac50d7100528bee633700645
|
| 3 |
+
size 1064
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"additional_special_tokens": [
|
| 3 |
+
{
|
| 4 |
+
"content": "<end_of_turn>",
|
| 5 |
+
"lstrip": false,
|
| 6 |
+
"normalized": false,
|
| 7 |
+
"rstrip": false,
|
| 8 |
+
"single_word": false
|
| 9 |
+
}
|
| 10 |
+
],
|
| 11 |
+
"boi_token": "<start_of_image>",
|
| 12 |
+
"bos_token": {
|
| 13 |
+
"content": "<bos>",
|
| 14 |
+
"lstrip": false,
|
| 15 |
+
"normalized": false,
|
| 16 |
+
"rstrip": false,
|
| 17 |
+
"single_word": false
|
| 18 |
+
},
|
| 19 |
+
"eoi_token": "<end_of_image>",
|
| 20 |
+
"eos_token": {
|
| 21 |
+
"content": "<eos>",
|
| 22 |
+
"lstrip": false,
|
| 23 |
+
"normalized": false,
|
| 24 |
+
"rstrip": false,
|
| 25 |
+
"single_word": false
|
| 26 |
+
},
|
| 27 |
+
"image_token": "<image_soft_token>",
|
| 28 |
+
"pad_token": {
|
| 29 |
+
"content": "<pad>",
|
| 30 |
+
"lstrip": false,
|
| 31 |
+
"normalized": false,
|
| 32 |
+
"rstrip": false,
|
| 33 |
+
"single_word": false
|
| 34 |
+
},
|
| 35 |
+
"unk_token": {
|
| 36 |
+
"content": "<unk>",
|
| 37 |
+
"lstrip": false,
|
| 38 |
+
"normalized": false,
|
| 39 |
+
"rstrip": false,
|
| 40 |
+
"single_word": false
|
| 41 |
+
}
|
| 42 |
+
}
|
tokenizer.json
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:4667f2089529e8e7657cfb6d1c19910ae71ff5f28aa7ab2ff2763330affad795
|
| 3 |
+
size 33384568
|
tokenizer.model
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:1299c11d7cf632ef3b4e11937501358ada021bbdf7c47638d13c0ee982f2e79c
|
| 3 |
+
size 4689074
|
tokenizer_config.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
trainer_state.json
ADDED
|
@@ -0,0 +1,2157 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"best_metric": null,
|
| 3 |
+
"best_model_checkpoint": null,
|
| 4 |
+
"epoch": 1.0101010101010102,
|
| 5 |
+
"eval_steps": 100,
|
| 6 |
+
"global_step": 300,
|
| 7 |
+
"is_hyper_param_search": false,
|
| 8 |
+
"is_local_process_zero": true,
|
| 9 |
+
"is_world_process_zero": true,
|
| 10 |
+
"log_history": [
|
| 11 |
+
{
|
| 12 |
+
"epoch": 0.003367003367003367,
|
| 13 |
+
"grad_norm": 190.2997283935547,
|
| 14 |
+
"learning_rate": 6.711409395973154e-07,
|
| 15 |
+
"loss": 13.9272,
|
| 16 |
+
"step": 1
|
| 17 |
+
},
|
| 18 |
+
{
|
| 19 |
+
"epoch": 0.006734006734006734,
|
| 20 |
+
"grad_norm": 196.5933074951172,
|
| 21 |
+
"learning_rate": 1.3422818791946309e-06,
|
| 22 |
+
"loss": 14.3753,
|
| 23 |
+
"step": 2
|
| 24 |
+
},
|
| 25 |
+
{
|
| 26 |
+
"epoch": 0.010101010101010102,
|
| 27 |
+
"grad_norm": 198.02767944335938,
|
| 28 |
+
"learning_rate": 2.013422818791946e-06,
|
| 29 |
+
"loss": 14.4143,
|
| 30 |
+
"step": 3
|
| 31 |
+
},
|
| 32 |
+
{
|
| 33 |
+
"epoch": 0.013468013468013467,
|
| 34 |
+
"grad_norm": 186.30801391601562,
|
| 35 |
+
"learning_rate": 2.6845637583892617e-06,
|
| 36 |
+
"loss": 13.7729,
|
| 37 |
+
"step": 4
|
| 38 |
+
},
|
| 39 |
+
{
|
| 40 |
+
"epoch": 0.016835016835016835,
|
| 41 |
+
"grad_norm": 129.32237243652344,
|
| 42 |
+
"learning_rate": 3.3557046979865773e-06,
|
| 43 |
+
"loss": 11.4082,
|
| 44 |
+
"step": 5
|
| 45 |
+
},
|
| 46 |
+
{
|
| 47 |
+
"epoch": 0.020202020202020204,
|
| 48 |
+
"grad_norm": 123.9930191040039,
|
| 49 |
+
"learning_rate": 4.026845637583892e-06,
|
| 50 |
+
"loss": 11.5581,
|
| 51 |
+
"step": 6
|
| 52 |
+
},
|
| 53 |
+
{
|
| 54 |
+
"epoch": 0.02356902356902357,
|
| 55 |
+
"grad_norm": 102.4565658569336,
|
| 56 |
+
"learning_rate": 4.697986577181209e-06,
|
| 57 |
+
"loss": 9.8311,
|
| 58 |
+
"step": 7
|
| 59 |
+
},
|
| 60 |
+
{
|
| 61 |
+
"epoch": 0.026936026936026935,
|
| 62 |
+
"grad_norm": 98.7117919921875,
|
| 63 |
+
"learning_rate": 5.3691275167785235e-06,
|
| 64 |
+
"loss": 9.825,
|
| 65 |
+
"step": 8
|
| 66 |
+
},
|
| 67 |
+
{
|
| 68 |
+
"epoch": 0.030303030303030304,
|
| 69 |
+
"grad_norm": 121.9065170288086,
|
| 70 |
+
"learning_rate": 6.04026845637584e-06,
|
| 71 |
+
"loss": 8.5157,
|
| 72 |
+
"step": 9
|
| 73 |
+
},
|
| 74 |
+
{
|
| 75 |
+
"epoch": 0.03367003367003367,
|
| 76 |
+
"grad_norm": 93.352294921875,
|
| 77 |
+
"learning_rate": 6.7114093959731546e-06,
|
| 78 |
+
"loss": 7.6328,
|
| 79 |
+
"step": 10
|
| 80 |
+
},
|
| 81 |
+
{
|
| 82 |
+
"epoch": 0.037037037037037035,
|
| 83 |
+
"grad_norm": 108.89420318603516,
|
| 84 |
+
"learning_rate": 7.382550335570471e-06,
|
| 85 |
+
"loss": 7.1598,
|
| 86 |
+
"step": 11
|
| 87 |
+
},
|
| 88 |
+
{
|
| 89 |
+
"epoch": 0.04040404040404041,
|
| 90 |
+
"grad_norm": 191.65274047851562,
|
| 91 |
+
"learning_rate": 8.053691275167785e-06,
|
| 92 |
+
"loss": 6.237,
|
| 93 |
+
"step": 12
|
| 94 |
+
},
|
| 95 |
+
{
|
| 96 |
+
"epoch": 0.04377104377104377,
|
| 97 |
+
"grad_norm": 150.62646484375,
|
| 98 |
+
"learning_rate": 8.724832214765101e-06,
|
| 99 |
+
"loss": 5.7063,
|
| 100 |
+
"step": 13
|
| 101 |
+
},
|
| 102 |
+
{
|
| 103 |
+
"epoch": 0.04713804713804714,
|
| 104 |
+
"grad_norm": 185.48080444335938,
|
| 105 |
+
"learning_rate": 9.395973154362418e-06,
|
| 106 |
+
"loss": 5.093,
|
| 107 |
+
"step": 14
|
| 108 |
+
},
|
| 109 |
+
{
|
| 110 |
+
"epoch": 0.050505050505050504,
|
| 111 |
+
"grad_norm": 1576.556640625,
|
| 112 |
+
"learning_rate": 1.006711409395973e-05,
|
| 113 |
+
"loss": 8.3575,
|
| 114 |
+
"step": 15
|
| 115 |
+
},
|
| 116 |
+
{
|
| 117 |
+
"epoch": 0.05387205387205387,
|
| 118 |
+
"grad_norm": 441.4505310058594,
|
| 119 |
+
"learning_rate": 1.0738255033557047e-05,
|
| 120 |
+
"loss": 4.679,
|
| 121 |
+
"step": 16
|
| 122 |
+
},
|
| 123 |
+
{
|
| 124 |
+
"epoch": 0.05723905723905724,
|
| 125 |
+
"grad_norm": 499.8016357421875,
|
| 126 |
+
"learning_rate": 1.1409395973154363e-05,
|
| 127 |
+
"loss": 3.1432,
|
| 128 |
+
"step": 17
|
| 129 |
+
},
|
| 130 |
+
{
|
| 131 |
+
"epoch": 0.06060606060606061,
|
| 132 |
+
"grad_norm": 472.59747314453125,
|
| 133 |
+
"learning_rate": 1.208053691275168e-05,
|
| 134 |
+
"loss": 2.9237,
|
| 135 |
+
"step": 18
|
| 136 |
+
},
|
| 137 |
+
{
|
| 138 |
+
"epoch": 0.06397306397306397,
|
| 139 |
+
"grad_norm": 506.6687927246094,
|
| 140 |
+
"learning_rate": 1.2751677852348994e-05,
|
| 141 |
+
"loss": 2.6882,
|
| 142 |
+
"step": 19
|
| 143 |
+
},
|
| 144 |
+
{
|
| 145 |
+
"epoch": 0.06734006734006734,
|
| 146 |
+
"grad_norm": 494.16949462890625,
|
| 147 |
+
"learning_rate": 1.3422818791946309e-05,
|
| 148 |
+
"loss": 2.4807,
|
| 149 |
+
"step": 20
|
| 150 |
+
},
|
| 151 |
+
{
|
| 152 |
+
"epoch": 0.0707070707070707,
|
| 153 |
+
"grad_norm": 463.3478698730469,
|
| 154 |
+
"learning_rate": 1.4093959731543624e-05,
|
| 155 |
+
"loss": 2.2508,
|
| 156 |
+
"step": 21
|
| 157 |
+
},
|
| 158 |
+
{
|
| 159 |
+
"epoch": 0.07407407407407407,
|
| 160 |
+
"grad_norm": 422.92401123046875,
|
| 161 |
+
"learning_rate": 1.4765100671140942e-05,
|
| 162 |
+
"loss": 1.9202,
|
| 163 |
+
"step": 22
|
| 164 |
+
},
|
| 165 |
+
{
|
| 166 |
+
"epoch": 0.07744107744107744,
|
| 167 |
+
"grad_norm": 417.1321105957031,
|
| 168 |
+
"learning_rate": 1.5436241610738255e-05,
|
| 169 |
+
"loss": 1.6106,
|
| 170 |
+
"step": 23
|
| 171 |
+
},
|
| 172 |
+
{
|
| 173 |
+
"epoch": 0.08080808080808081,
|
| 174 |
+
"grad_norm": 360.2781677246094,
|
| 175 |
+
"learning_rate": 1.610738255033557e-05,
|
| 176 |
+
"loss": 1.2741,
|
| 177 |
+
"step": 24
|
| 178 |
+
},
|
| 179 |
+
{
|
| 180 |
+
"epoch": 0.08417508417508418,
|
| 181 |
+
"grad_norm": 297.3291015625,
|
| 182 |
+
"learning_rate": 1.6778523489932888e-05,
|
| 183 |
+
"loss": 1.0282,
|
| 184 |
+
"step": 25
|
| 185 |
+
},
|
| 186 |
+
{
|
| 187 |
+
"epoch": 0.08754208754208755,
|
| 188 |
+
"grad_norm": 195.75958251953125,
|
| 189 |
+
"learning_rate": 1.7449664429530202e-05,
|
| 190 |
+
"loss": 0.799,
|
| 191 |
+
"step": 26
|
| 192 |
+
},
|
| 193 |
+
{
|
| 194 |
+
"epoch": 0.09090909090909091,
|
| 195 |
+
"grad_norm": 116.36829376220703,
|
| 196 |
+
"learning_rate": 1.8120805369127517e-05,
|
| 197 |
+
"loss": 0.6593,
|
| 198 |
+
"step": 27
|
| 199 |
+
},
|
| 200 |
+
{
|
| 201 |
+
"epoch": 0.09427609427609428,
|
| 202 |
+
"grad_norm": 70.56578063964844,
|
| 203 |
+
"learning_rate": 1.8791946308724835e-05,
|
| 204 |
+
"loss": 0.5787,
|
| 205 |
+
"step": 28
|
| 206 |
+
},
|
| 207 |
+
{
|
| 208 |
+
"epoch": 0.09764309764309764,
|
| 209 |
+
"grad_norm": 45.22296905517578,
|
| 210 |
+
"learning_rate": 1.946308724832215e-05,
|
| 211 |
+
"loss": 0.5196,
|
| 212 |
+
"step": 29
|
| 213 |
+
},
|
| 214 |
+
{
|
| 215 |
+
"epoch": 0.10101010101010101,
|
| 216 |
+
"grad_norm": 20.37734603881836,
|
| 217 |
+
"learning_rate": 2.013422818791946e-05,
|
| 218 |
+
"loss": 0.4681,
|
| 219 |
+
"step": 30
|
| 220 |
+
},
|
| 221 |
+
{
|
| 222 |
+
"epoch": 0.10437710437710437,
|
| 223 |
+
"grad_norm": 7.735367298126221,
|
| 224 |
+
"learning_rate": 2.080536912751678e-05,
|
| 225 |
+
"loss": 0.4318,
|
| 226 |
+
"step": 31
|
| 227 |
+
},
|
| 228 |
+
{
|
| 229 |
+
"epoch": 0.10774410774410774,
|
| 230 |
+
"grad_norm": 4.360243797302246,
|
| 231 |
+
"learning_rate": 2.1476510067114094e-05,
|
| 232 |
+
"loss": 0.4276,
|
| 233 |
+
"step": 32
|
| 234 |
+
},
|
| 235 |
+
{
|
| 236 |
+
"epoch": 0.1111111111111111,
|
| 237 |
+
"grad_norm": 4.440345287322998,
|
| 238 |
+
"learning_rate": 2.2147651006711412e-05,
|
| 239 |
+
"loss": 0.4463,
|
| 240 |
+
"step": 33
|
| 241 |
+
},
|
| 242 |
+
{
|
| 243 |
+
"epoch": 0.11447811447811448,
|
| 244 |
+
"grad_norm": 26.992700576782227,
|
| 245 |
+
"learning_rate": 2.2818791946308727e-05,
|
| 246 |
+
"loss": 0.4394,
|
| 247 |
+
"step": 34
|
| 248 |
+
},
|
| 249 |
+
{
|
| 250 |
+
"epoch": 0.11784511784511785,
|
| 251 |
+
"grad_norm": 33.81399917602539,
|
| 252 |
+
"learning_rate": 2.348993288590604e-05,
|
| 253 |
+
"loss": 0.6005,
|
| 254 |
+
"step": 35
|
| 255 |
+
},
|
| 256 |
+
{
|
| 257 |
+
"epoch": 0.12121212121212122,
|
| 258 |
+
"grad_norm": 7.8905029296875,
|
| 259 |
+
"learning_rate": 2.416107382550336e-05,
|
| 260 |
+
"loss": 0.4963,
|
| 261 |
+
"step": 36
|
| 262 |
+
},
|
| 263 |
+
{
|
| 264 |
+
"epoch": 0.12457912457912458,
|
| 265 |
+
"grad_norm": 2.6311209201812744,
|
| 266 |
+
"learning_rate": 2.4832214765100674e-05,
|
| 267 |
+
"loss": 0.39,
|
| 268 |
+
"step": 37
|
| 269 |
+
},
|
| 270 |
+
{
|
| 271 |
+
"epoch": 0.12794612794612795,
|
| 272 |
+
"grad_norm": 2.389883041381836,
|
| 273 |
+
"learning_rate": 2.550335570469799e-05,
|
| 274 |
+
"loss": 0.3782,
|
| 275 |
+
"step": 38
|
| 276 |
+
},
|
| 277 |
+
{
|
| 278 |
+
"epoch": 0.13131313131313133,
|
| 279 |
+
"grad_norm": 2.070525646209717,
|
| 280 |
+
"learning_rate": 2.6174496644295304e-05,
|
| 281 |
+
"loss": 0.3592,
|
| 282 |
+
"step": 39
|
| 283 |
+
},
|
| 284 |
+
{
|
| 285 |
+
"epoch": 0.13468013468013468,
|
| 286 |
+
"grad_norm": 5.955089569091797,
|
| 287 |
+
"learning_rate": 2.6845637583892618e-05,
|
| 288 |
+
"loss": 0.3777,
|
| 289 |
+
"step": 40
|
| 290 |
+
},
|
| 291 |
+
{
|
| 292 |
+
"epoch": 0.13804713804713806,
|
| 293 |
+
"grad_norm": 6.50673770904541,
|
| 294 |
+
"learning_rate": 2.7516778523489933e-05,
|
| 295 |
+
"loss": 0.389,
|
| 296 |
+
"step": 41
|
| 297 |
+
},
|
| 298 |
+
{
|
| 299 |
+
"epoch": 0.1414141414141414,
|
| 300 |
+
"grad_norm": 2.0794308185577393,
|
| 301 |
+
"learning_rate": 2.8187919463087248e-05,
|
| 302 |
+
"loss": 0.3618,
|
| 303 |
+
"step": 42
|
| 304 |
+
},
|
| 305 |
+
{
|
| 306 |
+
"epoch": 0.1447811447811448,
|
| 307 |
+
"grad_norm": 1.5477614402770996,
|
| 308 |
+
"learning_rate": 2.885906040268457e-05,
|
| 309 |
+
"loss": 0.3593,
|
| 310 |
+
"step": 43
|
| 311 |
+
},
|
| 312 |
+
{
|
| 313 |
+
"epoch": 0.14814814814814814,
|
| 314 |
+
"grad_norm": 10.740438461303711,
|
| 315 |
+
"learning_rate": 2.9530201342281884e-05,
|
| 316 |
+
"loss": 0.3805,
|
| 317 |
+
"step": 44
|
| 318 |
+
},
|
| 319 |
+
{
|
| 320 |
+
"epoch": 0.15151515151515152,
|
| 321 |
+
"grad_norm": 2.993213176727295,
|
| 322 |
+
"learning_rate": 3.02013422818792e-05,
|
| 323 |
+
"loss": 0.3673,
|
| 324 |
+
"step": 45
|
| 325 |
+
},
|
| 326 |
+
{
|
| 327 |
+
"epoch": 0.15488215488215487,
|
| 328 |
+
"grad_norm": 17.512208938598633,
|
| 329 |
+
"learning_rate": 3.087248322147651e-05,
|
| 330 |
+
"loss": 0.3922,
|
| 331 |
+
"step": 46
|
| 332 |
+
},
|
| 333 |
+
{
|
| 334 |
+
"epoch": 0.15824915824915825,
|
| 335 |
+
"grad_norm": 2.5222012996673584,
|
| 336 |
+
"learning_rate": 3.1543624161073825e-05,
|
| 337 |
+
"loss": 0.3873,
