File size: 4,453 Bytes
5a16feb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 |
---
library_name: peft
license: gemma
base_model: google/gemma-3-4b-it
tags:
- axolotl
- base_model:adapter:google/gemma-3-4b-it
- lora
- transformers
datasets:
- vlm_data_2025101_1/gemma3-4b-v-KoV_0.0.0.jsonl
pipeline_tag: text-generation
model-index:
- name: outputs/gemma3-4b-v-KoV_0.0.0_w_lora_2.jsonl
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.12.2`
```yaml
# ===== Model =====
base_model: google/gemma-3-4b-it
processor_type: AutoProcessor
chat_template: gemma3
# ๋ฉํฐ๋ชจ๋ฌ(๋น์ -์ฑ) ํ์ ํ๋๊ทธ
skip_prepare_dataset: true
remove_unused_columns: false
sample_packing: false
#shuffle_merged_datasets: false
#shuffle_before_merging_datasets: false # (๊ธฐ๋ณธ false์ง๋ง ๋ช
์ ์ถ์ฒ)
ddp_find_unused_parameters: true
dataloader_num_workers: 0
# ===== Data =====
eot_tokens:
- <end_of_turn>
datasets:
- path: vlm_data_2025101_1/gemma3-4b-v-KoV_0.0.0.jsonl
type: chat_template
field_messages: messages
split: null
val_set_size: 0.0
dataset_prepared_path:
# ===== Output / Logging =====
output_dir: ./outputs/gemma3-4b-v-KoV_0.0.0_w_lora_2.jsonl
logging_steps: 1
# wandb ์ฐ๋(์ํ๋ฉด ๋ณ๊ฒฝ/์ฃผ์)
wandb_entity: minkyun1
wandb_project: kisti_vlm_axo
wandb_name: gemma3-4b-v-KoV_0.0.0_w_lora_2.jsonl
# ===== LoRA / Quantization =====
adapter: lora
# LLaVA์์ ์ธ์ด๋ชจ๋ธ ์ชฝ ํ๋ก์ ์
์๋ง LoRA(์์ ๊ธฐ๋ณธ๊ฐ)
lora_r: 128
lora_alpha: 256
lora_dropout: 0.05
lora_target_modules: "model.language_model.layers.[\\d]+.(mlp|cross_attn|self_attn).(up|down|gate|q|k|v|o)_proj"
# ๋ฉ๋ชจ๋ฆฌ ์ฌ์ ์ถฉ๋ถํ์ง๋ง, ์์์ 4bit ๋ก ์์ ์ ์ผ๋ก
load_in_4bit: false
load_in_8bit: false
bf16: true
tf32: true
gradient_checkpointing: true
gradient_checkpointing_kwargs:
use_reentrant: false
flash_attention: true
eager_attention:
# ===== Optim & Train =====
optimizer: adamw_torch_fused
learning_rate: 4e-5
lr_scheduler: cosine
warmup_ratio: 0.05
weight_decay: 0.01
max_grad_norm: 1.0
seed: 42
sequence_len: 8192
pad_to_sequence_len: false
excess_length_strategy: drop
# GPU๋น ๋ง์ดํฌ๋ก ๋ฐฐ์น/๋์ โ ์ ํจ ๋ฐฐ์น = 1 * 8 * 2GPU = 16
micro_batch_size: 1
gradient_accumulation_steps: 16
num_epochs: 5
evals_per_epoch: 1
saves_per_epoch: 1
# save_first_step: true
# ===== Multi-GPU: DeepSpeed (์ถ์ฒ) =====
# deepspeed ํ๋ฆฌ์
์ ๋ฐ์์ ์ฌ์ฉ:
# axolotl fetch deepspeed_configs
# 2รA100 80GB + 7B์๋ zero2๊ฐ ๋น ๋ฅด๊ณ ์์ ์
deepspeed: ds_zero2.json
# ===== ๋๋ฒ๊ทธ/์ฌํ์ฑ(์ ํ) =====
# ๋ฐ์ดํฐ ์ ์ฒ๋ฆฌ ๋ฉํฐํ๋ก์ธ์ค๊ฐ ๋ฌธ์ ์๊ธฐ๋ฉด 1๋ก ๋ฎ์ถฐ์ ์์ธ ํ์
# dataset_processes: 1
# ===== [๋์] FSDP2 ์ค์ (DeepSpeed ๋์ ์ฐ๊ณ ์ถ์ ๋) =====
# fsdp_version: 2
# fsdp_config:
# offload_params: false
# cpu_ram_efficient_loading: true
# auto_wrap_policy: TRANSFORMER_BASED_WRAP
# transformer_layer_cls_to_wrap: LlamaDecoderLayer
# state_dict_type: FULL_STATE_DICT
# reshard_after_forward: true
```
</details><br>
# outputs/gemma3-4b-v-KoV_0.0.0_w_lora_2.jsonl
This model is a fine-tuned version of [google/gemma-3-4b-it](https://huggingface.co/google/gemma-3-4b-it) on the vlm_data_2025101_1/gemma3-4b-v-KoV_0.0.0.jsonl dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 4e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 16
- total_train_batch_size: 128
- total_eval_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 195
- training_steps: 3907
### Training results
### Framework versions
- PEFT 0.17.0
- Transformers 4.55.2
- Pytorch 2.6.0+cu124
- Datasets 4.0.0
- Tokenizers 0.21.4 |