MASID-v1.1
MASID-v1.1 is a transfer-learned Filipino main-dish recipe generator.
It is trained on top of the base model joackimagno/Qwen-2.5-General-Recipe-Generation, which itself was fine-tuned from Qwen2.5-7B using ~60k general recipes from joackimagno/general-recipes.
MASID-v1.1 then performs a second-stage fine-tuning on joackimagno/FILIPINO_RECIPES_2K (~2k) to specialize in Filipino main dish generation.
The goal is to generate structured and culturally faithful Filipino recipes while benefiting from broader cooking knowledge learned during the general-recipe stage.
Model Details
- Base Model (stage 0): Qwen/Qwen2.5-7B
- Intermediate Model (stage 1):
joackimagno/Qwen-2.5-General-Recipe-Generation— trained on ~60k general recipes - Specialization Dataset (stage 2):
joackimagno/FILIPINO_RECIPES_2K_V2(~2,000 samples) - Objective: Recipe text generation (Filipino cuisine, main dishes)
- Method: Transfer learning (continued fine-tuning from the general-recipe model)
Intended Use
- Assisting in recipe writing
- Exploring Filipino food culture
- Generating cooking instructions in natural language
Limitations
- Trained on a relatively small Filipino dataset (~2k) for the specialization stage.
- May occasionally produce hallucinated ingredients or imprecise steps.
- Not a substitute for nutrition or food-safety advice.
- Best for research, education, and creative use cases.
Evaluation
| Dataset | Split | BLEU-4 | METEOR | ROUGE-L (F1) |
|---|---|---|---|---|
| joackimagno/FILIPINO_RECIPES_2K_V2 | test | 0.10 | 0.37 | 0.37 |
Dataset Comparison:
| Dataset | Description |
|---|---|
| joackimagno/FILIPINO_RECIPES_2K | Ingredient Name excludes basic pantry items (e.g. oil, water) but includes any ingredients |
| joackimagno/FILIPINO_RECIPES_2K_V2 | Ingredient Name only contains classified ingredients from the small object detection model |
Notes: Evaluated with Alpaca-style prompting; simple post-processing (strip, EOS truncation).
If you rerun evaluation, pin dataset and package versions for reproducibility.
This Qwen2 model was trained 2× faster with Unsloth and Hugging Face’s TRL library.
Example Usage
from typing import List
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig
# Load model and tokenizer
model_name = "joackimagno/MASID-v1.1"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=torch.float16,
device_map="auto",
)
# ==============================================================
# Alpaca-style prompt
# ==============================================================
SYSTEM_INSTRUCTION = (
"You are a Filipino chef. Generate Filipino MAIN DISH recipes.\n"
"Follow these output rules:\n"
"1) Use standard stovetop or oven methods.\n"
"2) Keep steps concise and logically ordered.\n"
"3) Output FORMAT and ORDER must be exactly:\n"
" Recipe name, Prep time, Cook time, Total time, Servings,\n"
" Full Ingredients (numbered list), Instructions (numbered list)"
)
ALPACA_TEMPLATE = (
"Below is an instruction that describes a task, paired with an input that "
"provides further context. Write a response that appropriately completes the request.\n\n"
"### Instruction:\n{}\n\n### Input:\n{}\n\n### Response:\n{}"
)
def make_model_input_from_ing(ing_names: List[str]) -> str:
return (
"Ingredients to use: " + ", ".join(ing_names) + ".\n"
"Task: create a Filipino main dish recipe using these ingredients. "
"Keep steps concise, clear, and coherent."
)
# Example input
ing_names = ["Beef", "Potato", "Sili", "Carrot", "Sayote"]
alpaca_prompt = ALPACA_TEMPLATE.format(
SYSTEM_INSTRUCTION,
make_model_input_from_ing(ing_names),
"" # leave response empty for model to generate
)
# ==============================================================
# Run inference
# ==============================================================
inputs = tokenizer(alpaca_prompt, return_tensors="pt").to(model.device)
gen_config = GenerationConfig(
max_new_tokens=512,
temperature=0.7,
top_p=0.9,
do_sample=True,
)
outputs = model.generate(**inputs, generation_config=gen_config)
generated = tokenizer.decode(
outputs[0][inputs["input_ids"].shape[1]:],
skip_special_tokens=True
)
print(generated.strip())
- Downloads last month
- 8
Model tree for joackimagno/MASID-v1.1
Datasets used to train joackimagno/MASID-v1.1
Evaluation results
- BLEU-4 on joackimagno/FILIPINO_RECIPES_2Ktest set self-reported0.100
- METEOR on joackimagno/FILIPINO_RECIPES_2Ktest set self-reported0.370
- ROUGE-L (F1) on joackimagno/FILIPINO_RECIPES_2Ktest set self-reported0.370