|
| 338 |
+
"step": 47
|
| 339 |
+
},
|
| 340 |
+
{
|
| 341 |
+
"epoch": 0.16161616161616163,
|
| 342 |
+
"grad_norm": 0.8730729222297668,
|
| 343 |
+
"learning_rate": 3.221476510067114e-05,
|
| 344 |
+
"loss": 0.3593,
|
| 345 |
+
"step": 48
|
| 346 |
+
},
|
| 347 |
+
{
|
| 348 |
+
"epoch": 0.16498316498316498,
|
| 349 |
+
"grad_norm": 0.8050268292427063,
|
| 350 |
+
"learning_rate": 3.288590604026846e-05,
|
| 351 |
+
"loss": 0.3491,
|
| 352 |
+
"step": 49
|
| 353 |
+
},
|
| 354 |
+
{
|
| 355 |
+
"epoch": 0.16835016835016836,
|
| 356 |
+
"grad_norm": 0.7536938190460205,
|
| 357 |
+
"learning_rate": 3.3557046979865775e-05,
|
| 358 |
+
"loss": 0.3469,
|
| 359 |
+
"step": 50
|
| 360 |
+
},
|
| 361 |
+
{
|
| 362 |
+
"epoch": 0.1717171717171717,
|
| 363 |
+
"grad_norm": 0.9090268015861511,
|
| 364 |
+
"learning_rate": 3.422818791946309e-05,
|
| 365 |
+
"loss": 0.3663,
|
| 366 |
+
"step": 51
|
| 367 |
+
},
|
| 368 |
+
{
|
| 369 |
+
"epoch": 0.1750841750841751,
|
| 370 |
+
"grad_norm": 0.8775368928909302,
|
| 371 |
+
"learning_rate": 3.4899328859060405e-05,
|
| 372 |
+
"loss": 0.3489,
|
| 373 |
+
"step": 52
|
| 374 |
+
},
|
| 375 |
+
{
|
| 376 |
+
"epoch": 0.17845117845117844,
|
| 377 |
+
"grad_norm": 0.5326427221298218,
|
| 378 |
+
"learning_rate": 3.557046979865772e-05,
|
| 379 |
+
"loss": 0.3466,
|
| 380 |
+
"step": 53
|
| 381 |
+
},
|
| 382 |
+
{
|
| 383 |
+
"epoch": 0.18181818181818182,
|
| 384 |
+
"grad_norm": 0.561137318611145,
|
| 385 |
+
"learning_rate": 3.6241610738255034e-05,
|
| 386 |
+
"loss": 0.3393,
|
| 387 |
+
"step": 54
|
| 388 |
+
},
|
| 389 |
+
{
|
| 390 |
+
"epoch": 0.18518518518518517,
|
| 391 |
+
"grad_norm": 0.8053128123283386,
|
| 392 |
+
"learning_rate": 3.6912751677852356e-05,
|
| 393 |
+
"loss": 0.352,
|
| 394 |
+
"step": 55
|
| 395 |
+
},
|
| 396 |
+
{
|
| 397 |
+
"epoch": 0.18855218855218855,
|
| 398 |
+
"grad_norm": 0.5964087843894958,
|
| 399 |
+
"learning_rate": 3.758389261744967e-05,
|
| 400 |
+
"loss": 0.3507,
|
| 401 |
+
"step": 56
|
| 402 |
+
},
|
| 403 |
+
{
|
| 404 |
+
"epoch": 0.1919191919191919,
|
| 405 |
+
"grad_norm": 0.5998376607894897,
|
| 406 |
+
"learning_rate": 3.8255033557046985e-05,
|
| 407 |
+
"loss": 0.3504,
|
| 408 |
+
"step": 57
|
| 409 |
+
},
|
| 410 |
+
{
|
| 411 |
+
"epoch": 0.19528619528619529,
|
| 412 |
+
"grad_norm": 1.2634875774383545,
|
| 413 |
+
"learning_rate": 3.89261744966443e-05,
|
| 414 |
+
"loss": 0.337,
|
| 415 |
+
"step": 58
|
| 416 |
+
},
|
| 417 |
+
{
|
| 418 |
+
"epoch": 0.19865319865319866,
|
| 419 |
+
"grad_norm": 0.5703901648521423,
|
| 420 |
+
"learning_rate": 3.959731543624161e-05,
|
| 421 |
+
"loss": 0.3408,
|
| 422 |
+
"step": 59
|
| 423 |
+
},
|
| 424 |
+
{
|
| 425 |
+
"epoch": 0.20202020202020202,
|
| 426 |
+
"grad_norm": 0.7656762003898621,
|
| 427 |
+
"learning_rate": 4.026845637583892e-05,
|
| 428 |
+
"loss": 0.3206,
|
| 429 |
+
"step": 60
|
| 430 |
+
},
|
| 431 |
+
{
|
| 432 |
+
"epoch": 0.2053872053872054,
|
| 433 |
+
"grad_norm": 0.6210582852363586,
|
| 434 |
+
"learning_rate": 4.0939597315436244e-05,
|
| 435 |
+
"loss": 0.354,
|
| 436 |
+
"step": 61
|
| 437 |
+
},
|
| 438 |
+
{
|
| 439 |
+
"epoch": 0.20875420875420875,
|
| 440 |
+
"grad_norm": 0.6622840166091919,
|
| 441 |
+
"learning_rate": 4.161073825503356e-05,
|
| 442 |
+
"loss": 0.3439,
|
| 443 |
+
"step": 62
|
| 444 |
+
},
|
| 445 |
+
{
|
| 446 |
+
"epoch": 0.21212121212121213,
|
| 447 |
+
"grad_norm": 0.46426376700401306,
|
| 448 |
+
"learning_rate": 4.228187919463087e-05,
|
| 449 |
+
"loss": 0.3434,
|
| 450 |
+
"step": 63
|
| 451 |
+
},
|
| 452 |
+
{
|
| 453 |
+
"epoch": 0.21548821548821548,
|
| 454 |
+
"grad_norm": 0.38662126660346985,
|
| 455 |
+
"learning_rate": 4.295302013422819e-05,
|
| 456 |
+
"loss": 0.3362,
|
| 457 |
+
"step": 64
|
| 458 |
+
},
|
| 459 |
+
{
|
| 460 |
+
"epoch": 0.21885521885521886,
|
| 461 |
+
"grad_norm": 0.5812459588050842,
|
| 462 |
+
"learning_rate": 4.36241610738255e-05,
|
| 463 |
+
"loss": 0.323,
|
| 464 |
+
"step": 65
|
| 465 |
+
},
|
| 466 |
+
{
|
| 467 |
+
"epoch": 0.2222222222222222,
|
| 468 |
+
"grad_norm": 0.626932680606842,
|
| 469 |
+
"learning_rate": 4.4295302013422824e-05,
|
| 470 |
+
"loss": 0.3427,
|
| 471 |
+
"step": 66
|
| 472 |
+
},
|
| 473 |
+
{
|
| 474 |
+
"epoch": 0.2255892255892256,
|
| 475 |
+
"grad_norm": 0.5491658449172974,
|
| 476 |
+
"learning_rate": 4.496644295302014e-05,
|
| 477 |
+
"loss": 0.3406,
|
| 478 |
+
"step": 67
|
| 479 |
+
},
|
| 480 |
+
{
|
| 481 |
+
"epoch": 0.22895622895622897,
|
| 482 |
+
"grad_norm": 0.4023520052433014,
|
| 483 |
+
"learning_rate": 4.5637583892617453e-05,
|
| 484 |
+
"loss": 0.3328,
|
| 485 |
+
"step": 68
|
| 486 |
+
},
|
| 487 |
+
{
|
| 488 |
+
"epoch": 0.23232323232323232,
|
| 489 |
+
"grad_norm": 0.478535532951355,
|
| 490 |
+
"learning_rate": 4.630872483221477e-05,
|
| 491 |
+
"loss": 0.3402,
|
| 492 |
+
"step": 69
|
| 493 |
+
},
|
| 494 |
+
{
|
| 495 |
+
"epoch": 0.2356902356902357,
|
| 496 |
+
"grad_norm": 0.44869011640548706,
|
| 497 |
+
"learning_rate": 4.697986577181208e-05,
|
| 498 |
+
"loss": 0.3516,
|
| 499 |
+
"step": 70
|
| 500 |
+
},
|
| 501 |
+
{
|
| 502 |
+
"epoch": 0.23905723905723905,
|
| 503 |
+
"grad_norm": 0.4810108244419098,
|
| 504 |
+
"learning_rate": 4.76510067114094e-05,
|
| 505 |
+
"loss": 0.3411,
|
| 506 |
+
"step": 71
|
| 507 |
+
},
|
| 508 |
+
{
|
| 509 |
+
"epoch": 0.24242424242424243,
|
| 510 |
+
"grad_norm": 0.3956281542778015,
|
| 511 |
+
"learning_rate": 4.832214765100672e-05,
|
| 512 |
+
"loss": 0.3395,
|
| 513 |
+
"step": 72
|
| 514 |
+
},
|
| 515 |
+
{
|
| 516 |
+
"epoch": 0.24579124579124578,
|
| 517 |
+
"grad_norm": 0.40301939845085144,
|
| 518 |
+
"learning_rate": 4.8993288590604034e-05,
|
| 519 |
+
"loss": 0.3217,
|
| 520 |
+
"step": 73
|
| 521 |
+
},
|
| 522 |
+
{
|
| 523 |
+
"epoch": 0.24915824915824916,
|
| 524 |
+
"grad_norm": 0.44550034403800964,
|
| 525 |
+
"learning_rate": 4.966442953020135e-05,
|
| 526 |
+
"loss": 0.3257,
|
| 527 |
+
"step": 74
|
| 528 |
+
},
|
| 529 |
+
{
|
| 530 |
+
"epoch": 0.25252525252525254,
|
| 531 |
+
"grad_norm": 0.5890341997146606,
|
| 532 |
+
"learning_rate": 5.033557046979866e-05,
|
| 533 |
+
"loss": 0.3335,
|
| 534 |
+
"step": 75
|
| 535 |
+
},
|
| 536 |
+
{
|
| 537 |
+
"epoch": 0.2558922558922559,
|
| 538 |
+
"grad_norm": 0.8096022009849548,
|
| 539 |
+
"learning_rate": 5.100671140939598e-05,
|
| 540 |
+
"loss": 0.3421,
|
| 541 |
+
"step": 76
|
| 542 |
+
},
|
| 543 |
+
{
|
| 544 |
+
"epoch": 0.25925925925925924,
|
| 545 |
+
"grad_norm": 0.6044747829437256,
|
| 546 |
+
"learning_rate": 5.167785234899329e-05,
|
| 547 |
+
"loss": 0.3266,
|
| 548 |
+
"step": 77
|
| 549 |
+
},
|
| 550 |
+
{
|
| 551 |
+
"epoch": 0.26262626262626265,
|
| 552 |
+
"grad_norm": 0.5191451907157898,
|
| 553 |
+
"learning_rate": 5.234899328859061e-05,
|
| 554 |
+
"loss": 0.331,
|
| 555 |
+
"step": 78
|
| 556 |
+
},
|
| 557 |
+
{
|
| 558 |
+
"epoch": 0.265993265993266,
|
| 559 |
+
"grad_norm": 1.0799261331558228,
|
| 560 |
+
"learning_rate": 5.302013422818792e-05,
|
| 561 |
+
"loss": 0.3243,
|
| 562 |
+
"step": 79
|
| 563 |
+
},
|
| 564 |
+
{
|
| 565 |
+
"epoch": 0.26936026936026936,
|
| 566 |
+
"grad_norm": 5.513405799865723,
|
| 567 |
+
"learning_rate": 5.3691275167785237e-05,
|
| 568 |
+
"loss": 0.379,
|
| 569 |
+
"step": 80
|
| 570 |
+
},
|
| 571 |
+
{
|
| 572 |
+
"epoch": 0.2727272727272727,
|
| 573 |
+
"grad_norm": 0.673650860786438,
|
| 574 |
+
"learning_rate": 5.436241610738255e-05,
|
| 575 |
+
"loss": 0.3482,
|
| 576 |
+
"step": 81
|
| 577 |
+
},
|
| 578 |
+
{
|
| 579 |
+
"epoch": 0.2760942760942761,
|
| 580 |
+
"grad_norm": 1.1485897302627563,
|
| 581 |
+
"learning_rate": 5.5033557046979866e-05,
|
| 582 |
+
"loss": 0.3351,
|
| 583 |
+
"step": 82
|
| 584 |
+
},
|
| 585 |
+
{
|
| 586 |
+
"epoch": 0.27946127946127947,
|
| 587 |
+
"grad_norm": 0.5018780827522278,
|
| 588 |
+
"learning_rate": 5.570469798657718e-05,
|
| 589 |
+
"loss": 0.3077,
|
| 590 |
+
"step": 83
|
| 591 |
+
},
|
| 592 |
+
{
|
| 593 |
+
"epoch": 0.2828282828282828,
|
| 594 |
+
"grad_norm": 4.367802619934082,
|
| 595 |
+
"learning_rate": 5.6375838926174495e-05,
|
| 596 |
+
"loss": 0.3284,
|
| 597 |
+
"step": 84
|
| 598 |
+
},
|
| 599 |
+
{
|
| 600 |
+
"epoch": 0.28619528619528617,
|
| 601 |
+
"grad_norm": 33.46516036987305,
|
| 602 |
+
"learning_rate": 5.704697986577181e-05,
|
| 603 |
+
"loss": 1.0651,
|
| 604 |
+
"step": 85
|
| 605 |
+
},
|
| 606 |
+
{
|
| 607 |
+
"epoch": 0.2895622895622896,
|
| 608 |
+
"grad_norm": 91.36512756347656,
|
| 609 |
+
"learning_rate": 5.771812080536914e-05,
|
| 610 |
+
"loss": 1.7174,
|
| 611 |
+
"step": 86
|
| 612 |
+
},
|
| 613 |
+
{
|
| 614 |
+
"epoch": 0.29292929292929293,
|
| 615 |
+
"grad_norm": 9.666085243225098,
|
| 616 |
+
"learning_rate": 5.838926174496645e-05,
|
| 617 |
+
"loss": 0.5601,
|
| 618 |
+
"step": 87
|
| 619 |
+
},
|
| 620 |
+
{
|
| 621 |
+
"epoch": 0.2962962962962963,
|
| 622 |
+
"grad_norm": 8.608613967895508,
|
| 623 |
+
"learning_rate": 5.906040268456377e-05,
|
| 624 |
+
"loss": 0.3865,
|
| 625 |
+
"step": 88
|
| 626 |
+
},
|
| 627 |
+
{
|
| 628 |
+
"epoch": 0.2996632996632997,
|
| 629 |
+
"grad_norm": 3.025059223175049,
|
| 630 |
+
"learning_rate": 5.973154362416108e-05,
|
| 631 |
+
"loss": 0.358,
|
| 632 |
+
"step": 89
|
| 633 |
+
},
|
| 634 |
+
{
|
| 635 |
+
"epoch": 0.30303030303030304,
|
| 636 |
+
"grad_norm": 9.862916946411133,
|
| 637 |
+
"learning_rate": 6.04026845637584e-05,
|
| 638 |
+
"loss": 0.4464,
|
| 639 |
+
"step": 90
|
| 640 |
+
},
|
| 641 |
+
{
|
| 642 |
+
"epoch": 0.3063973063973064,
|
| 643 |
+
"grad_norm": 11.05635929107666,
|
| 644 |
+
"learning_rate": 6.107382550335571e-05,
|
| 645 |
+
"loss": 0.3977,
|
| 646 |
+
"step": 91
|
| 647 |
+
},
|
| 648 |
+
{
|
| 649 |
+
"epoch": 0.30976430976430974,
|
| 650 |
+
"grad_norm": 1.0226973295211792,
|
| 651 |
+
"learning_rate": 6.174496644295302e-05,
|
| 652 |
+
"loss": 0.3206,
|
| 653 |
+
"step": 92
|
| 654 |
+
},
|
| 655 |
+
{
|
| 656 |
+
"epoch": 0.31313131313131315,
|
| 657 |
+
"grad_norm": 1.007895827293396,
|
| 658 |
+
"learning_rate": 6.241610738255034e-05,
|
| 659 |
+
"loss": 0.3355,
|
| 660 |
+
"step": 93
|
| 661 |
+
},
|
| 662 |
+
{
|
| 663 |
+
"epoch": 0.3164983164983165,
|
| 664 |
+
"grad_norm": 1.5956454277038574,
|
| 665 |
+
"learning_rate": 6.308724832214765e-05,
|
| 666 |
+
"loss": 0.3408,
|
| 667 |
+
"step": 94
|
| 668 |
+
},
|
| 669 |
+
{
|
| 670 |
+
"epoch": 0.31986531986531985,
|
| 671 |
+
"grad_norm": 21.75948715209961,
|
| 672 |
+
"learning_rate": 6.375838926174497e-05,
|
| 673 |
+
"loss": 0.4627,
|
| 674 |
+
"step": 95
|
| 675 |
+
},
|
| 676 |
+
{
|
| 677 |
+
"epoch": 0.32323232323232326,
|
| 678 |
+
"grad_norm": 5.754608154296875,
|
| 679 |
+
"learning_rate": 6.442953020134228e-05,
|
| 680 |
+
"loss": 0.3818,
|
| 681 |
+
"step": 96
|
| 682 |
+
},
|
| 683 |
+
{
|
| 684 |
+
"epoch": 0.3265993265993266,
|
| 685 |
+
"grad_norm": 3.1888318061828613,
|
| 686 |
+
"learning_rate": 6.51006711409396e-05,
|
| 687 |
+
"loss": 0.3713,
|
| 688 |
+
"step": 97
|
| 689 |
+
},
|
| 690 |
+
{
|
| 691 |
+
"epoch": 0.32996632996632996,
|
| 692 |
+
"grad_norm": 4.586446762084961,
|
| 693 |
+
"learning_rate": 6.577181208053692e-05,
|
| 694 |
+
"loss": 0.3394,
|
| 695 |
+
"step": 98
|
| 696 |
+
},
|
| 697 |
+
{
|
| 698 |
+
"epoch": 0.3333333333333333,
|
| 699 |
+
"grad_norm": 0.9332061409950256,
|
| 700 |
+
"learning_rate": 6.644295302013423e-05,
|
| 701 |
+
"loss": 0.3267,
|
| 702 |
+
"step": 99
|
| 703 |
+
},
|
| 704 |
+
{
|
| 705 |
+
"epoch": 0.3367003367003367,
|
| 706 |
+
"grad_norm": 4.119638442993164,
|
| 707 |
+
"learning_rate": 6.711409395973155e-05,
|
| 708 |
+
"loss": 0.3825,
|
| 709 |
+
"step": 100
|
| 710 |
+
},
|
| 711 |
+
{
|
| 712 |
+
"epoch": 0.3367003367003367,
|
| 713 |
+
"eval_loss": 0.16432031989097595,
|
| 714 |
+
"eval_runtime": 33.0116,
|
| 715 |
+
"eval_samples_per_second": 30.292,
|
| 716 |
+
"eval_steps_per_second": 1.908,
|
| 717 |
+
"step": 100
|
| 718 |
+
},
|
| 719 |
+
{
|
| 720 |
+
"epoch": 0.3400673400673401,
|
| 721 |
+
"grad_norm": 1.244138240814209,
|
| 722 |
+
"learning_rate": 6.778523489932886e-05,
|
| 723 |
+
"loss": 0.3191,
|
| 724 |
+
"step": 101
|
| 725 |
+
},
|
| 726 |
+
{
|
| 727 |
+
"epoch": 0.3434343434343434,
|
| 728 |
+
