Commit
·
378c1d1
1
Parent(s):
9b8b1e5
Update README.md
Browse files
README.md
CHANGED
|
@@ -59,10 +59,55 @@ model-index:
|
|
| 59 |
Fine-tuned [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on Polish using the [Common Voice 8](https://huggingface.co/datasets/mozilla-foundation/common_voice_8_0).
|
| 60 |
When using this model, make sure that your speech input is sampled at 16kHz.
|
| 61 |
|
| 62 |
-
This model has been fine-tuned thanks to the GPU credits generously given by the [OVHcloud](https://www.ovhcloud.com/en/public-cloud/ai-training/) :)
|
| 63 |
|
| 64 |
-
|
| 65 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 66 |
|
| 67 |
## Evaluation Commands
|
| 68 |
|
|
|
|
| 59 |
Fine-tuned [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on Polish using the [Common Voice 8](https://huggingface.co/datasets/mozilla-foundation/common_voice_8_0).
|
| 60 |
When using this model, make sure that your speech input is sampled at 16kHz.
|
| 61 |
|
| 62 |
+
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool, and thanks to the GPU credits generously given by the [OVHcloud](https://www.ovhcloud.com/en/public-cloud/ai-training/) :)
|
| 63 |
|
| 64 |
+
## Usage
|
| 65 |
|
| 66 |
+
Using the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) library:
|
| 67 |
+
|
| 68 |
+
```python
|
| 69 |
+
from huggingsound import SpeechRecognitionModel
|
| 70 |
+
|
| 71 |
+
model = SpeechRecognitionModel("jonatasgrosman/wav2vec2-xls-r-1b-polish")
|
| 72 |
+
audio_paths = ["/path/to/file.mp3", "/path/to/another_file.wav"]
|
| 73 |
+
|
| 74 |
+
transcriptions = model.transcribe(audio_paths)
|
| 75 |
+
```
|
| 76 |
+
|
| 77 |
+
Writing your own inference script:
|
| 78 |
+
|
| 79 |
+
```python
|
| 80 |
+
import torch
|
| 81 |
+
import librosa
|
| 82 |
+
from datasets import load_dataset
|
| 83 |
+
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
| 84 |
+
|
| 85 |
+
LANG_ID = "pl"
|
| 86 |
+
MODEL_ID = "jonatasgrosman/wav2vec2-xls-r-1b-polish"
|
| 87 |
+
SAMPLES = 10
|
| 88 |
+
|
| 89 |
+
test_dataset = load_dataset("common_voice", LANG_ID, split=f"test[:{SAMPLES}]")
|
| 90 |
+
|
| 91 |
+
processor = Wav2Vec2Processor.from_pretrained(MODEL_ID)
|
| 92 |
+
model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID)
|
| 93 |
+
|
| 94 |
+
# Preprocessing the datasets.
|
| 95 |
+
# We need to read the audio files as arrays
|
| 96 |
+
def speech_file_to_array_fn(batch):
|
| 97 |
+
speech_array, sampling_rate = librosa.load(batch["path"], sr=16_000)
|
| 98 |
+
batch["speech"] = speech_array
|
| 99 |
+
batch["sentence"] = batch["sentence"].upper()
|
| 100 |
+
return batch
|
| 101 |
+
|
| 102 |
+
test_dataset = test_dataset.map(speech_file_to_array_fn)
|
| 103 |
+
inputs = processor(test_dataset["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
|
| 104 |
+
|
| 105 |
+
with torch.no_grad():
|
| 106 |
+
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
|
| 107 |
+
|
| 108 |
+
predicted_ids = torch.argmax(logits, dim=-1)
|
| 109 |
+
predicted_sentences = processor.batch_decode(predicted_ids)
|
| 110 |
+
```
|
| 111 |
|
| 112 |
## Evaluation Commands
|
| 113 |
|