--- library_name: transformers license: cc-by-sa-4.0 base_model: klue/bert-base tags: - generated_from_keras_callback model-index: - name: bert-base-nsmc results: [] --- # bert-base-nsmc This model is a fine-tuned version of [klue/bert-base](https://huggingface.co/klue/bert-base) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0271 - Train Accuracy: 0.9913 - Validation Loss: 0.5408 - Validation Accuracy: 0.8754 - Epoch: 4 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'module': 'transformers.optimization_tf', 'class_name': 'WarmUp', 'config': {'initial_learning_rate': 5e-05, 'decay_schedule_fn': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 5e-05, 'decay_steps': 1058, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'warmup_steps': 117, 'power': 1.0, 'name': None}, 'registered_name': 'WarmUp'}, 'decay': 0.0, 'beta_1': np.float32(0.9), 'beta_2': np.float32(0.999), 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.1} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch | |:----------:|:--------------:|:---------------:|:-------------------:|:-----:| | 0.4063 | 0.8061 | 0.3151 | 0.8648 | 0 | | 0.2178 | 0.9151 | 0.3074 | 0.8724 | 1 | | 0.1017 | 0.9651 | 0.3884 | 0.8694 | 2 | | 0.0473 | 0.9860 | 0.5086 | 0.8746 | 3 | | 0.0271 | 0.9913 | 0.5408 | 0.8754 | 4 | ### Framework versions - Transformers 4.57.1 - TensorFlow 2.19.0 - Datasets 4.0.0 - Tokenizers 0.22.1