"grad_norm": 4.564449310302734,
|
| 729 |
+
"learning_rate": 6.845637583892618e-05,
|
| 730 |
+
"loss": 0.3792,
|
| 731 |
+
"step": 102
|
| 732 |
+
},
|
| 733 |
+
{
|
| 734 |
+
"epoch": 0.3468013468013468,
|
| 735 |
+
"grad_norm": 71.92516326904297,
|
| 736 |
+
"learning_rate": 6.912751677852349e-05,
|
| 737 |
+
"loss": 0.9526,
|
| 738 |
+
"step": 103
|
| 739 |
+
},
|
| 740 |
+
{
|
| 741 |
+
"epoch": 0.3501683501683502,
|
| 742 |
+
"grad_norm": 6.8141374588012695,
|
| 743 |
+
"learning_rate": 6.979865771812081e-05,
|
| 744 |
+
"loss": 0.4132,
|
| 745 |
+
"step": 104
|
| 746 |
+
},
|
| 747 |
+
{
|
| 748 |
+
"epoch": 0.35353535353535354,
|
| 749 |
+
"grad_norm": 4.9158616065979,
|
| 750 |
+
"learning_rate": 7.046979865771812e-05,
|
| 751 |
+
"loss": 0.3847,
|
| 752 |
+
"step": 105
|
| 753 |
+
},
|
| 754 |
+
{
|
| 755 |
+
"epoch": 0.3569023569023569,
|
| 756 |
+
"grad_norm": 0.9838681221008301,
|
| 757 |
+
"learning_rate": 7.114093959731544e-05,
|
| 758 |
+
"loss": 0.335,
|
| 759 |
+
"step": 106
|
| 760 |
+
},
|
| 761 |
+
{
|
| 762 |
+
"epoch": 0.3602693602693603,
|
| 763 |
+
"grad_norm": 0.44024720788002014,
|
| 764 |
+
"learning_rate": 7.181208053691275e-05,
|
| 765 |
+
"loss": 0.3159,
|
| 766 |
+
"step": 107
|
| 767 |
+
},
|
| 768 |
+
{
|
| 769 |
+
"epoch": 0.36363636363636365,
|
| 770 |
+
"grad_norm": 0.5798377394676208,
|
| 771 |
+
"learning_rate": 7.248322147651007e-05,
|
| 772 |
+
"loss": 0.3308,
|
| 773 |
+
"step": 108
|
| 774 |
+
},
|
| 775 |
+
{
|
| 776 |
+
"epoch": 0.367003367003367,
|
| 777 |
+
"grad_norm": 0.5650081038475037,
|
| 778 |
+
"learning_rate": 7.315436241610739e-05,
|
| 779 |
+
"loss": 0.3161,
|
| 780 |
+
"step": 109
|
| 781 |
+
},
|
| 782 |
+
{
|
| 783 |
+
"epoch": 0.37037037037037035,
|
| 784 |
+
"grad_norm": 0.5149471163749695,
|
| 785 |
+
"learning_rate": 7.382550335570471e-05,
|
| 786 |
+
"loss": 0.3291,
|
| 787 |
+
"step": 110
|
| 788 |
+
},
|
| 789 |
+
{
|
| 790 |
+
"epoch": 0.37373737373737376,
|
| 791 |
+
"grad_norm": 0.4448802173137665,
|
| 792 |
+
"learning_rate": 7.449664429530202e-05,
|
| 793 |
+
"loss": 0.3145,
|
| 794 |
+
"step": 111
|
| 795 |
+
},
|
| 796 |
+
{
|
| 797 |
+
"epoch": 0.3771043771043771,
|
| 798 |
+
"grad_norm": 0.5278413891792297,
|
| 799 |
+
"learning_rate": 7.516778523489934e-05,
|
| 800 |
+
"loss": 0.3296,
|
| 801 |
+
"step": 112
|
| 802 |
+
},
|
| 803 |
+
{
|
| 804 |
+
"epoch": 0.38047138047138046,
|
| 805 |
+
"grad_norm": 0.455289363861084,
|
| 806 |
+
"learning_rate": 7.583892617449665e-05,
|
| 807 |
+
"loss": 0.318,
|
| 808 |
+
"step": 113
|
| 809 |
+
},
|
| 810 |
+
{
|
| 811 |
+
"epoch": 0.3838383838383838,
|
| 812 |
+
"grad_norm": 0.5316647291183472,
|
| 813 |
+
"learning_rate": 7.651006711409397e-05,
|
| 814 |
+
"loss": 0.3117,
|
| 815 |
+
"step": 114
|
| 816 |
+
},
|
| 817 |
+
{
|
| 818 |
+
"epoch": 0.3872053872053872,
|
| 819 |
+
"grad_norm": 0.43862929940223694,
|
| 820 |
+
"learning_rate": 7.718120805369128e-05,
|
| 821 |
+
"loss": 0.3062,
|
| 822 |
+
"step": 115
|
| 823 |
+
},
|
| 824 |
+
{
|
| 825 |
+
"epoch": 0.39057239057239057,
|
| 826 |
+
"grad_norm": 12.535127639770508,
|
| 827 |
+
"learning_rate": 7.78523489932886e-05,
|
| 828 |
+
"loss": 0.3557,
|
| 829 |
+
"step": 116
|
| 830 |
+
},
|
| 831 |
+
{
|
| 832 |
+
"epoch": 0.3939393939393939,
|
| 833 |
+
"grad_norm": 15.351152420043945,
|
| 834 |
+
"learning_rate": 7.852348993288591e-05,
|
| 835 |
+
"loss": 0.5181,
|
| 836 |
+
"step": 117
|
| 837 |
+
},
|
| 838 |
+
{
|
| 839 |
+
"epoch": 0.39730639730639733,
|
| 840 |
+
"grad_norm": 11.918878555297852,
|
| 841 |
+
"learning_rate": 7.919463087248322e-05,
|
| 842 |
+
"loss": 0.4005,
|
| 843 |
+
"step": 118
|
| 844 |
+
},
|
| 845 |
+
{
|
| 846 |
+
"epoch": 0.4006734006734007,
|
| 847 |
+
"grad_norm": 9.800668716430664,
|
| 848 |
+
"learning_rate": 7.986577181208054e-05,
|
| 849 |
+
"loss": 0.422,
|
| 850 |
+
"step": 119
|
| 851 |
+
},
|
| 852 |
+
{
|
| 853 |
+
"epoch": 0.40404040404040403,
|
| 854 |
+
"grad_norm": 16.235355377197266,
|
| 855 |
+
"learning_rate": 8.053691275167784e-05,
|
| 856 |
+
"loss": 0.4051,
|
| 857 |
+
"step": 120
|
| 858 |
+
},
|
| 859 |
+
{
|
| 860 |
+
"epoch": 0.4074074074074074,
|
| 861 |
+
"grad_norm": 1.8551958799362183,
|
| 862 |
+
"learning_rate": 8.120805369127518e-05,
|
| 863 |
+
"loss": 0.3506,
|
| 864 |
+
"step": 121
|
| 865 |
+
},
|
| 866 |
+
{
|
| 867 |
+
"epoch": 0.4107744107744108,
|
| 868 |
+
"grad_norm": 3.990302562713623,
|
| 869 |
+
"learning_rate": 8.187919463087249e-05,
|
| 870 |
+
"loss": 0.3318,
|
| 871 |
+
"step": 122
|
| 872 |
+
},
|
| 873 |
+
{
|
| 874 |
+
"epoch": 0.41414141414141414,
|
| 875 |
+
"grad_norm": 22.28190040588379,
|
| 876 |
+
"learning_rate": 8.255033557046981e-05,
|
| 877 |
+
"loss": 0.4316,
|
| 878 |
+
"step": 123
|
| 879 |
+
},
|
| 880 |
+
{
|
| 881 |
+
"epoch": 0.4175084175084175,
|
| 882 |
+
"grad_norm": 1.9532949924468994,
|
| 883 |
+
"learning_rate": 8.322147651006712e-05,
|
| 884 |
+
"loss": 0.3596,
|
| 885 |
+
"step": 124
|
| 886 |
+
},
|
| 887 |
+
{
|
| 888 |
+
"epoch": 0.4208754208754209,
|
| 889 |
+
"grad_norm": 0.8453232645988464,
|
| 890 |
+
"learning_rate": 8.389261744966444e-05,
|
| 891 |
+
"loss": 0.3473,
|
| 892 |
+
"step": 125
|
| 893 |
+
},
|
| 894 |
+
{
|
| 895 |
+
"epoch": 0.42424242424242425,
|
| 896 |
+
"grad_norm": 3.7085459232330322,
|
| 897 |
+
"learning_rate": 8.456375838926175e-05,
|
| 898 |
+
"loss": 0.3527,
|
| 899 |
+
"step": 126
|
| 900 |
+
},
|
| 901 |
+
{
|
| 902 |
+
"epoch": 0.4276094276094276,
|
| 903 |
+
"grad_norm": 1.9306743144989014,
|
| 904 |
+
"learning_rate": 8.523489932885907e-05,
|
| 905 |
+
"loss": 0.3415,
|
| 906 |
+
"step": 127
|
| 907 |
+
},
|
| 908 |
+
{
|
| 909 |
+
"epoch": 0.43097643097643096,
|
| 910 |
+
"grad_norm": 5.023862361907959,
|
| 911 |
+
"learning_rate": 8.590604026845638e-05,
|
| 912 |
+
"loss": 0.3644,
|
| 913 |
+
"step": 128
|
| 914 |
+
},
|
| 915 |
+
{
|
| 916 |
+
"epoch": 0.43434343434343436,
|
| 917 |
+
"grad_norm": 4.241243362426758,
|
| 918 |
+
"learning_rate": 8.65771812080537e-05,
|
| 919 |
+
"loss": 0.4321,
|
| 920 |
+
"step": 129
|
| 921 |
+
},
|
| 922 |
+
{
|
| 923 |
+
"epoch": 0.4377104377104377,
|
| 924 |
+
"grad_norm": 1.7396281957626343,
|
| 925 |
+
"learning_rate": 8.7248322147651e-05,
|
| 926 |
+
"loss": 0.3334,
|
| 927 |
+
"step": 130
|
| 928 |
+
},
|
| 929 |
+
{
|
| 930 |
+
"epoch": 0.44107744107744107,
|
| 931 |
+
"grad_norm": 8.367612838745117,
|
| 932 |
+
"learning_rate": 8.791946308724833e-05,
|
| 933 |
+
"loss": 0.3571,
|
| 934 |
+
"step": 131
|
| 935 |
+
},
|
| 936 |
+
{
|
| 937 |
+
"epoch": 0.4444444444444444,
|
| 938 |
+
"grad_norm": 7.692532539367676,
|
| 939 |
+
"learning_rate": 8.859060402684565e-05,
|
| 940 |
+
"loss": 0.5196,
|
| 941 |
+
"step": 132
|
| 942 |
+
},
|
| 943 |
+
{
|
| 944 |
+
"epoch": 0.4478114478114478,
|
| 945 |
+
"grad_norm": 12.191128730773926,
|
| 946 |
+
"learning_rate": 8.926174496644296e-05,
|
| 947 |
+
"loss": 0.6991,
|
| 948 |
+
"step": 133
|
| 949 |
+
},
|
| 950 |
+
{
|
| 951 |
+
"epoch": 0.4511784511784512,
|
| 952 |
+
"grad_norm": 7.570639133453369,
|
| 953 |
+
"learning_rate": 8.993288590604028e-05,
|
| 954 |
+
"loss": 0.4818,
|
| 955 |
+
"step": 134
|
| 956 |
+
},
|
| 957 |
+
{
|
| 958 |
+
"epoch": 0.45454545454545453,
|
| 959 |
+
"grad_norm": 1.7189193964004517,
|
| 960 |
+
"learning_rate": 9.060402684563759e-05,
|
| 961 |
+
"loss": 0.3728,
|
| 962 |
+
"step": 135
|
| 963 |
+
},
|
| 964 |
+
{
|
| 965 |
+
"epoch": 0.45791245791245794,
|
| 966 |
+
"grad_norm": 9.100985527038574,
|
| 967 |
+
"learning_rate": 9.127516778523491e-05,
|
| 968 |
+
"loss": 0.3869,
|
| 969 |
+
"step": 136
|
| 970 |
+
},
|
| 971 |
+
{
|
| 972 |
+
"epoch": 0.4612794612794613,
|
| 973 |
+
"grad_norm": 9.76489543914795,
|
| 974 |
+
"learning_rate": 9.194630872483221e-05,
|
| 975 |
+
"loss": 0.3861,
|
| 976 |
+
"step": 137
|
| 977 |
+
},
|
| 978 |
+
{
|
| 979 |
+
"epoch": 0.46464646464646464,
|
| 980 |
+
"grad_norm": 3.834136962890625,
|
| 981 |
+
"learning_rate": 9.261744966442954e-05,
|
| 982 |
+
"loss": 0.4222,
|
| 983 |
+
"step": 138
|
| 984 |
+
},
|
| 985 |
+
{
|
| 986 |
+
"epoch": 0.468013468013468,
|
| 987 |
+
"grad_norm": 22.2440242767334,
|
| 988 |
+
"learning_rate": 9.328859060402684e-05,
|
| 989 |
+
"loss": 0.7935,
|
| 990 |
+
"step": 139
|
| 991 |
+
},
|
| 992 |
+
{
|
| 993 |
+
"epoch": 0.4713804713804714,
|
| 994 |
+
"grad_norm": 1.4633365869522095,
|
| 995 |
+
"learning_rate": 9.395973154362417e-05,
|
| 996 |
+
"loss": 0.347,
|
| 997 |
+
"step": 140
|
| 998 |
+
},
|
| 999 |
+
{
|
| 1000 |
+
"epoch": 0.47474747474747475,
|
| 1001 |
+
"grad_norm": 1.9224159717559814,
|
| 1002 |
+
"learning_rate": 9.463087248322147e-05,
|
| 1003 |
+
"loss": 0.3299,
|
| 1004 |
+
"step": 141
|
| 1005 |
+
},
|
| 1006 |
+
{
|
| 1007 |
+
"epoch": 0.4781144781144781,
|
| 1008 |
+
"grad_norm": 3.4107277393341064,
|
| 1009 |
+
"learning_rate": 9.53020134228188e-05,
|
| 1010 |
+
"loss": 0.4199,
|
| 1011 |
+
"step": 142
|
| 1012 |
+
},
|
| 1013 |
+
{
|
| 1014 |
+
"epoch": 0.48148148148148145,
|
| 1015 |
+
"grad_norm": 1.4255735874176025,
|
| 1016 |
+
"learning_rate": 9.59731543624161e-05,
|
| 1017 |
+
"loss": 0.3559,
|
| 1018 |
+
"step": 143
|
| 1019 |
+
},
|
| 1020 |
+
{
|
| 1021 |
+
"epoch": 0.48484848484848486,
|
| 1022 |
+
"grad_norm": 1.4576934576034546,
|
| 1023 |
+
"learning_rate": 9.664429530201344e-05,
|
| 1024 |
+
"loss": 0.3274,
|
| 1025 |
+
"step": 144
|
| 1026 |
+
},
|
| 1027 |
+
{
|
| 1028 |
+
"epoch": 0.4882154882154882,
|
| 1029 |
+
"grad_norm": 1.3531242609024048,
|
| 1030 |
+
"learning_rate": 9.731543624161075e-05,
|
| 1031 |
+
"loss": 0.3417,
|
| 1032 |
+
"step": 145
|
| 1033 |
+
},
|
| 1034 |
+
{
|
| 1035 |
+
"epoch": 0.49158249158249157,
|
| 1036 |
+
"grad_norm": 13.97393798828125,
|
| 1037 |
+
"learning_rate": 9.798657718120807e-05,
|
| 1038 |
+
"loss": 0.3434,
|
| 1039 |
+
"step": 146
|
| 1040 |
+
},
|
| 1041 |
+
{
|
| 1042 |
+
"epoch": 0.494949494949495,
|
| 1043 |
+
"grad_norm": 0.8413457870483398,
|
| 1044 |
+
"learning_rate": 9.865771812080538e-05,
|
| 1045 |
+
"loss": 0.3224,
|
| 1046 |
+
"step": 147
|
| 1047 |
+
},
|
| 1048 |
+
{
|
| 1049 |
+
"epoch": 0.4983164983164983,
|
| 1050 |
+
"grad_norm": 0.41903650760650635,
|
| 1051 |
+
"learning_rate": 9.93288590604027e-05,
|
| 1052 |
+
"loss": 0.3197,
|
| 1053 |
+
"step": 148
|
| 1054 |
+
},
|
| 1055 |
+
{
|
| 1056 |
+
"epoch": 0.5016835016835017,
|
| 1057 |
+
"grad_norm": 1.3428220748901367,
|
| 1058 |
+
"learning_rate": 0.0001,
|
| 1059 |
+
"loss": 0.3184,
|
| 1060 |
+
"step": 149
|
| 1061 |
+
},
|
| 1062 |
+
{
|
| 1063 |
+
"epoch": 0.5050505050505051,
|
| 1064 |
+
"grad_norm": 0.497494637966156,
|
| 1065 |
+
"learning_rate": 9.9999861762256e-05,
|
| 1066 |
+
"loss": 0.3064,
|
| 1067 |
+
"step": 150
|
| 1068 |
+
},
|
| 1069 |
+
{
|
| 1070 |
+
"epoch": 0.5084175084175084,
|
| 1071 |
+
"grad_norm": 0.5110116600990295,
|
| 1072 |
+
"learning_rate": 9.999944704978836e-05,
|
| 1073 |
+
"loss": 0.3195,
|
| 1074 |
+
"step": 151
|
| 1075 |
+
},
|
| 1076 |
+
{
|
| 1077 |
+
"epoch": 0.5117845117845118,
|
| 1078 |
+
"grad_norm": 0.4883813261985779,
|
| 1079 |
+
"learning_rate": 9.999875586489024e-05,
|
| 1080 |
+
"loss": 0.292,
|
| 1081 |
+
"step": 152
|
| 1082 |
+
},
|
| 1083 |
+
{
|
| 1084 |
+
"epoch": 0.5151515151515151,
|
| 1085 |
+
"grad_norm": 0.44456565380096436,
|
| 1086 |
+
"learning_rate": 9.999778821138357e-05,
|
| 1087 |
+
"loss": 0.3084,
|
| 1088 |
+
"step": 153
|
| 1089 |
+
},
|
| 1090 |
+
{
|
| 1091 |
+
"epoch": 0.5185185185185185,
|
| 1092 |
+
"grad_norm": 0.5006658434867859,
|
| 1093 |
+
"learning_rate": 9.999654409461896e-05,
|
| 1094 |
+
"loss": 0.3031,
|
| 1095 |
+
"step": 154
|
| 1096 |
+
},
|
| 1097 |
+
{
|
| 1098 |
+
"epoch": 0.5218855218855218,
|
| 1099 |
+
"grad_norm": 0.4398713707923889,
|
| 1100 |
+
"learning_rate": 9.999502352147583e-05,
|
| 1101 |
+
"loss": 0.3178,
|
| 1102 |
+
"step": 155
|
| 1103 |
+
},
|
| 1104 |
+
{
|
| 1105 |
+
"epoch": 0.5252525252525253,
|
| 1106 |
+
"grad_norm": 0.4853643476963043,
|
| 1107 |
+
"learning_rate": 9.999322650036214e-05,
|
| 1108 |
+
"loss": 0.3195,
|
| 1109 |
+
"step": 156
|
| 1110 |
+
},
|
| 1111 |
+
{
|
| 1112 |
+
"epoch": 0.5286195286195287,
|
| 1113 |
+
"grad_norm": 0.4636339545249939,
|
| 1114 |
+
