File size: 4,453 Bytes
5a16feb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
---
library_name: peft
license: gemma
base_model: google/gemma-3-4b-it
tags:
- axolotl
- base_model:adapter:google/gemma-3-4b-it
- lora
- transformers
datasets:
- vlm_data_2025101_1/gemma3-4b-v-KoV_0.0.0.jsonl
pipeline_tag: text-generation
model-index:
- name: outputs/gemma3-4b-v-KoV_0.0.0_w_lora_2.jsonl
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>

axolotl version: `0.12.2`
```yaml
# ===== Model =====

base_model: google/gemma-3-4b-it
processor_type: AutoProcessor

chat_template: gemma3

# ๋ฉ€ํ‹ฐ๋ชจ๋‹ฌ(๋น„์ „-์ฑ—) ํ•„์ˆ˜ ํ”Œ๋ž˜๊ทธ
skip_prepare_dataset: true
remove_unused_columns: false
sample_packing: false

#shuffle_merged_datasets: false
#shuffle_before_merging_datasets: false   # (๊ธฐ๋ณธ false์ง€๋งŒ ๋ช…์‹œ ์ถ”์ฒœ)

ddp_find_unused_parameters: true

dataloader_num_workers: 0

# ===== Data =====
eot_tokens:
  - <end_of_turn>
datasets:
  - path: vlm_data_2025101_1/gemma3-4b-v-KoV_0.0.0.jsonl
    type: chat_template
    field_messages: messages
    split: null

val_set_size: 0.0
dataset_prepared_path:

# ===== Output / Logging =====
output_dir: ./outputs/gemma3-4b-v-KoV_0.0.0_w_lora_2.jsonl
logging_steps: 1

# wandb ์—ฐ๋™(์›ํ•˜๋ฉด ๋ณ€๊ฒฝ/์ฃผ์„)
wandb_entity: minkyun1
wandb_project: kisti_vlm_axo
wandb_name: gemma3-4b-v-KoV_0.0.0_w_lora_2.jsonl

# ===== LoRA / Quantization =====
adapter: lora
# LLaVA์—์„œ ์–ธ์–ด๋ชจ๋ธ ์ชฝ ํ”„๋กœ์ ์…˜์—๋งŒ LoRA(์•ˆ์ „ ๊ธฐ๋ณธ๊ฐ’)
lora_r: 128
lora_alpha: 256
lora_dropout: 0.05
lora_target_modules: "model.language_model.layers.[\\d]+.(mlp|cross_attn|self_attn).(up|down|gate|q|k|v|o)_proj"

# ๋ฉ”๋ชจ๋ฆฌ ์—ฌ์œ  ์ถฉ๋ถ„ํ•˜์ง€๋งŒ, ์‹œ์ž‘์€ 4bit ๋กœ ์•ˆ์ •์ ์œผ๋กœ
load_in_4bit: false
load_in_8bit: false
bf16: true
tf32: true
gradient_checkpointing: true
gradient_checkpointing_kwargs:
  use_reentrant: false
flash_attention: true
eager_attention:

# ===== Optim & Train =====
optimizer: adamw_torch_fused
learning_rate: 4e-5
lr_scheduler: cosine
warmup_ratio: 0.05
weight_decay: 0.01
max_grad_norm: 1.0
seed: 42
sequence_len: 8192 
pad_to_sequence_len: false
excess_length_strategy: drop

# GPU๋‹น ๋งˆ์ดํฌ๋กœ ๋ฐฐ์น˜/๋ˆ„์  โ†’ ์œ ํšจ ๋ฐฐ์น˜ = 1 * 8 * 2GPU = 16
micro_batch_size: 1
gradient_accumulation_steps: 16

num_epochs: 5
evals_per_epoch: 1
saves_per_epoch: 1
# save_first_step: true

# ===== Multi-GPU: DeepSpeed (์ถ”์ฒœ) =====
# deepspeed ํ”„๋ฆฌ์…‹์„ ๋ฐ›์•„์„œ ์‚ฌ์šฉ:
#   axolotl fetch deepspeed_configs
# 2ร—A100 80GB + 7B์—๋Š” zero2๊ฐ€ ๋น ๋ฅด๊ณ  ์•ˆ์ •์ 
deepspeed: ds_zero2.json

# ===== ๋””๋ฒ„๊ทธ/์žฌํ˜„์„ฑ(์„ ํƒ) =====
# ๋ฐ์ดํ„ฐ ์ „์ฒ˜๋ฆฌ ๋ฉ€ํ‹ฐํ”„๋กœ์„ธ์Šค๊ฐ€ ๋ฌธ์ œ ์ƒ๊ธฐ๋ฉด 1๋กœ ๋‚ฎ์ถฐ์„œ ์›์ธ ํŒŒ์•…
# dataset_processes: 1

# ===== [๋Œ€์•ˆ] FSDP2 ์„ค์ •(DeepSpeed ๋Œ€์‹  ์“ฐ๊ณ  ์‹ถ์„ ๋•Œ) =====
# fsdp_version: 2
# fsdp_config:
#   offload_params: false
#   cpu_ram_efficient_loading: true
#   auto_wrap_policy: TRANSFORMER_BASED_WRAP
#   transformer_layer_cls_to_wrap: LlamaDecoderLayer
#   state_dict_type: FULL_STATE_DICT
#   reshard_after_forward: true

```

</details><br>

# outputs/gemma3-4b-v-KoV_0.0.0_w_lora_2.jsonl

This model is a fine-tuned version of [google/gemma-3-4b-it](https://huggingface.co/google/gemma-3-4b-it) on the vlm_data_2025101_1/gemma3-4b-v-KoV_0.0.0.jsonl dataset.

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 4e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 16
- total_train_batch_size: 128
- total_eval_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 195
- training_steps: 3907

### Training results



### Framework versions

- PEFT 0.17.0
- Transformers 4.55.2
- Pytorch 2.6.0+cu124
- Datasets 4.0.0
- Tokenizers 0.21.4