numb3r3
commited on
Commit
·
1a800ed
1
Parent(s):
583e9af
implement compute_score api
Browse files- modeling_bert.py +53 -2
modeling_bert.py
CHANGED
|
@@ -421,7 +421,7 @@ class JinaBertSelfAttention(nn.Module):
|
|
| 421 |
# seem a bit unusual, but is taken from the original Transformer paper.
|
| 422 |
attention_probs = self.dropout(attention_probs)
|
| 423 |
|
| 424 |
-
# Add the alibi matrix to the attention_scores after the call to softmax
|
| 425 |
attention_scores += bias
|
| 426 |
|
| 427 |
# Mask heads if we want to
|
|
@@ -435,7 +435,7 @@ class JinaBertSelfAttention(nn.Module):
|
|
| 435 |
context_layer = context_layer.view(new_context_layer_shape)
|
| 436 |
|
| 437 |
outputs = (
|
| 438 |
-
(context_layer, attention_probs if output_attention_probs else attention_scores)
|
| 439 |
if output_attentions else (context_layer,)
|
| 440 |
)
|
| 441 |
|
|
@@ -2072,6 +2072,57 @@ class JinaBertForSequenceClassification(JinaBertPreTrainedModel):
|
|
| 2072 |
attentions=outputs.attentions,
|
| 2073 |
)
|
| 2074 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2075 |
|
| 2076 |
@add_start_docstrings(
|
| 2077 |
"""
|
|
|
|
| 421 |
# seem a bit unusual, but is taken from the original Transformer paper.
|
| 422 |
attention_probs = self.dropout(attention_probs)
|
| 423 |
|
| 424 |
+
# Add the alibi matrix to the attention_scores after the call to softmax
|
| 425 |
attention_scores += bias
|
| 426 |
|
| 427 |
# Mask heads if we want to
|
|
|
|
| 435 |
context_layer = context_layer.view(new_context_layer_shape)
|
| 436 |
|
| 437 |
outputs = (
|
| 438 |
+
(context_layer, attention_probs if output_attention_probs else attention_scores)
|
| 439 |
if output_attentions else (context_layer,)
|
| 440 |
)
|
| 441 |
|
|
|
|
| 2072 |
attentions=outputs.attentions,
|
| 2073 |
)
|
| 2074 |
|
| 2075 |
+
@torch.inference_mode()
|
| 2076 |
+
def compute_score(
|
| 2077 |
+
self,
|
| 2078 |
+
sentence_pairs: Union[List[Tuple[str, str]], Tuple[str, str]],
|
| 2079 |
+
batch_size: int = 32,
|
| 2080 |
+
device: Optional[torch.device] = None,
|
| 2081 |
+
**tokenizer_kwargs,
|
| 2082 |
+
):
|
| 2083 |
+
assert isinstance(sentence_pairs, list)
|
| 2084 |
+
if isinstance(sentence_pairs[0], str):
|
| 2085 |
+
sentence_pairs = [sentence_pairs]
|
| 2086 |
+
|
| 2087 |
+
if not hasattr(self, 'tokenizer'):
|
| 2088 |
+
from transformers import AutoTokenizer
|
| 2089 |
+
|
| 2090 |
+
self.tokenizer = AutoTokenizer.from_pretrained(self._name_or_path)
|
| 2091 |
+
|
| 2092 |
+
is_training = self.training
|
| 2093 |
+
self.eval()
|
| 2094 |
+
|
| 2095 |
+
if device is not None:
|
| 2096 |
+
self.to(device)
|
| 2097 |
+
|
| 2098 |
+
all_scores = []
|
| 2099 |
+
for start_index in range(
|
| 2100 |
+
0, len(sentence_pairs), batch_size
|
| 2101 |
+
):
|
| 2102 |
+
sentences_batch = sentence_pairs[
|
| 2103 |
+
start_index : start_index + (batch_size or self._eval_batch_size)
|
| 2104 |
+
]
|
| 2105 |
+
inputs = self._tokenizer(
|
| 2106 |
+
sentences_batch,
|
| 2107 |
+
padding=True,
|
| 2108 |
+
truncation=True,
|
| 2109 |
+
return_tensors='pt',
|
| 2110 |
+
**tokenizer_kwargs,
|
| 2111 |
+
).to(self.device)
|
| 2112 |
+
|
| 2113 |
+
scores = (
|
| 2114 |
+
self.forward(**inputs, return_dict=True)
|
| 2115 |
+
.logits.view(
|
| 2116 |
+
-1,
|
| 2117 |
+
)
|
| 2118 |
+
.float()
|
| 2119 |
+
)
|
| 2120 |
+
all_scores.extend(scores.cpu().numpy().tolist())
|
| 2121 |
+
|
| 2122 |
+
if len(all_scores) == 1:
|
| 2123 |
+
return all_scores[0]
|
| 2124 |
+
return all_scores
|
| 2125 |
+
|
| 2126 |
|
| 2127 |
@add_start_docstrings(
|
| 2128 |
"""
|