"learning_rate": 9.999115304121457e-05,
|
| 1115 |
+
"loss": 0.3052,
|
| 1116 |
+
"step": 157
|
| 1117 |
+
},
|
| 1118 |
+
{
|
| 1119 |
+
"epoch": 0.531986531986532,
|
| 1120 |
+
"grad_norm": 0.525205671787262,
|
| 1121 |
+
"learning_rate": 9.998880315549834e-05,
|
| 1122 |
+
"loss": 0.3133,
|
| 1123 |
+
"step": 158
|
| 1124 |
+
},
|
| 1125 |
+
{
|
| 1126 |
+
"epoch": 0.5353535353535354,
|
| 1127 |
+
"grad_norm": 0.40854206681251526,
|
| 1128 |
+
"learning_rate": 9.998617685620714e-05,
|
| 1129 |
+
"loss": 0.3076,
|
| 1130 |
+
"step": 159
|
| 1131 |
+
},
|
| 1132 |
+
{
|
| 1133 |
+
"epoch": 0.5387205387205387,
|
| 1134 |
+
"grad_norm": 0.5355719327926636,
|
| 1135 |
+
"learning_rate": 9.998327415786315e-05,
|
| 1136 |
+
"loss": 0.3052,
|
| 1137 |
+
"step": 160
|
| 1138 |
+
},
|
| 1139 |
+
{
|
| 1140 |
+
"epoch": 0.5420875420875421,
|
| 1141 |
+
"grad_norm": 0.3861645460128784,
|
| 1142 |
+
"learning_rate": 9.998009507651684e-05,
|
| 1143 |
+
"loss": 0.3099,
|
| 1144 |
+
"step": 161
|
| 1145 |
+
},
|
| 1146 |
+
{
|
| 1147 |
+
"epoch": 0.5454545454545454,
|
| 1148 |
+
"grad_norm": 0.5338487029075623,
|
| 1149 |
+
"learning_rate": 9.997663962974697e-05,
|
| 1150 |
+
"loss": 0.3052,
|
| 1151 |
+
"step": 162
|
| 1152 |
+
},
|
| 1153 |
+
{
|
| 1154 |
+
"epoch": 0.5488215488215489,
|
| 1155 |
+
"grad_norm": 0.45219364762306213,
|
| 1156 |
+
"learning_rate": 9.997290783666049e-05,
|
| 1157 |
+
"loss": 0.2948,
|
| 1158 |
+
"step": 163
|
| 1159 |
+
},
|
| 1160 |
+
{
|
| 1161 |
+
"epoch": 0.5521885521885522,
|
| 1162 |
+
"grad_norm": 0.5037462711334229,
|
| 1163 |
+
"learning_rate": 9.996889971789235e-05,
|
| 1164 |
+
"loss": 0.3019,
|
| 1165 |
+
"step": 164
|
| 1166 |
+
},
|
| 1167 |
+
{
|
| 1168 |
+
"epoch": 0.5555555555555556,
|
| 1169 |
+
"grad_norm": 0.3949816823005676,
|
| 1170 |
+
"learning_rate": 9.996461529560553e-05,
|
| 1171 |
+
"loss": 0.3028,
|
| 1172 |
+
"step": 165
|
| 1173 |
+
},
|
| 1174 |
+
{
|
| 1175 |
+
"epoch": 0.5589225589225589,
|
| 1176 |
+
"grad_norm": 0.3921789824962616,
|
| 1177 |
+
"learning_rate": 9.996005459349074e-05,
|
| 1178 |
+
"loss": 0.2982,
|
| 1179 |
+
"step": 166
|
| 1180 |
+
},
|
| 1181 |
+
{
|
| 1182 |
+
"epoch": 0.5622895622895623,
|
| 1183 |
+
"grad_norm": 0.4122919738292694,
|
| 1184 |
+
"learning_rate": 9.995521763676645e-05,
|
| 1185 |
+
"loss": 0.3071,
|
| 1186 |
+
"step": 167
|
| 1187 |
+
},
|
| 1188 |
+
{
|
| 1189 |
+
"epoch": 0.5656565656565656,
|
| 1190 |
+
"grad_norm": 0.4212525188922882,
|
| 1191 |
+
"learning_rate": 9.995010445217867e-05,
|
| 1192 |
+
"loss": 0.3086,
|
| 1193 |
+
"step": 168
|
| 1194 |
+
},
|
| 1195 |
+
{
|
| 1196 |
+
"epoch": 0.569023569023569,
|
| 1197 |
+
"grad_norm": 0.3997049033641815,
|
| 1198 |
+
"learning_rate": 9.994471506800079e-05,
|
| 1199 |
+
"loss": 0.2957,
|
| 1200 |
+
"step": 169
|
| 1201 |
+
},
|
| 1202 |
+
{
|
| 1203 |
+
"epoch": 0.5723905723905723,
|
| 1204 |
+
"grad_norm": 0.34380048513412476,
|
| 1205 |
+
"learning_rate": 9.993904951403344e-05,
|
| 1206 |
+
"loss": 0.3122,
|
| 1207 |
+
"step": 170
|
| 1208 |
+
},
|
| 1209 |
+
{
|
| 1210 |
+
"epoch": 0.5757575757575758,
|
| 1211 |
+
"grad_norm": 0.40532243251800537,
|
| 1212 |
+
"learning_rate": 9.99331078216044e-05,
|
| 1213 |
+
"loss": 0.3055,
|
| 1214 |
+
"step": 171
|
| 1215 |
+
},
|
| 1216 |
+
{
|
| 1217 |
+
"epoch": 0.5791245791245792,
|
| 1218 |
+
"grad_norm": 0.4095707833766937,
|
| 1219 |
+
"learning_rate": 9.992689002356828e-05,
|
| 1220 |
+
"loss": 0.2868,
|
| 1221 |
+
"step": 172
|
| 1222 |
+
},
|
| 1223 |
+
{
|
| 1224 |
+
"epoch": 0.5824915824915825,
|
| 1225 |
+
"grad_norm": 0.41159185767173767,
|
| 1226 |
+
"learning_rate": 9.992039615430648e-05,
|
| 1227 |
+
"loss": 0.318,
|
| 1228 |
+
"step": 173
|
| 1229 |
+
},
|
| 1230 |
+
{
|
| 1231 |
+
"epoch": 0.5858585858585859,
|
| 1232 |
+
"grad_norm": 0.3728049397468567,
|
| 1233 |
+
"learning_rate": 9.991362624972688e-05,
|
| 1234 |
+
"loss": 0.309,
|
| 1235 |
+
"step": 174
|
| 1236 |
+
},
|
| 1237 |
+
{
|
| 1238 |
+
"epoch": 0.5892255892255892,
|
| 1239 |
+
"grad_norm": 0.3249180018901825,
|
| 1240 |
+
"learning_rate": 9.990658034726379e-05,
|
| 1241 |
+
"loss": 0.2818,
|
| 1242 |
+
"step": 175
|
| 1243 |
+
},
|
| 1244 |
+
{
|
| 1245 |
+
"epoch": 0.5925925925925926,
|
| 1246 |
+
"grad_norm": 0.35090282559394836,
|
| 1247 |
+
"learning_rate": 9.989925848587756e-05,
|
| 1248 |
+
"loss": 0.2839,
|
| 1249 |
+
"step": 176
|
| 1250 |
+
},
|
| 1251 |
+
{
|
| 1252 |
+
"epoch": 0.5959595959595959,
|
| 1253 |
+
"grad_norm": 0.3364333212375641,
|
| 1254 |
+
"learning_rate": 9.989166070605447e-05,
|
| 1255 |
+
"loss": 0.3063,
|
| 1256 |
+
"step": 177
|
| 1257 |
+
},
|
| 1258 |
+
{
|
| 1259 |
+
"epoch": 0.5993265993265994,
|
| 1260 |
+
"grad_norm": 0.4135960340499878,
|
| 1261 |
+
"learning_rate": 9.988378704980656e-05,
|
| 1262 |
+
"loss": 0.3085,
|
| 1263 |
+
"step": 178
|
| 1264 |
+
},
|
| 1265 |
+
{
|
| 1266 |
+
"epoch": 0.6026936026936027,
|
| 1267 |
+
"grad_norm": 0.35615649819374084,
|
| 1268 |
+
"learning_rate": 9.987563756067129e-05,
|
| 1269 |
+
"loss": 0.2955,
|
| 1270 |
+
"step": 179
|
| 1271 |
+
},
|
| 1272 |
+
{
|
| 1273 |
+
"epoch": 0.6060606060606061,
|
| 1274 |
+
"grad_norm": 0.3038477897644043,
|
| 1275 |
+
"learning_rate": 9.986721228371129e-05,
|
| 1276 |
+
"loss": 0.291,
|
| 1277 |
+
"step": 180
|
| 1278 |
+
},
|
| 1279 |
+
{
|
| 1280 |
+
"epoch": 0.6094276094276094,
|
| 1281 |
+
"grad_norm": 0.4663616120815277,
|
| 1282 |
+
"learning_rate": 9.985851126551428e-05,
|
| 1283 |
+
"loss": 0.3043,
|
| 1284 |
+
"step": 181
|
| 1285 |
+
},
|
| 1286 |
+
{
|
| 1287 |
+
"epoch": 0.6127946127946128,
|
| 1288 |
+
"grad_norm": 0.42187029123306274,
|
| 1289 |
+
"learning_rate": 9.984953455419258e-05,
|
| 1290 |
+
"loss": 0.2747,
|
| 1291 |
+
"step": 182
|
| 1292 |
+
},
|
| 1293 |
+
{
|
| 1294 |
+
"epoch": 0.6161616161616161,
|
| 1295 |
+
"grad_norm": 0.4150826334953308,
|
| 1296 |
+
"learning_rate": 9.9840282199383e-05,
|
| 1297 |
+
"loss": 0.2854,
|
| 1298 |
+
"step": 183
|
| 1299 |
+
},
|
| 1300 |
+
{
|
| 1301 |
+
"epoch": 0.6195286195286195,
|
| 1302 |
+
"grad_norm": 0.36844050884246826,
|
| 1303 |
+
"learning_rate": 9.983075425224653e-05,
|
| 1304 |
+
"loss": 0.2848,
|
| 1305 |
+
"step": 184
|
| 1306 |
+
},
|
| 1307 |
+
{
|
| 1308 |
+
"epoch": 0.622895622895623,
|
| 1309 |
+
"grad_norm": 0.4171907603740692,
|
| 1310 |
+
"learning_rate": 9.982095076546807e-05,
|
| 1311 |
+
"loss": 0.3003,
|
| 1312 |
+
"step": 185
|
| 1313 |
+
},
|
| 1314 |
+
{
|
| 1315 |
+
"epoch": 0.6262626262626263,
|
| 1316 |
+
"grad_norm": 0.3620002269744873,
|
| 1317 |
+
"learning_rate": 9.981087179325608e-05,
|
| 1318 |
+
"loss": 0.3043,
|
| 1319 |
+
"step": 186
|
| 1320 |
+
},
|
| 1321 |
+
{
|
| 1322 |
+
"epoch": 0.6296296296296297,
|
| 1323 |
+
"grad_norm": 0.40760573744773865,
|
| 1324 |
+
"learning_rate": 9.980051739134233e-05,
|
| 1325 |
+
"loss": 0.3059,
|
| 1326 |
+
"step": 187
|
| 1327 |
+
},
|
| 1328 |
+
{
|
| 1329 |
+
"epoch": 0.632996632996633,
|
| 1330 |
+
"grad_norm": 0.32069963216781616,
|
| 1331 |
+
"learning_rate": 9.978988761698161e-05,
|
| 1332 |
+
"loss": 0.2947,
|
| 1333 |
+
"step": 188
|
| 1334 |
+
},
|
| 1335 |
+
{
|
| 1336 |
+
"epoch": 0.6363636363636364,
|
| 1337 |
+
"grad_norm": 0.3327488303184509,
|
| 1338 |
+
"learning_rate": 9.977898252895134e-05,
|
| 1339 |
+
"loss": 0.2805,
|
| 1340 |
+
"step": 189
|
| 1341 |
+
},
|
| 1342 |
+
{
|
| 1343 |
+
"epoch": 0.6397306397306397,
|
| 1344 |
+
"grad_norm": 0.3968160152435303,
|
| 1345 |
+
"learning_rate": 9.976780218755131e-05,
|
| 1346 |
+
"loss": 0.2891,
|
| 1347 |
+
"step": 190
|
| 1348 |
+
},
|
| 1349 |
+
{
|
| 1350 |
+
"epoch": 0.6430976430976431,
|
| 1351 |
+
"grad_norm": 0.4018626809120178,
|
| 1352 |
+
"learning_rate": 9.975634665460332e-05,
|
| 1353 |
+
"loss": 0.2965,
|
| 1354 |
+
"step": 191
|
| 1355 |
+
},
|
| 1356 |
+
{
|
| 1357 |
+
"epoch": 0.6464646464646465,
|
| 1358 |
+
"grad_norm": 0.37805649638175964,
|
| 1359 |
+
"learning_rate": 9.974461599345088e-05,
|
| 1360 |
+
"loss": 0.3008,
|
| 1361 |
+
"step": 192
|
| 1362 |
+
},
|
| 1363 |
+
{
|
| 1364 |
+
"epoch": 0.6498316498316499,
|
| 1365 |
+
"grad_norm": 0.44425806403160095,
|
| 1366 |
+
"learning_rate": 9.973261026895877e-05,
|
| 1367 |
+
"loss": 0.2921,
|
| 1368 |
+
"step": 193
|
| 1369 |
+
},
|
| 1370 |
+
{
|
| 1371 |
+
"epoch": 0.6531986531986532,
|
| 1372 |
+
"grad_norm": 0.375931054353714,
|
| 1373 |
+
"learning_rate": 9.972032954751279e-05,
|
| 1374 |
+
"loss": 0.296,
|
| 1375 |
+
"step": 194
|
| 1376 |
+
},
|
| 1377 |
+
{
|
| 1378 |
+
"epoch": 0.6565656565656566,
|
| 1379 |
+
"grad_norm": 0.44635701179504395,
|
| 1380 |
+
"learning_rate": 9.970777389701926e-05,
|
| 1381 |
+
"loss": 0.29,
|
| 1382 |
+
"step": 195
|
| 1383 |
+
},
|
| 1384 |
+
{
|
| 1385 |
+
"epoch": 0.6599326599326599,
|
| 1386 |
+
"grad_norm": 0.28897619247436523,
|
| 1387 |
+
"learning_rate": 9.969494338690481e-05,
|
| 1388 |
+
"loss": 0.2895,
|
| 1389 |
+
"step": 196
|
| 1390 |
+
},
|
| 1391 |
+
{
|
| 1392 |
+
"epoch": 0.6632996632996633,
|
| 1393 |
+
"grad_norm": 0.4542882740497589,
|
| 1394 |
+
"learning_rate": 9.968183808811586e-05,
|
| 1395 |
+
"loss": 0.2887,
|
| 1396 |
+
"step": 197
|
| 1397 |
+
},
|
| 1398 |
+
{
|
| 1399 |
+
"epoch": 0.6666666666666666,
|
| 1400 |
+
"grad_norm": 0.3715568780899048,
|
| 1401 |
+
"learning_rate": 9.966845807311829e-05,
|
| 1402 |
+
"loss": 0.3038,
|
| 1403 |
+
"step": 198
|
| 1404 |
+
},
|
| 1405 |
+
{
|
| 1406 |
+
"epoch": 0.67003367003367,
|
| 1407 |
+
"grad_norm": 0.36940261721611023,
|
| 1408 |
+
"learning_rate": 9.965480341589701e-05,
|
| 1409 |
+
"loss": 0.2934,
|
| 1410 |
+
"step": 199
|
| 1411 |
+
},
|
| 1412 |
+
{
|
| 1413 |
+
"epoch": 0.6734006734006734,
|
| 1414 |
+
"grad_norm": 0.43046656250953674,
|
| 1415 |
+
"learning_rate": 9.96408741919556e-05,
|
| 1416 |
+
"loss": 0.2951,
|
| 1417 |
+
"step": 200
|
| 1418 |
+
},
|
| 1419 |
+
{
|
| 1420 |
+
"epoch": 0.6734006734006734,
|
| 1421 |
+
"eval_loss": 0.1412619948387146,
|
| 1422 |
+
"eval_runtime": 32.6268,
|
| 1423 |
+
"eval_samples_per_second": 30.65,
|
| 1424 |
+
"eval_steps_per_second": 1.931,
|
| 1425 |
+
"step": 200
|
| 1426 |
+
},
|
| 1427 |
+
{
|
| 1428 |
+
"epoch": 0.6767676767676768,
|
| 1429 |
+
"grad_norm": 0.37590286135673523,
|
| 1430 |
+
"learning_rate": 9.962667047831584e-05,
|
| 1431 |
+
"loss": 0.2922,
|
| 1432 |
+
"step": 201
|
| 1433 |
+
},
|
| 1434 |
+
{
|
| 1435 |
+
"epoch": 0.6801346801346801,
|
| 1436 |
+
"grad_norm": 0.3418475389480591,
|
| 1437 |
+
"learning_rate": 9.961219235351729e-05,
|
| 1438 |
+
"loss": 0.2732,
|
| 1439 |
+
"step": 202
|
| 1440 |
+
},
|
| 1441 |
+
{
|
| 1442 |
+
"epoch": 0.6835016835016835,
|
| 1443 |
+
"grad_norm": 0.3605377674102783,
|
| 1444 |
+
"learning_rate": 9.95974398976169e-05,
|
| 1445 |
+
"loss": 0.2882,
|
| 1446 |
+
"step": 203
|
| 1447 |
+
},
|
| 1448 |
+
{
|
| 1449 |
+
"epoch": 0.6868686868686869,
|
| 1450 |
+
"grad_norm": 0.40477219223976135,
|
| 1451 |
+
"learning_rate": 9.958241319218848e-05,
|
| 1452 |
+
"loss": 0.2859,
|
| 1453 |
+
"step": 204
|
| 1454 |
+
},
|
| 1455 |
+
{
|
| 1456 |
+
"epoch": 0.6902356902356902,
|
| 1457 |
+
"grad_norm": 0.4034753143787384,
|
| 1458 |
+
"learning_rate": 9.95671123203224e-05,
|
| 1459 |
+
"loss": 0.2984,
|
| 1460 |
+
"step": 205
|
| 1461 |
+
},
|
| 1462 |
+
{
|
| 1463 |
+
"epoch": 0.6936026936026936,
|
| 1464 |
+
"grad_norm": 0.3650234043598175,
|
| 1465 |
+
"learning_rate": 9.955153736662493e-05,
|
| 1466 |
+
"loss": 0.2772,
|
| 1467 |
+
"step": 206
|
| 1468 |
+
},
|
| 1469 |
+
{
|
| 1470 |
+
"epoch": 0.696969696969697,
|
| 1471 |
+
"grad_norm": 0.47222810983657837,
|
| 1472 |
+
"learning_rate": 9.953568841721797e-05,
|
| 1473 |
+
"loss": 0.28,
|
| 1474 |
+
"step": 207
|
| 1475 |
+
},
|
| 1476 |
+
{
|
| 1477 |
+
"epoch": 0.7003367003367004,
|
| 1478 |
+
"grad_norm": 0.3858278691768646,
|
| 1479 |
+
"learning_rate": 9.95195655597384e-05,
|
| 1480 |
+
"loss": 0.2815,
|
| 1481 |
+
"step": 208
|
| 1482 |
+
},
|
| 1483 |
+
{
|
| 1484 |
+
"epoch": 0.7037037037037037,
|
| 1485 |
+
"grad_norm": 0.4259450435638428,
|
| 1486 |
+
"learning_rate": 9.950316888333775e-05,
|
| 1487 |
+
"loss": 0.2965,
|
| 1488 |
+
"step": 209
|
| 1489 |
+
},
|
| 1490 |
+
{
|
| 1491 |
+
"epoch": 0.7070707070707071,
|
| 1492 |
+
"grad_norm": 0.4309611916542053,
|
| 1493 |
+
"learning_rate": 9.948649847868159e-05,
|
| 1494 |
+
"loss": 0.2766,
|
| 1495 |
+
"step": 210
|
| 1496 |
+
},
|
| 1497 |
+
{
|
| 1498 |
+
"epoch": 0.7104377104377104,
|
| 1499 |
+
"grad_norm": 0.4742699861526489,
|
| 1500 |
+
"learning_rate": 9.946955443794908e-05,
|
| 1501 |
+
"loss": 0.2859,
|
| 1502 |
+
"step": 211
|
| 1503 |
+
},
|
| 1504 |
+
{
|
| 1505 |
+
"epoch": 0.7138047138047138,
|
| 1506 |
+
"grad_norm": 0.4079667329788208,
|
| 1507 |
+
"learning_rate": 9.945233685483246e-05,
|
| 1508 |
+
"loss": 0.283,
|
| 1509 |
+
"step": 212
|
| 1510 |
+
},
|
| 1511 |
+
{
|
| 1512 |
+
"epoch": 0.7171717171717171,
|
| 1513 |
+
"grad_norm": 0.42072775959968567,
|
| 1514 |
+
"learning_rate": 9.943484582453653e-05,
|
| 1515 |
+
"loss": 0.298,
|
| 1516 |
+
"step": 213
|
| 1517 |
+
},
|
| 1518 |
+
{
|
| 1519 |
+
"epoch": 0.7205387205387206,
|
| 1520 |
+
"grad_norm": 0.43136894702911377,
|
| 1521 |
+
"learning_rate": 9.941708144377813e-05,
|
| 1522 |
+
"loss": 0.2693,
|
| 1523 |
+
"step": 214
|
| 1524 |
+
},
|
| 1525 |
+
{
|
| 1526 |
+
"epoch": 0.7239057239057239,
|
| 1527 |
+
"grad_norm": 0.42598387598991394,
|
| 1528 |
+
"learning_rate": 9.939904381078553e-05,
|
| 1529 |
+
"loss": 0.2836,
|
| 1530 |
+
"step": 215
|
| 1531 |
+
},
|
| 1532 |
+
{
|
| 1533 |
+
"epoch": 0.7272727272727273,
|
| 1534 |
+
"grad_norm": 0.40432655811309814,
|
| 1535 |
+
"learning_rate": 9.938073302529804e-05,
|
| 1536 |
+
"loss": 0.2844,
|
| 1537 |
+
"step": 216
|
| 1538 |
+
},
|
| 1539 |
+
{
|
| 1540 |
+
"epoch": 0.7306397306397306,
|
| 1541 |
+
"grad_norm": 0.3417808413505554,
|
| 1542 |
+
"learning_rate": 9.93621491885653e-05,
|
| 1543 |
+
"loss": 0.2849,
|
| 1544 |
+
"step": 217
|
| 1545 |
+
},
|
| 1546 |
+
{
|
| 1547 |
+
"epoch": 0.734006734006734,
|
| 1548 |
+
"grad_norm": 0.35036516189575195,
|
| 1549 |
+
"learning_rate": 9.934329240334686e-05,
|
| 1550 |
+
"loss": 0.2619,
|
| 1551 |
+
"step": 218
|
| 1552 |
+
},
|
| 1553 |
+
{
|
| 1554 |
+
"epoch": 0.7373737373737373,
|
| 1555 |
+
"grad_norm": 0.38956964015960693,
|
| 1556 |
+
"learning_rate": 9.932416277391143e-05,
|
| 1557 |
+
"loss": 0.2802,
|
| 1558 |
+
"step": 219
|
| 1559 |
+
},
|
| 1560 |
+
{
|
| 1561 |
+
"epoch": 0.7407407407407407,
|
| 1562 |
+
"grad_norm": 0.36884164810180664,
|
| 1563 |
+
"learning_rate": 9.930476040603653e-05,
|
| 1564 |
+
"loss": 0.2961,
|
| 1565 |
+
"step": 220
|
| 1566 |
+
},
|
| 1567 |
+
{
|
| 1568 |
+
"epoch": 0.7441077441077442,
|
| 1569 |
+
"grad_norm": 0.4145122468471527,
|
| 1570 |
+
"learning_rate": 9.928508540700774e-05,
|
| 1571 |
+
"loss": 0.2789,
|
| 1572 |
+
"step": 221
|
| 1573 |
+
},
|
| 1574 |
+
{
|
| 1575 |
+
"epoch": 0.7474747474747475,
|
| 1576 |
+
"grad_norm": 0.36580273509025574,
|
| 1577 |
+
"learning_rate": 9.926513788561816e-05,
|
| 1578 |
+
"loss": 0.2824,
|
| 1579 |
+
"step": 222
|
| 1580 |
+
},
|
| 1581 |
+
{
|
| 1582 |
+
"epoch": 0.7508417508417509,
|
| 1583 |
+
"grad_norm": 0.2912370264530182,
|
| 1584 |
+
"learning_rate": 9.924491795216777e-05,
|
| 1585 |
+
"loss": 0.2811,
|
| 1586 |
+
"step": 223
|
| 1587 |
+
},
|
| 1588 |
+
{
|
| 1589 |
+
"epoch": 0.7542087542087542,
|
| 1590 |
+
"grad_norm": 0.480868399143219,
|
| 1591 |
+
"learning_rate": 9.922442571846293e-05,
|
| 1592 |
+
"loss": 0.2853,
|
| 1593 |
+
"step": 224
|
| 1594 |
+
},
|
| 1595 |
+
{
|
| 1596 |
+
"epoch": 0.7575757575757576,
|
| 1597 |
+
"grad_norm": 0.3405955135822296,
|
| 1598 |
+
"learning_rate": 9.920366129781564e-05,
|
| 1599 |
+
"loss": 0.2908,
|
| 1600 |
+
"step": 225
|
| 1601 |
+
},
|
| 1602 |
+
{
|
| 1603 |
+
"epoch": 0.7609427609427609,
|
| 1604 |
+
"grad_norm": 0.34814175963401794,
|
| 1605 |
+
"learning_rate": 9.918262480504295e-05,
|
| 1606 |
+
"loss": 0.2923,
|
| 1607 |
+
"step": 226
|
| 1608 |
+
},
|
| 1609 |
+
{
|
| 1610 |
+
"epoch": 0.7643097643097643,
|
| 1611 |
+
"grad_norm": 0.36179670691490173,
|
| 1612 |
+
"learning_rate": 9.916131635646635e-05,
|
| 1613 |
+
"loss": 0.276,
|
| 1614 |
+
"step": 227
|
| 1615 |
+
},
|
| 1616 |
+
{
|
| 1617 |
+
"epoch": 0.7676767676767676,
|
| 1618 |
+
"grad_norm": 0.3848663568496704,
|
| 1619 |
+
"learning_rate": 9.913973606991113e-05,
|
| 1620 |
+
"loss": 0.264,
|
| 1621 |
+
"step": 228
|
| 1622 |
+
},
|
| 1623 |
+
{
|
| 1624 |
+
"epoch": 0.7710437710437711,
|
| 1625 |
+
"grad_norm": 0.4516603648662567,
|
| 1626 |
+
"learning_rate": 9.911788406470569e-05,
|
| 1627 |
+
"loss": 0.2854,
|
| 1628 |
+
"step": 229
|
| 1629 |
+
},
|
| 1630 |
+
{
|
| 1631 |
+
"epoch": 0.7744107744107744,
|
| 1632 |
+
"grad_norm": 0.4367293119430542,
|
| 1633 |
+
"learning_rate": 9.90957604616809e-05,
|
| 1634 |
+
"loss": 0.2802,
|
| 1635 |
+
"step": 230
|
| 1636 |
+
},
|
| 1637 |
+
{
|
| 1638 |
+
"epoch": 0.7777777777777778,
|
| 1639 |
+
"grad_norm": 0.41222095489501953,
|
| 1640 |
+
"learning_rate": 9.907336538316944e-05,
|
| 1641 |
+
"loss": 0.275,
|
| 1642 |
+
"step": 231
|
| 1643 |
+
},
|
| 1644 |
+
{
|
| 1645 |
+
"epoch": 0.7811447811447811,
|
| 1646 |
+
"grad_norm": 0.4176308810710907,
|
| 1647 |
+
"learning_rate": 9.905069895300514e-05,
|
| 1648 |
+
"loss": 0.2854,
|
| 1649 |
+
"step": 232
|
| 1650 |
+
},
|
| 1651 |
+
{
|
| 1652 |
+
"epoch": 0.7845117845117845,
|
| 1653 |
+
"grad_norm": 0.4087597131729126,
|
| 1654 |
+
"learning_rate": 9.902776129652223e-05,
|
| 1655 |
+
"loss": 0.2868,
|
| 1656 |
+
"step": 233
|
| 1657 |
+
},
|
| 1658 |
+
{
|
| 1659 |
+
"epoch": 0.7878787878787878,
|
| 1660 |
+
"grad_norm": 0.41595739126205444,
|
| 1661 |
+
"learning_rate": 9.900455254055467e-05,
|
| 1662 |
+
"loss": 0.2835,
|
| 1663 |
+
"step": 234
|
| 1664 |
+
},
|
| 1665 |
+
{
|
| 1666 |
+
"epoch": 0.7912457912457912,
|
| 1667 |
+
"grad_norm": 0.5036376118659973,
|
| 1668 |
+
"learning_rate": 9.898107281343556e-05,
|
| 1669 |
+
"loss": 0.2775,
|
| 1670 |
+
"step": 235
|
| 1671 |
+
},
|
| 1672 |
+
{
|
| 1673 |
+
"epoch": 0.7946127946127947,
|
| 1674 |
+
"grad_norm": 0.46533098816871643,
|
| 1675 |
+
"learning_rate": 9.895732224499625e-05,
|
| 1676 |
+
"loss": 0.285,
|
| 1677 |
+
"step": 236
|
| 1678 |
+
},
|
| 1679 |
+
{
|
| 1680 |
+
"epoch": 0.797979797979798,
|
| 1681 |
+
"grad_norm": 0.4155175983905792,
|
| 1682 |
+
"learning_rate": 9.893330096656574e-05,
|
| 1683 |
+
"loss": 0.2877,
|
| 1684 |
+
"step": 237
|
| 1685 |
+
},
|
| 1686 |
+
{
|
| 1687 |
+
"epoch": 0.8013468013468014,
|
| 1688 |
+
"grad_norm": 0.34219178557395935,
|
| 1689 |
+
"learning_rate": 9.890900911096992e-05,
|
| 1690 |
+
"loss": 0.2751,
|
| 1691 |
+
"step": 238
|
| 1692 |
+
},
|
| 1693 |
+
{
|
| 1694 |
+
"epoch": 0.8047138047138047,
|
| 1695 |
+
"grad_norm": 0.39359742403030396,
|
| 1696 |
+
"learning_rate": 9.888444681253086e-05,
|
| 1697 |
+
"loss": 0.2758,
|
| 1698 |
+
"step": 239
|
| 1699 |
+
},
|
| 1700 |
+
{
|
| 1701 |
+
"epoch": 0.8080808080808081,
|
| 1702 |
+
"grad_norm": 0.3699426054954529,
|
| 1703 |
+
"learning_rate": 9.885961420706602e-05,
|
| 1704 |
+
"loss": 0.2758,
|
| 1705 |
+
"step": 240
|
| 1706 |
+
},
|
| 1707 |
+
{
|
| 1708 |
+
"epoch": 0.8114478114478114,
|
| 1709 |
+
"grad_norm": 0.3353779911994934,
|
| 1710 |
+
"learning_rate": 9.883451143188753e-05,
|
| 1711 |
+
"loss": 0.2891,
|
| 1712 |
+
"step": 241
|
| 1713 |
+
},
|
| 1714 |
+
{
|
| 1715 |
+
"epoch": 0.8148148148148148,
|
| 1716 |
+
"grad_norm": 0.3476376235485077,
|
| 1717 |
+
"learning_rate": 9.880913862580145e-05,
|
| 1718 |
+
"loss": 0.2699,
|
| 1719 |
+
"step": 242
|
| 1720 |
+
},
|
| 1721 |
+
{
|
| 1722 |
+
"epoch": 0.8181818181818182,
|
| 1723 |
+
"grad_norm": 0.37724611163139343,
|
| 1724 |
+
"learning_rate": 9.878349592910692e-05,
|
| 1725 |
+
"loss": 0.2759,
|
| 1726 |
+
"step": 243
|
| 1727 |
+
},
|
| 1728 |
+
{
|
| 1729 |
+
"epoch": 0.8215488215488216,
|
| 1730 |
+
"grad_norm": 0.3629307150840759,
|
| 1731 |
+
"learning_rate": 9.875758348359552e-05,
|
| 1732 |
+
"loss": 0.2741,
|
| 1733 |
+
"step": 244
|
| 1734 |
+
},
|
| 1735 |
+
{
|
| 1736 |
+
"epoch": 0.8249158249158249,
|
| 1737 |
+
"grad_norm": 0.35653156042099,
|
| 1738 |
+
"learning_rate": 9.873140143255036e-05,
|
| 1739 |
+
"loss": 0.2717,
|
| 1740 |
+
"step": 245
|
| 1741 |
+
},
|
| 1742 |
+
{
|
| 1743 |
+
"epoch": 0.8282828282828283,
|
| 1744 |
+
"grad_norm": 0.37418127059936523,
|
| 1745 |
+
"learning_rate": 9.870494992074533e-05,
|
| 1746 |
+
"loss": 0.2743,
|
| 1747 |
+
"step": 246
|
| 1748 |
+
},
|
| 1749 |
+
{
|
| 1750 |
+
"epoch": 0.8316498316498316,
|
| 1751 |
+
"grad_norm": 0.3299245238304138,
|
| 1752 |
+
"learning_rate": 9.867822909444434e-05,
|
| 1753 |
+
"loss": 0.2751,
|
| 1754 |
+
"step": 247
|
| 1755 |
+
},
|
| 1756 |
+
{
|
| 1757 |
+
"epoch": 0.835016835016835,
|
| 1758 |
+
"grad_norm": 0.3463493585586548,
|
| 1759 |
+
"learning_rate": 9.865123910140046e-05,
|
| 1760 |
+
"loss": 0.2778,
|
| 1761 |
+
"step": 248
|
| 1762 |
+
},
|
| 1763 |
+
{
|
| 1764 |
+
"epoch": 0.8383838383838383,
|
| 1765 |
+
"grad_norm": 0.5460504293441772,
|
| 1766 |
+
"learning_rate": 9.862398009085511e-05,
|
| 1767 |
+
"loss": 0.2799,
|
| 1768 |
+
"step": 249
|
| 1769 |
+
},
|
| 1770 |
+
{
|
| 1771 |
+
"epoch": 0.8417508417508418,
|
| 1772 |
+
"grad_norm": 0.3625568151473999,
|
| 1773 |
+
"learning_rate": 9.859645221353725e-05,
|
| 1774 |
+
"loss": 0.2641,
|
| 1775 |
+
"step": 250
|
| 1776 |
+
},
|
| 1777 |
+
{
|
| 1778 |
+
"epoch": 0.8451178451178452,
|
| 1779 |
+
"grad_norm": 0.37554433941841125,
|
| 1780 |
+
"learning_rate": 9.856865562166256e-05,
|
| 1781 |
+
"loss": 0.2625,
|
| 1782 |
+
"step": 251
|
| 1783 |
+
},
|
| 1784 |
+
{
|
| 1785 |
+
"epoch": 0.8484848484848485,
|
| 1786 |
+
"grad_norm": 0.4169292449951172,
|
| 1787 |
+
"learning_rate": 9.854059046893257e-05,
|
| 1788 |
+
"loss": 0.2754,
|
| 1789 |
+
"step": 252
|
| 1790 |
+
},
|
| 1791 |
+
{
|
| 1792 |
+
"epoch": 0.8518518518518519,
|
| 1793 |
+
"grad_norm": 0.4144760072231293,
|
| 1794 |
+
"learning_rate": 9.85122569105338e-05,
|
| 1795 |
+
"loss": 0.2764,
|
| 1796 |
+
"step": 253
|
| 1797 |
+
},
|
| 1798 |
+
{
|
| 1799 |
+
"epoch": 0.8552188552188552,
|
| 1800 |
+
"grad_norm": 0.3319230079650879,
|
| 1801 |
+
"learning_rate": 9.848365510313695e-05,
|
| 1802 |
+
"loss": 0.2812,
|
| 1803 |
+
"step": 254
|
| 1804 |
+
},
|
| 1805 |
+
{
|
| 1806 |
+
"epoch": 0.8585858585858586,
|
| 1807 |
+
"grad_norm": 0.31481847167015076,
|
| 1808 |
+
"learning_rate": 9.845478520489599e-05,
|
| 1809 |
+
"loss": 0.2534,
|
| 1810 |
+
"step": 255
|
| 1811 |
+
},
|
| 1812 |
+
{
|
| 1813 |
+
"epoch": 0.8619528619528619,
|
| 1814 |
+
"grad_norm": 0.37751275300979614,
|
| 1815 |
+
"learning_rate": 9.842564737544731e-05,
|
| 1816 |
+
"loss": 0.2796,
|
| 1817 |
+
"step": 256
|
| 1818 |
+
},
|
| 1819 |
+
{
|
| 1820 |
+
"epoch": 0.8653198653198653,
|
| 1821 |
+
"grad_norm": 0.4334275424480438,
|
| 1822 |
+
"learning_rate": 9.83962417759088e-05,
|
| 1823 |
+
"loss": 0.2829,
|
| 1824 |
+
"step": 257
|
| 1825 |
+
},
|
| 1826 |
+
{
|
| 1827 |
+
"epoch": 0.8686868686868687,
|
| 1828 |
+
"grad_norm": 0.4017227590084076,
|
| 1829 |
+
"learning_rate": 9.836656856887903e-05,
|
| 1830 |
+
"loss": 0.2667,
|
| 1831 |
+
"step": 258
|
| 1832 |
+
},
|
| 1833 |
+
{
|
| 1834 |
+
"epoch": 0.8720538720538721,
|
| 1835 |
+
"grad_norm": 0.42103585600852966,
|
| 1836 |
+
"learning_rate": 9.833662791843627e-05,
|
| 1837 |
+
"loss": 0.2631,
|
| 1838 |
+
"step": 259
|
| 1839 |
+
},
|
| 1840 |
+
{
|
| 1841 |
+
"epoch": 0.8754208754208754,
|
| 1842 |
+
"grad_norm": 0.34120380878448486,
|
| 1843 |
+
"learning_rate": 9.830641999013768e-05,
|
| 1844 |
+
"loss": 0.2613,
|
| 1845 |
+
"step": 260
|
| 1846 |
+
},
|
| 1847 |
+
{
|
| 1848 |
+
"epoch": 0.8787878787878788,
|
| 1849 |
+
"grad_norm": 0.49804946780204773,
|
| 1850 |
+
"learning_rate": 9.827594495101823e-05,
|
| 1851 |
+
"loss": 0.2675,
|
| 1852 |
+
"step": 261
|
| 1853 |
+
},
|
| 1854 |
+
{
|
| 1855 |
+
"epoch": 0.8821548821548821,
|
| 1856 |
+
"grad_norm": 0.3861115574836731,
|
| 1857 |
+
"learning_rate": 9.824520296959001e-05,
|
| 1858 |
+
"loss": 0.2708,
|
| 1859 |
+
"step": 262
|
| 1860 |
+
},
|
| 1861 |
+
{
|
| 1862 |
+
"epoch": 0.8855218855218855,
|
| 1863 |
+
"grad_norm": 0.39489248394966125,
|
| 1864 |
+
"learning_rate": 9.821419421584107e-05,
|
| 1865 |
+
"loss": 0.2831,
|
| 1866 |
+
"step": 263
|
| 1867 |
+
},
|
| 1868 |
+
{
|
| 1869 |
+
"epoch": 0.8888888888888888,
|
| 1870 |
+
"grad_norm": 0.3506355881690979,
|
| 1871 |
+
"learning_rate": 9.818291886123463e-05,
|
| 1872 |
+
"loss": 0.2784,
|
| 1873 |
+
"step": 264
|
| 1874 |
+
},
|
| 1875 |
+
{
|
| 1876 |
+
"epoch": 0.8922558922558923,
|
| 1877 |
+
"grad_norm": 0.35518354177474976,
|
| 1878 |
+
"learning_rate": 9.815137707870805e-05,
|
| 1879 |
+
"loss": 0.2671,
|
| 1880 |
+
"step": 265
|
| 1881 |
+
},
|
| 1882 |
+
{
|
| 1883 |
+
"epoch": 0.8956228956228957,
|
| 1884 |
+
"grad_norm": 0.35561174154281616,
|
| 1885 |
+
"learning_rate": 9.811956904267195e-05,
|
| 1886 |
+
"loss": 0.2784,
|
| 1887 |
+
"step": 266
|
| 1888 |
+
},
|
| 1889 |
+
{
|
| 1890 |
+
"epoch": 0.898989898989899,
|
| 1891 |
+
"grad_norm": 0.3117510974407196,
|
| 1892 |
+
"learning_rate": 9.808749492900918e-05,
|
| 1893 |
+
"loss": 0.2824,
|
| 1894 |
+
"step": 267
|
| 1895 |
+
},
|
| 1896 |
+
{
|
| 1897 |
+
"epoch": 0.9023569023569024,
|
| 1898 |
+
"grad_norm": 0.34295716881752014,
|
| 1899 |
+
"learning_rate": 9.805515491507382e-05,
|
| 1900 |
+
"loss": 0.2704,
|
| 1901 |
+
"step": 268
|
| 1902 |
+
},
|
| 1903 |
+
{
|
| 1904 |
+
"epoch": 0.9057239057239057,
|
| 1905 |
+
"grad_norm": 0.3531172275543213,
|
| 1906 |
+
"learning_rate": 9.802254917969032e-05,
|
| 1907 |
+
"loss": 0.2712,
|
| 1908 |
+
"step": 269
|
| 1909 |
+
},
|
| 1910 |
+
{
|
| 1911 |
+
"epoch": 0.9090909090909091,
|
| 1912 |
+
"grad_norm": 0.3834570646286011,
|
| 1913 |
+
"learning_rate": 9.798967790315244e-05,
|
| 1914 |
+
"loss": 0.285,
|
| 1915 |
+
"step": 270
|
| 1916 |
+
},
|
| 1917 |
+
{
|
| 1918 |
+
"epoch": 0.9124579124579124,
|
| 1919 |
+
"grad_norm": 0.2960718274116516,
|
| 1920 |
+
"learning_rate": 9.795654126722217e-05,
|
| 1921 |
+
"loss": 0.2786,
|
| 1922 |
+
"step": 271
|
| 1923 |
+
},
|
| 1924 |
+
{
|
| 1925 |
+
"epoch": 0.9158249158249159,
|
| 1926 |
+
"grad_norm": 0.3393447697162628,
|
| 1927 |
+
"learning_rate": 9.79231394551289e-05,
|
| 1928 |
+
"loss": 0.2841,
|
| 1929 |
+
"step": 272
|
| 1930 |
+
},
|
| 1931 |
+
{
|
| 1932 |
+
"epoch": 0.9191919191919192,
|
| 1933 |
+
"grad_norm": 0.313174843788147,
|
| 1934 |
+
"learning_rate": 9.788947265156827e-05,
|
| 1935 |
+
"loss": 0.2605,
|
| 1936 |
+
"step": 273
|
| 1937 |
+
},
|
| 1938 |
+
{
|
| 1939 |
+
"epoch": 0.9225589225589226,
|
| 1940 |
+
"grad_norm": 0.3173663914203644,
|
| 1941 |
+
"learning_rate": 9.785554104270118e-05,
|
| 1942 |
+
"loss": 0.2564,
|
| 1943 |
+
"step": 274
|
| 1944 |
+
},
|
| 1945 |
+
{
|
| 1946 |
+
"epoch": 0.9259259259259259,
|
| 1947 |
+
"grad_norm": 0.36193931102752686,
|
| 1948 |
+
"learning_rate": 9.782134481615281e-05,
|
| 1949 |
+
"loss": 0.2659,
|
| 1950 |
+
"step": 275
|
| 1951 |
+
},
|
| 1952 |
+
{
|
| 1953 |
+
"epoch": 0.9292929292929293,
|
| 1954 |
+
"grad_norm": 0.3565308451652527,
|
| 1955 |
+
"learning_rate": 9.778688416101154e-05,
|
| 1956 |
+
"loss": 0.2734,
|
| 1957 |
+
"step": 276
|
| 1958 |
+
},
|
| 1959 |
+
{
|
| 1960 |
+
"epoch": 0.9326599326599326,
|
| 1961 |
+
"grad_norm": 0.32475653290748596,
|
| 1962 |
+
"learning_rate": 9.775215926782788e-05,
|
| 1963 |
+
"loss": 0.2754,
|
| 1964 |
+
"step": 277
|
| 1965 |
+
},
|
| 1966 |
+
{
|
| 1967 |
+
"epoch": 0.936026936026936,
|
| 1968 |
+
"grad_norm": 0.4006199836730957,
|
| 1969 |
+
"learning_rate": 9.771717032861346e-05,
|
| 1970 |
+
"loss": 0.2662,
|
| 1971 |
+
"step": 278
|
| 1972 |
+
},
|
| 1973 |
+
{
|
| 1974 |
+
"epoch": 0.9393939393939394,
|
| 1975 |
+
"grad_norm": 0.31218966841697693,
|
| 1976 |
+
"learning_rate": 9.768191753683998e-05,
|
| 1977 |
+
"loss": 0.2442,
|
| 1978 |
+
"step": 279
|
| 1979 |
+
},
|
| 1980 |
+
{
|
| 1981 |
+
"epoch": 0.9427609427609428,
|
| 1982 |
+
"grad_norm": 0.3531815707683563,
|
| 1983 |
+
"learning_rate": 9.764640108743808e-05,
|
| 1984 |
+
"loss": 0.2485,
|
| 1985 |
+
"step": 280
|
| 1986 |
+
},
|
| 1987 |
+
{
|
| 1988 |
+
"epoch": 0.9461279461279462,
|
| 1989 |
+
"grad_norm": 0.38060134649276733,
|
| 1990 |
+
"learning_rate": 9.761062117679632e-05,
|
| 1991 |
+
"loss": 0.2797,
|
| 1992 |
+
"step": 281
|
| 1993 |
+
},
|
| 1994 |
+
{
|
| 1995 |
+
"epoch": 0.9494949494949495,
|
| 1996 |
+
"grad_norm": 0.416530966758728,
|
| 1997 |
+
"learning_rate": 9.757457800276006e-05,
|
| 1998 |
+
"loss": 0.2615,
|
| 1999 |
+
"step": 282
|
| 2000 |
+
},
|
| 2001 |
+
{
|
| 2002 |
+
"epoch": 0.9528619528619529,
|
| 2003 |
+
"grad_norm": 0.3815469741821289,
|
| 2004 |
+
"learning_rate": 9.75382717646304e-05,
|
| 2005 |
+
"loss": 0.255,
|
| 2006 |
+
"step": 283
|
| 2007 |
+
},
|
| 2008 |
+
{
|
| 2009 |
+
"epoch": 0.9562289562289562,
|
| 2010 |
+
"grad_norm": 0.41139233112335205,
|
| 2011 |
+
"learning_rate": 9.750170266316303e-05,
|
| 2012 |
+
"loss": 0.2615,
|
| 2013 |
+
"step": 284
|
| 2014 |
+
},
|
| 2015 |
+
{
|
| 2016 |
+
"epoch": 0.9595959595959596,
|
| 2017 |
+
"grad_norm": 0.374959260225296,
|
| 2018 |
+
"learning_rate": 9.746487090056713e-05,
|
| 2019 |
+
"loss": 0.2638,
|
| 2020 |
+
"step": 285
|
| 2021 |
+
},
|
| 2022 |
+
{
|
| 2023 |
+
"epoch": 0.9629629629629629,
|
| 2024 |
+
"grad_norm": 0.35468292236328125,
|
| 2025 |
+
"learning_rate": 9.742777668050434e-05,
|
| 2026 |
+
"loss": 0.2572,
|
| 2027 |
+
"step": 286
|
| 2028 |
+
},
|
| 2029 |
+
{
|
| 2030 |
+
"epoch": 0.9663299663299664,
|
| 2031 |
+
"grad_norm": 0.35659849643707275,
|
| 2032 |
+
"learning_rate": 9.739042020808746e-05,
|
| 2033 |
+
"loss": 0.266,
|
| 2034 |
+
"step": 287
|
| 2035 |
+
},
|
| 2036 |
+
{
|
| 2037 |
+
"epoch": 0.9696969696969697,
|
| 2038 |
+
"grad_norm": 0.37296387553215027,
|
| 2039 |
+
"learning_rate": 9.735280168987949e-05,
|
| 2040 |
+
"loss": 0.2677,
|
| 2041 |
+
"step": 288
|
| 2042 |
+
},
|
| 2043 |
+
{
|
| 2044 |
+
"epoch": 0.9730639730639731,
|
| 2045 |
+
"grad_norm": 0.34908655285835266,
|
| 2046 |
+
"learning_rate": 9.73149213338924e-05,
|
| 2047 |
+
"loss": 0.2732,
|
| 2048 |
+
"step": 289
|
| 2049 |
+
},
|
| 2050 |
+
{
|
| 2051 |
+
"epoch": 0.9764309764309764,
|
| 2052 |
+
"grad_norm": 0.3758234679698944,
|
| 2053 |
+
"learning_rate": 9.727677934958599e-05,
|
| 2054 |
+
"loss": 0.2738,
|
| 2055 |
+
"step": 290
|
| 2056 |
+
},
|
| 2057 |
+
{
|
| 2058 |
+
"epoch": 0.9797979797979798,
|
| 2059 |
+
"grad_norm": 0.35159602761268616,
|
| 2060 |
+
"learning_rate": 9.723837594786672e-05,
|
| 2061 |
+
"loss": 0.2684,
|
| 2062 |
+
"step": 291
|
| 2063 |
+
},
|
| 2064 |
+
{
|
| 2065 |
+
"epoch": 0.9831649831649831,
|
| 2066 |
+
"grad_norm": 0.33813127875328064,
|
| 2067 |
+
"learning_rate": 9.719971134108658e-05,
|
| 2068 |
+
"loss": 0.2682,
|
| 2069 |
+
"step": 292
|
| 2070 |
+
},
|
| 2071 |
+
{
|
| 2072 |
+
"epoch": 0.9865319865319865,
|
| 2073 |
+
"grad_norm": 0.32259315252304077,
|
| 2074 |
+
"learning_rate": 9.716078574304189e-05,
|
| 2075 |
+
"loss": 0.2721,
|
| 2076 |
+
"step": 293
|
| 2077 |
+
},
|
| 2078 |
+
{
|
| 2079 |
+
"epoch": 0.98989898989899,
|
| 2080 |
+
"grad_norm": 0.3467171788215637,
|
| 2081 |
+
"learning_rate": 9.712159936897213e-05,
|
| 2082 |
+
"loss": 0.264,
|
| 2083 |
+
"step": 294
|
| 2084 |
+
},
|
| 2085 |
+
{
|
| 2086 |
+
"epoch": 0.9932659932659933,
|
| 2087 |
+
"grad_norm": 0.33499976992607117,
|
| 2088 |
+
"learning_rate": 9.708215243555875e-05,
|
| 2089 |
+
"loss": 0.2636,
|
| 2090 |
+
"step": 295
|
| 2091 |
+
},
|
| 2092 |
+
{
|
| 2093 |
+
"epoch": 0.9966329966329966,
|
| 2094 |
+
"grad_norm": 0.2971048355102539,
|
| 2095 |
+
"learning_rate": 9.704244516092392e-05,
|
| 2096 |
+
"loss": 0.2644,
|
| 2097 |
+
"step": 296
|
| 2098 |
+
},
|
| 2099 |
+
{
|
| 2100 |
+
"epoch": 1.0,
|
| 2101 |
+
"grad_norm": 0.3515819013118744,
|
| 2102 |
+
"learning_rate": 9.700247776462943e-05,
|
| 2103 |
+
"loss": 0.2587,
|
| 2104 |
+
"step": 297
|
| 2105 |
+
},
|
| 2106 |
+
{
|
| 2107 |
+
"epoch": 1.0033670033670035,
|
| 2108 |
+
"grad_norm": 0.31730222702026367,
|
| 2109 |
+
"learning_rate": 9.696225046767538e-05,
|
| 2110 |
+
"loss": 0.2544,
|
| 2111 |
+
"step": 298
|
| 2112 |
+
},
|
| 2113 |
+
{
|
| 2114 |
+
"epoch": 1.0067340067340067,
|
| 2115 |
+
"grad_norm": 0.3283955752849579,
|
| 2116 |
+
"learning_rate": 9.6921763492499e-05,
|
| 2117 |
+
"loss": 0.2547,
|
| 2118 |
+
"step": 299
|
| 2119 |
+
},
|
| 2120 |
+
{
|
| 2121 |
+
"epoch": 1.0101010101010102,
|
| 2122 |
+
"grad_norm": 0.3477189242839813,
|
| 2123 |
+
"learning_rate": 9.688101706297341e-05,
|
| 2124 |
+
"loss": 0.2639,
|
| 2125 |
+
"step": 300
|
| 2126 |
+
},
|
| 2127 |
+
{
|
| 2128 |
+
"epoch": 1.0101010101010102,
|
| 2129 |
+
"eval_loss": 0.12977388501167297,
|
| 2130 |
+
"eval_runtime": 33.026,
|
| 2131 |
+
"eval_samples_per_second": 30.279,
|
| 2132 |
+
"eval_steps_per_second": 1.908,
|
| 2133 |
+
"step": 300
|
| 2134 |
+
}
|
| 2135 |
+
],
|
| 2136 |
+
"logging_steps": 1,
|
| 2137 |
+
"max_steps": 1485,
|
| 2138 |
+
"num_input_tokens_seen": 0,
|
| 2139 |
+
"num_train_epochs": 5,
|
| 2140 |
+
"save_steps": 100,
|
| 2141 |
+
"stateful_callbacks": {
|
| 2142 |
+
"TrainerControl": {
|
| 2143 |
+
"args": {
|
| 2144 |
+
"should_epoch_stop": false,
|
| 2145 |
+
"should_evaluate": false,
|
| 2146 |
+
"should_log": false,
|
| 2147 |
+
"should_save": true,
|
| 2148 |
+
"should_training_stop": false
|
| 2149 |
+
},
|
| 2150 |
+
"attributes": {}
|
| 2151 |
+
}
|
| 2152 |
+
},
|
| 2153 |
+
"total_flos": 4.0144381690668646e+17,
|
| 2154 |
+
"train_batch_size": 4,
|
| 2155 |
+
"trial_name": null,
|
| 2156 |
+
"trial_params": null
|
| 2157 |
+
}
|
training_args.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:6508d83f63ab1198e30dbd0ff3243ef9c7492121e98c91692ed234e29d5c5577
|
| 3 |
+
size 7288
|
zero_to_fp32.py
ADDED
|
@@ -0,0 +1,760 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python
|
| 2 |
+
|
| 3 |
+
# Copyright (c) Microsoft Corporation.
|
| 4 |
+
# SPDX-License-Identifier: Apache-2.0
|
| 5 |
+
|
| 6 |
+
# DeepSpeed Team
|
| 7 |
+
|
| 8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
| 9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
| 10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
| 11 |
+
# application.
|
| 12 |
+
#
|
| 13 |
+
# example:
|
| 14 |
+
# python zero_to_fp32.py . output_dir/
|
| 15 |
+
# or
|
| 16 |
+
# python zero_to_fp32.py . output_dir/ --safe_serialization
|
| 17 |
+
|
| 18 |
+
import argparse
|
| 19 |
+
import torch
|
| 20 |
+
import glob
|
| 21 |
+
import math
|
| 22 |
+
import os
|
| 23 |
+
import re
|
| 24 |
+
import gc
|
| 25 |
+
import json
|
| 26 |
+
import numpy as np
|
| 27 |
+
from tqdm import tqdm
|
| 28 |
+
from collections import OrderedDict
|
| 29 |
+
from dataclasses import dataclass
|
| 30 |
+
|
| 31 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
| 32 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
| 33 |
+
from deepspeed.utils import logger
|
| 34 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
| 35 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
| 36 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
@dataclass
|
| 40 |
+
class zero_model_state:
|
| 41 |
+
buffers: dict()
|
| 42 |
+
param_shapes: dict()
|
| 43 |
+
shared_params: list
|
| 44 |
+
ds_version: int
|
| 45 |
+
frozen_param_shapes: dict()
|
| 46 |
+
frozen_param_fragments: dict()
|
| 47 |
+
|
| 48 |
+
|
| 49 |
+
debug = 0
|
| 50 |
+
|
| 51 |
+
# load to cpu
|
| 52 |
+
device = torch.device('cpu')
|
| 53 |
+
|
| 54 |
+
|
| 55 |
+
def atoi(text):
|
| 56 |
+
return int(text) if text.isdigit() else text
|
| 57 |
+
|
| 58 |
+
|
| 59 |
+
def natural_keys(text):
|
| 60 |
+
'''
|
| 61 |
+
alist.sort(key=natural_keys) sorts in human order
|
| 62 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
| 63 |
+
(See Toothy's implementation in the comments)
|
| 64 |
+
'''
|
| 65 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
| 66 |
+
|
| 67 |
+
|
| 68 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
| 69 |
+
if not os.path.isdir(checkpoint_dir):
|
| 70 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
| 71 |
+
|
| 72 |
+
# there should be only one file
|
| 73 |
+
if zero_stage <= 2:
|
| 74 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
| 75 |
+
elif zero_stage == 3:
|
| 76 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
| 77 |
+
|
| 78 |
+
if not os.path.exists(file):
|
| 79 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
| 80 |
+
|
| 81 |
+
return file
|
| 82 |
+
|
| 83 |
+
|
| 84 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
| 85 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
| 86 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
| 87 |
+
|
| 88 |
+
if len(ckpt_files) == 0:
|
| 89 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
| 90 |
+
|
| 91 |
+
return ckpt_files
|
| 92 |
+
|
| 93 |
+
|
| 94 |
+
def get_optim_files(checkpoint_dir):
|
| 95 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
| 96 |
+
|
| 97 |
+
|
| 98 |
+
def get_model_state_files(checkpoint_dir):
|
| 99 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
| 100 |
+
|
| 101 |
+
|
| 102 |
+
def parse_model_states(files):
|
| 103 |
+
zero_model_states = []
|
| 104 |
+
for file in files:
|
| 105 |
+
state_dict = torch.load(file, map_location=device, weights_only=False)
|
| 106 |
+
|
| 107 |
+
if BUFFER_NAMES not in state_dict:
|
| 108 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
| 109 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
| 110 |
+
if debug:
|
| 111 |
+
print("Found buffers:", buffer_names)
|
| 112 |
+
|
| 113 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
| 114 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
| 115 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
| 116 |
+
|
| 117 |
+
# collect parameters that are included in param_shapes
|
| 118 |
+
param_names = []
|
| 119 |
+
for s in param_shapes:
|
| 120 |
+
for name in s.keys():
|
| 121 |
+
param_names.append(name)
|
| 122 |
+
|
| 123 |
+
# update with frozen parameters
|
| 124 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
| 125 |
+
if frozen_param_shapes is not None:
|
| 126 |
+
if debug:
|
| 127 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
| 128 |
+
param_names += list(frozen_param_shapes.keys())
|
| 129 |
+
|
| 130 |
+
# handle shared params
|
| 131 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
| 132 |
+
|
| 133 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
| 134 |
+
|
| 135 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
| 136 |
+
|
| 137 |
+
z_model_state = zero_model_state(buffers=buffers,
|
| 138 |
+
param_shapes=param_shapes,
|
| 139 |
+
shared_params=shared_params,
|
| 140 |
+
ds_version=ds_version,
|
| 141 |
+
frozen_param_shapes=frozen_param_shapes,
|
| 142 |
+
frozen_param_fragments=frozen_param_fragments)
|
| 143 |
+
zero_model_states.append(z_model_state)
|
| 144 |
+
|
| 145 |
+
return zero_model_states
|
| 146 |
+
|
| 147 |
+
|
| 148 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
| 149 |
+
total_files = len(files)
|
| 150 |
+
state_dicts = []
|
| 151 |
+
for f in tqdm(files, desc='Loading checkpoint shards'):
|
| 152 |
+
state_dict = torch.load(f, map_location=device, mmap=True, weights_only=False)
|
| 153 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
| 154 |
+
# and also handle the case where it was already removed by another helper script
|
| 155 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
| 156 |
+
state_dicts.append(state_dict)
|
| 157 |
+
|
| 158 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
| 159 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
| 160 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
| 161 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
| 162 |
+
|
| 163 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
| 164 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
| 165 |
+
# use the max of the partition_count to get the dp world_size.
|
| 166 |
+
|
| 167 |
+
if type(world_size) is list:
|
| 168 |
+
world_size = max(world_size)
|
| 169 |
+
|
| 170 |
+
if world_size != total_files:
|
| 171 |
+
raise ValueError(
|
| 172 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
| 173 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
| 174 |
+
)
|
| 175 |
+
|
| 176 |
+
# the groups are named differently in each stage
|
| 177 |
+
if zero_stage <= 2:
|
| 178 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
| 179 |
+
elif zero_stage == 3:
|
| 180 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
| 181 |
+
else:
|
| 182 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
| 183 |
+
|
| 184 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
| 185 |
+
return zero_stage, world_size, fp32_flat_groups
|
| 186 |
+
|
| 187 |
+
|
| 188 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
|
| 189 |
+
"""
|
| 190 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
| 191 |
+
|
| 192 |
+
Args:
|
| 193 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
| 194 |
+
|
| 195 |
+
"""
|
| 196 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
| 197 |
+
|
| 198 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
| 199 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
| 200 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
| 201 |
+
|
| 202 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
| 203 |
+
|
| 204 |
+
zero_model_states = parse_model_states(model_files)
|
| 205 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
| 206 |
+
|
| 207 |
+
if zero_stage <= 2:
|
| 208 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
| 209 |
+
exclude_frozen_parameters)
|
| 210 |
+
elif zero_stage == 3:
|
| 211 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
| 212 |
+
exclude_frozen_parameters)
|
| 213 |
+
|
| 214 |
+
|
| 215 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
| 216 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
| 217 |
+
return
|
| 218 |
+
|
| 219 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
| 220 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
| 221 |
+
|
| 222 |
+
if debug:
|
| 223 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
| 224 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
| 225 |
+
|
| 226 |
+
wanted_params = len(frozen_param_shapes)
|
| 227 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
| 228 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
| 229 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
| 230 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
| 231 |
+
|
| 232 |
+
total_params = 0
|
| 233 |
+
total_numel = 0
|
| 234 |
+
for name, shape in frozen_param_shapes.items():
|
| 235 |
+
total_params += 1
|
| 236 |
+
unpartitioned_numel = shape.numel()
|
| 237 |
+
total_numel += unpartitioned_numel
|
| 238 |
+
|
| 239 |
+
state_dict[name] = frozen_param_fragments[name]
|
| 240 |
+
|
| 241 |
+
if debug:
|
| 242 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
| 243 |
+
|
| 244 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
| 245 |
+
|
| 246 |
+
|
| 247 |
+
def _has_callable(obj, fn):
|
| 248 |
+
attr = getattr(obj, fn, None)
|
| 249 |
+
return callable(attr)
|
| 250 |
+
|
| 251 |
+
|
| 252 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
| 253 |
+
param_shapes = zero_model_states[0].param_shapes
|
| 254 |
+
|
| 255 |
+
# Reconstruction protocol:
|
| 256 |
+
#
|
| 257 |
+
# XXX: document this
|
| 258 |
+
|
| 259 |
+
if debug:
|
| 260 |
+
for i in range(world_size):
|
| 261 |
+
for j in range(len(fp32_flat_groups[0])):
|
| 262 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
| 263 |
+
|
| 264 |
+
# XXX: memory usage doubles here (zero2)
|
| 265 |
+
num_param_groups = len(fp32_flat_groups[0])
|
| 266 |
+
merged_single_partition_of_fp32_groups = []
|
| 267 |
+
for i in range(num_param_groups):
|
| 268 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
| 269 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
| 270 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
| 271 |
+
avail_numel = sum(
|
| 272 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
| 273 |
+
|
| 274 |
+
if debug:
|
| 275 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
| 276 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
| 277 |
+
# not asserting if there is a mismatch due to possible padding
|
| 278 |
+
print(f"Have {avail_numel} numels to process.")
|
| 279 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
| 280 |
+
|
| 281 |
+
# params
|
| 282 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
| 283 |
+
# out-of-core computing solution
|
| 284 |
+
total_numel = 0
|
| 285 |
+
total_params = 0
|
| 286 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
| 287 |
+
offset = 0
|
| 288 |
+
avail_numel = full_single_fp32_vector.numel()
|
| 289 |
+
for name, shape in shapes.items():
|
| 290 |
+
|
| 291 |
+
unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
|
| 292 |
+
total_numel += unpartitioned_numel
|
| 293 |
+
total_params += 1
|
| 294 |
+
|
| 295 |
+
if debug:
|
| 296 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
| 297 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
| 298 |
+
offset += unpartitioned_numel
|
| 299 |
+
|
| 300 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
| 301 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
| 302 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
| 303 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
| 304 |
+
align_to = 2 * world_size
|
| 305 |
+
|
| 306 |
+
def zero2_align(x):
|
| 307 |
+
return align_to * math.ceil(x / align_to)
|
| 308 |
+
|
| 309 |
+
if debug:
|
| 310 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
| 311 |
+
|
| 312 |
+
offset = zero2_align(offset)
|
| 313 |
+
avail_numel = zero2_align(avail_numel)
|
| 314 |
+
|
| 315 |
+
if debug:
|
| 316 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
| 317 |
+
|
| 318 |
+
# Sanity check
|
| 319 |
+
if offset != avail_numel:
|
| 320 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
| 321 |
+
|
| 322 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
| 323 |
+
|
| 324 |
+
|
| 325 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
| 326 |
+
exclude_frozen_parameters):
|
| 327 |
+
state_dict = OrderedDict()
|
| 328 |
+
|
| 329 |
+
# buffers
|
| 330 |
+
buffers = zero_model_states[0].buffers
|
| 331 |
+
state_dict.update(buffers)
|
| 332 |
+
if debug:
|
| 333 |
+
print(f"added {len(buffers)} buffers")
|
| 334 |
+
|
| 335 |
+
if not exclude_frozen_parameters:
|
| 336 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
| 337 |
+
|
| 338 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
| 339 |
+
|
| 340 |
+
# recover shared parameters
|
| 341 |
+
for pair in zero_model_states[0].shared_params:
|
| 342 |
+
if pair[1] in state_dict:
|
| 343 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
| 344 |
+
|
| 345 |
+
return state_dict
|
| 346 |
+
|
| 347 |
+
|
| 348 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
| 349 |
+
remainder = unpartitioned_numel % world_size
|
| 350 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
| 351 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
| 352 |
+
return partitioned_numel, padding_numel
|
| 353 |
+
|
| 354 |
+
|
| 355 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
| 356 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
| 357 |
+
return
|
| 358 |
+
|
| 359 |
+
if debug:
|
| 360 |
+
for i in range(world_size):
|
| 361 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
| 362 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
| 363 |
+
|
| 364 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
| 365 |
+
wanted_params = len(frozen_param_shapes)
|
| 366 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
| 367 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
| 368 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
| 369 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
| 370 |
+
|
| 371 |
+
total_params = 0
|
| 372 |
+
total_numel = 0
|
| 373 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
| 374 |
+
total_params += 1
|
| 375 |
+
unpartitioned_numel = shape.numel()
|
| 376 |
+
total_numel += unpartitioned_numel
|
| 377 |
+
|
| 378 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
| 379 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
| 380 |
+
|
| 381 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
| 382 |
+
|
| 383 |
+
if debug:
|
| 384 |
+
print(
|
| 385 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
| 386 |
+
)
|
| 387 |
+
|
| 388 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
| 389 |
+
|
| 390 |
+
|
| 391 |
+
class GatheredTensor:
|
| 392 |
+
"""
|
| 393 |
+
A pseudo tensor that collects partitioned weights.
|
| 394 |
+
It is more memory efficient when there are multiple groups.
|
| 395 |
+
"""
|
| 396 |
+
|
| 397 |
+
def __init__(self, flat_groups, flat_groups_offset, offset, partitioned_numel, shape):
|
| 398 |
+
self.flat_groups = flat_groups
|
| 399 |
+
self.flat_groups_offset = flat_groups_offset
|
| 400 |
+
self.offset = offset
|
| 401 |
+
self.partitioned_numel = partitioned_numel
|
| 402 |
+
self.shape = shape
|
| 403 |
+
self.dtype = self.flat_groups[0][0].dtype
|
| 404 |
+
|
| 405 |
+
def contiguous(self):
|
| 406 |
+
"""
|
| 407 |
+
Merge partitioned weights from flat_groups into a single tensor.
|
| 408 |
+
"""
|
| 409 |
+
end_idx = self.offset + self.partitioned_numel
|
| 410 |
+
world_size = len(self.flat_groups)
|
| 411 |
+
pad_flat_param_chunks = []
|
| 412 |
+
|
| 413 |
+
for rank_i in range(world_size):
|
| 414 |
+
# for each rank, we need to collect weights from related group/groups
|
| 415 |
+
flat_groups_at_rank_i = self.flat_groups[rank_i]
|
| 416 |
+
start_group_id = None
|
| 417 |
+
end_group_id = None
|
| 418 |
+
for group_id in range(len(self.flat_groups_offset)):
|
| 419 |
+
if self.flat_groups_offset[group_id] <= self.offset < self.flat_groups_offset[group_id + 1]:
|
| 420 |
+
start_group_id = group_id
|
| 421 |
+
if self.flat_groups_offset[group_id] < end_idx <= self.flat_groups_offset[group_id + 1]:
|
| 422 |
+
end_group_id = group_id
|
| 423 |
+
break
|
| 424 |
+
# collect weights from related group/groups
|
| 425 |
+
for group_id in range(start_group_id, end_group_id + 1):
|
| 426 |
+
flat_tensor = flat_groups_at_rank_i[group_id]
|
| 427 |
+
start_offset = self.offset - self.flat_groups_offset[group_id]
|
| 428 |
+
end_offset = min(end_idx, self.flat_groups_offset[group_id + 1]) - self.flat_groups_offset[group_id]
|
| 429 |
+
pad_flat_param_chunks.append(flat_tensor[start_offset:end_offset])
|
| 430 |
+
|
| 431 |
+
# collect weights from all ranks
|
| 432 |
+
pad_flat_param = torch.cat(pad_flat_param_chunks, dim=0)
|
| 433 |
+
param = pad_flat_param[:self.shape.numel()].view(self.shape).contiguous()
|
| 434 |
+
return param
|
| 435 |
+
|
| 436 |
+
|
| 437 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
| 438 |
+
param_shapes = zero_model_states[0].param_shapes
|
| 439 |
+
avail_numel = sum([flat_group.numel() for flat_group in fp32_flat_groups[0]]) * world_size
|
| 440 |
+
|
| 441 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
| 442 |
+
# param, re-consolidating each param, while dealing with padding if any
|
| 443 |
+
|
| 444 |
+
# merge list of dicts, preserving order
|
| 445 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
| 446 |
+
|
| 447 |
+
if debug:
|
| 448 |
+
for i in range(world_size):
|
| 449 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
| 450 |
+
|
| 451 |
+
wanted_params = len(param_shapes)
|
| 452 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
| 453 |
+
# not asserting if there is a mismatch due to possible padding
|
| 454 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
| 455 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
| 456 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
| 457 |
+
|
| 458 |
+
# params
|
| 459 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
| 460 |
+
# out-of-core computing solution
|
| 461 |
+
offset = 0
|
| 462 |
+
total_numel = 0
|
| 463 |
+
total_params = 0
|
| 464 |
+
flat_groups_offset = [0] + list(np.cumsum([flat_tensor.numel() for flat_tensor in fp32_flat_groups[0]]))
|
| 465 |
+
for name, shape in tqdm(param_shapes.items(), desc='Gathering sharded weights'):
|
| 466 |
+
unpartitioned_numel = shape.numel()
|
| 467 |
+
total_numel += unpartitioned_numel
|
| 468 |
+
total_params += 1
|
| 469 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
| 470 |
+
|
| 471 |
+
if debug:
|
| 472 |
+
print(
|
| 473 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
| 474 |
+
)
|
| 475 |
+
|
| 476 |
+
# memory efficient tensor
|
| 477 |
+
tensor = GatheredTensor(fp32_flat_groups, flat_groups_offset, offset, partitioned_numel, shape)
|
| 478 |
+
state_dict[name] = tensor
|
| 479 |
+
offset += partitioned_numel
|
| 480 |
+
|
| 481 |
+
offset *= world_size
|
| 482 |
+
|
| 483 |
+
# Sanity check
|
| 484 |
+
if offset != avail_numel:
|
| 485 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
| 486 |
+
|
| 487 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
| 488 |
+
|
| 489 |
+
|
| 490 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
| 491 |
+
exclude_frozen_parameters):
|
| 492 |
+
state_dict = OrderedDict()
|
| 493 |
+
|
| 494 |
+
# buffers
|
| 495 |
+
buffers = zero_model_states[0].buffers
|
| 496 |
+
state_dict.update(buffers)
|
| 497 |
+
if debug:
|
| 498 |
+
print(f"added {len(buffers)} buffers")
|
| 499 |
+
|
| 500 |
+
if not exclude_frozen_parameters:
|
| 501 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
| 502 |
+
|
| 503 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
| 504 |
+
|
| 505 |
+
# recover shared parameters
|
| 506 |
+
for pair in zero_model_states[0].shared_params:
|
| 507 |
+
if pair[1] in state_dict:
|
| 508 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
| 509 |
+
|
| 510 |
+
return state_dict
|
| 511 |
+
|
| 512 |
+
|
| 513 |
+
def to_torch_tensor(state_dict, return_empty_tensor=False):
|
| 514 |
+
"""
|
| 515 |
+
Convert state_dict of GatheredTensor to torch tensor
|
| 516 |
+
"""
|
| 517 |
+
torch_state_dict = {}
|
| 518 |
+
converted_tensors = {}
|
| 519 |
+
for name, tensor in state_dict.items():
|
| 520 |
+
tensor_id = id(tensor)
|
| 521 |
+
if tensor_id in converted_tensors: # shared tensors
|
| 522 |
+
shared_tensor = torch_state_dict[converted_tensors[tensor_id]]
|
| 523 |
+
torch_state_dict[name] = shared_tensor
|
| 524 |
+
else:
|
| 525 |
+
converted_tensors[tensor_id] = name
|
| 526 |
+
if return_empty_tensor:
|
| 527 |
+
torch_state_dict[name] = torch.empty(tensor.shape, dtype=tensor.dtype)
|
| 528 |
+
else:
|
| 529 |
+
torch_state_dict[name] = tensor.contiguous()
|
| 530 |
+
return torch_state_dict
|
| 531 |
+
|
| 532 |
+
|
| 533 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
|
| 534 |
+
tag=None,
|
| 535 |
+
exclude_frozen_parameters=False,
|
| 536 |
+
lazy_mode=False):
|
| 537 |
+
"""
|
| 538 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
| 539 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
| 540 |
+
via a model hub.
|
| 541 |
+
|
| 542 |
+
Args:
|
| 543 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
| 544 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
| 545 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
| 546 |
+
- ``lazy_mode``: get state_dict in lazy mode. It returns a dict of pesduo tensor instead of torch tensor, which is more memory efficient.
|
| 547 |
+
Convert the pesduo tensor to torch tensor by ``.contiguous()``
|
| 548 |
+
|
| 549 |
+
Returns:
|
| 550 |
+
- pytorch ``state_dict``
|
| 551 |
+
|
| 552 |
+
A typical usage might be ::
|
| 553 |
+
|
| 554 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
| 555 |
+
# do the training and checkpoint saving
|
| 556 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
| 557 |
+
model = model.cpu() # move to cpu
|
| 558 |
+
model.load_state_dict(state_dict)
|
| 559 |
+
# submit to model hub or save the model to share with others
|
| 560 |
+
|
| 561 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
| 562 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
| 563 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
| 564 |
+
|
| 565 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
| 566 |
+
|
| 567 |
+
Note: the above usage may not work if your application doesn't have sufficient free CPU memory.
|
| 568 |
+
You may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
| 569 |
+
the checkpoint. Or you can load state_dict in lazy mode ::
|
| 570 |
+
|
| 571 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
| 572 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, lazy_mode=True) # not on cpu
|
| 573 |
+
for name, lazy_tensor in state_dict.item():
|
| 574 |
+
tensor = lazy_tensor.contiguous() # to cpu
|
| 575 |
+
print(name, tensor)
|
| 576 |
+
# del tensor to release memory if it no longer in use
|
| 577 |
+
"""
|
| 578 |
+
if tag is None:
|
| 579 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
| 580 |
+
if os.path.isfile(latest_path):
|
| 581 |
+
with open(latest_path, 'r') as fd:
|
| 582 |
+
tag = fd.read().strip()
|
| 583 |
+
else:
|
| 584 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
| 585 |
+
|
| 586 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
| 587 |
+
|
| 588 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
| 589 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
| 590 |
+
|
| 591 |
+
state_dict = _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
|
| 592 |
+
if lazy_mode:
|
| 593 |
+
return state_dict
|
| 594 |
+
else:
|
| 595 |
+
return to_torch_tensor(state_dict)
|
| 596 |
+
|
| 597 |
+
|
| 598 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
|
| 599 |
+
output_dir,
|
| 600 |
+
max_shard_size="5GB",
|
| 601 |
+
safe_serialization=False,
|
| 602 |
+
tag=None,
|
| 603 |
+
exclude_frozen_parameters=False):
|
| 604 |
+
"""
|
| 605 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
| 606 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
| 607 |
+
|
| 608 |
+
Args:
|
| 609 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
| 610 |
+
- ``output_dir``: directory to the pytorch fp32 state_dict output files
|
| 611 |
+
- ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
|
| 612 |
+
- ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
|
| 613 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
| 614 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
| 615 |
+
"""
|
| 616 |
+
|
| 617 |
+
# Dependency pre-check
|
| 618 |
+
if safe_serialization:
|
| 619 |
+
try:
|
| 620 |
+
from safetensors.torch import save_file
|
| 621 |
+
except ImportError:
|
| 622 |
+
print('If you want to use `safe_serialization`, please `pip install safetensors`')
|
| 623 |
+
raise
|
| 624 |
+
if max_shard_size is not None:
|
| 625 |
+
try:
|
| 626 |
+
from huggingface_hub import split_torch_state_dict_into_shards
|
| 627 |
+
except ImportError:
|
| 628 |
+
print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
|
| 629 |
+
raise
|
| 630 |
+
|
| 631 |
+
# Convert zero checkpoint to state_dict
|
| 632 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
|
| 633 |
+
tag,
|
| 634 |
+
exclude_frozen_parameters,
|
| 635 |
+
lazy_mode=True)
|
| 636 |
+
|
| 637 |
+
# Shard the model if it is too big.
|
| 638 |
+
weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
|
| 639 |
+
if max_shard_size is not None:
|
| 640 |
+
filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
|
| 641 |
+
# an memory-efficient approach for sharding
|
| 642 |
+
empty_state_dict = to_torch_tensor(state_dict, return_empty_tensor=True)
|
| 643 |
+
state_dict_split = split_torch_state_dict_into_shards(empty_state_dict,
|
| 644 |
+
filename_pattern=filename_pattern,
|
| 645 |
+
max_shard_size=max_shard_size)
|
| 646 |
+
else:
|
| 647 |
+
from collections import namedtuple
|
| 648 |
+
StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
|
| 649 |
+
state_dict_split = StateDictSplit(is_sharded=False,
|
| 650 |
+
filename_to_tensors={weights_name: list(state_dict.keys())})
|
| 651 |
+
|
| 652 |
+
# Save the model by shard
|
| 653 |
+
os.makedirs(output_dir, exist_ok=True)
|
| 654 |
+
filename_to_tensors = state_dict_split.filename_to_tensors.items()
|
| 655 |
+
for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
|
| 656 |
+
shard_state_dict = {tensor_name: state_dict[tensor_name] for tensor_name in tensors}
|
| 657 |
+
shard_state_dict = to_torch_tensor(shard_state_dict)
|
| 658 |
+
output_path = os.path.join(output_dir, shard_file)
|
| 659 |
+
if safe_serialization:
|
| 660 |
+
save_file(shard_state_dict, output_path, metadata={"format": "pt"})
|
| 661 |
+
else:
|
| 662 |
+
torch.save(shard_state_dict, output_path)
|
| 663 |
+
# release the memory of current shard
|
| 664 |
+
for tensor_name in list(shard_state_dict.keys()):
|
| 665 |
+
del state_dict[tensor_name]
|
| 666 |
+
del shard_state_dict[tensor_name]
|
| 667 |
+
del shard_state_dict
|
| 668 |
+
gc.collect()
|
| 669 |
+
|
| 670 |
+
# Save index if sharded
|
| 671 |
+
if state_dict_split.is_sharded:
|
| 672 |
+
index = {
|
| 673 |
+
"metadata": state_dict_split.metadata,
|
| 674 |
+
"weight_map": state_dict_split.tensor_to_filename,
|
| 675 |
+
}
|
| 676 |
+
save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
|
| 677 |
+
save_index_file = os.path.join(output_dir, save_index_file)
|
| 678 |
+
with open(save_index_file, "w", encoding="utf-8") as f:
|
| 679 |
+
content = json.dumps(index, indent=2, sort_keys=True) + "\n"
|
| 680 |
+
f.write(content)
|
| 681 |
+
|
| 682 |
+
|
| 683 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
| 684 |
+
"""
|
| 685 |
+
1. Put the provided model to cpu
|
| 686 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
| 687 |
+
3. Load it into the provided model
|
| 688 |
+
|
| 689 |
+
Args:
|
| 690 |
+
- ``model``: the model object to update
|
| 691 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
| 692 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
| 693 |
+
|
| 694 |
+
Returns:
|
| 695 |
+
- ``model`: modified model
|
| 696 |
+
|
| 697 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
| 698 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
| 699 |
+
conveniently placed for you in the checkpoint folder.
|
| 700 |
+
|
| 701 |
+
A typical usage might be ::
|
| 702 |
+
|
| 703 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
| 704 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
| 705 |
+
# submit to model hub or save the model to share with others
|
| 706 |
+
|
| 707 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
| 708 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
| 709 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
| 710 |
+
|
| 711 |
+
"""
|
| 712 |
+
logger.info(f"Extracting fp32 weights")
|
| 713 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
| 714 |
+
|
| 715 |
+
logger.info(f"Overwriting model with fp32 weights")
|
| 716 |
+
model = model.cpu()
|
| 717 |
+
model.load_state_dict(state_dict, strict=False)
|
| 718 |
+
|
| 719 |
+
return model
|
| 720 |
+
|
| 721 |
+
|
| 722 |
+
if __name__ == "__main__":
|
| 723 |
+
parser = argparse.ArgumentParser()
|
| 724 |
+
parser.add_argument("checkpoint_dir",
|
| 725 |
+
type=str,
|
| 726 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
| 727 |
+
parser.add_argument("output_dir",
|
| 728 |
+
type=str,
|
| 729 |
+
help="directory to the pytorch fp32 state_dict output files"
|
| 730 |
+
"(e.g. path/checkpoint-12-output/)")
|
| 731 |
+
parser.add_argument(
|
| 732 |
+
"--max_shard_size",
|
| 733 |
+
type=str,
|
| 734 |
+
default="5GB",
|
| 735 |
+
help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
|
| 736 |
+
"lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
|
| 737 |
+
"We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
|
| 738 |
+
"without CPU OOM issues.")
|
| 739 |
+
parser.add_argument(
|
| 740 |
+
"--safe_serialization",
|
| 741 |
+
default=False,
|
| 742 |
+
action='store_true',
|
| 743 |
+
help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
|
| 744 |
+
parser.add_argument("-t",
|
| 745 |
+
"--tag",
|
| 746 |
+
type=str,
|
| 747 |
+
default=None,
|
| 748 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
| 749 |
+
parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
|
| 750 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
| 751 |
+
args = parser.parse_args()
|
| 752 |
+
|
| 753 |
+
debug = args.debug
|
| 754 |
+
|
| 755 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
|
| 756 |
+
args.output_dir,
|
| 757 |
+
max_shard_size=args.max_shard_size,
|
| 758 |
+
safe_serialization=args.safe_serialization,
|
| 759 |
+
tag=args.tag,
|
| 760 |
+
exclude_frozen_parameters=args.exclude_frozen_parameters)
|