File size: 14,786 Bytes
33113fd
 
 
 
 
 
322171e
 
 
 
 
 
 
 
 
 
 
 
5291a52
322171e
 
 
 
 
 
5291a52
322171e
5291a52
 
 
 
 
 
 
 
 
 
 
 
 
322171e
 
 
5291a52
 
 
 
 
 
 
 
 
 
322171e
5291a52
322171e
 
 
5291a52
322171e
 
 
5291a52
322171e
 
 
5291a52
322171e
 
 
 
 
 
 
5291a52
 
322171e
5291a52
 
322171e
5291a52
322171e
5291a52
322171e
5291a52
322171e
5291a52
322171e
5291a52
322171e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
25d87ae
 
 
 
 
 
 
 
 
322171e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
81255ac
33113fd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
# This file defines a PointNet-based model for binary classification of 6D point cloud patches.
# It includes the model architecture (ClassificationPointNet), a custom dataset class
# (PatchClassificationDataset) for loading and augmenting patches, functions for saving
# patches to create a dataset, a training loop (train_pointnet), a function to load
# a trained model (load_pointnet_model), and a function for predicting class labels
# from new patches (predict_class_from_patch).
import os
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
import pickle
from torch.utils.data import Dataset, DataLoader
from typing import List, Dict, Tuple, Optional
import json

class ClassificationPointNet(nn.Module):
    """
    PointNet implementation for binary classification from 6D point cloud patches.
    Takes 6D point clouds (x,y,z,r,g,b) and predicts binary classification (edge/not edge).
    """
    def __init__(self, input_dim=6, max_points=1024):
        super(ClassificationPointNet, self).__init__()
        self.max_points = max_points
        
        # Point-wise MLPs for feature extraction (deeper network)
        self.conv1 = nn.Conv1d(input_dim, 64, 1)
        self.conv2 = nn.Conv1d(64, 128, 1)
        self.conv3 = nn.Conv1d(128, 256, 1)
        self.conv4 = nn.Conv1d(256, 512, 1)
        self.conv5 = nn.Conv1d(512, 1024, 1)
        self.conv6 = nn.Conv1d(1024, 2048, 1)  # Additional layer
        
        # Classification head (deeper with more capacity)
        self.fc1 = nn.Linear(2048, 1024)
        self.fc2 = nn.Linear(1024, 512)
        self.fc3 = nn.Linear(512, 256)
        self.fc4 = nn.Linear(256, 128)
        self.fc5 = nn.Linear(128, 64)
        self.fc6 = nn.Linear(64, 1)  # Single output for binary classification
        
        # Batch normalization layers
        self.bn1 = nn.BatchNorm1d(64)
        self.bn2 = nn.BatchNorm1d(128)
        self.bn3 = nn.BatchNorm1d(256)
        self.bn4 = nn.BatchNorm1d(512)
        self.bn5 = nn.BatchNorm1d(1024)
        self.bn6 = nn.BatchNorm1d(2048)
        
        # Dropout layers
        self.dropout1 = nn.Dropout(0.3)
        self.dropout2 = nn.Dropout(0.4)
        self.dropout3 = nn.Dropout(0.5)
        self.dropout4 = nn.Dropout(0.4)
        self.dropout5 = nn.Dropout(0.3)

    def forward(self, x):
        """
        Forward pass
        Args:
            x: (batch_size, input_dim, max_points) tensor
        Returns:
            classification: (batch_size, 1) tensor of logits (sigmoid for probability)
        """
        batch_size = x.size(0)
        
        # Point-wise feature extraction
        x1 = F.relu(self.bn1(self.conv1(x)))
        x2 = F.relu(self.bn2(self.conv2(x1)))
        x3 = F.relu(self.bn3(self.conv3(x2)))
        x4 = F.relu(self.bn4(self.conv4(x3)))
        x5 = F.relu(self.bn5(self.conv5(x4)))
        x6 = F.relu(self.bn6(self.conv6(x5)))
        
        # Global max pooling
        global_features = torch.max(x6, 2)[0]  # (batch_size, 2048)
        
        # Classification head
        x = F.relu(self.fc1(global_features))
        x = self.dropout1(x)
        x = F.relu(self.fc2(x))
        x = self.dropout2(x)
        x = F.relu(self.fc3(x))
        x = self.dropout3(x)
        x = F.relu(self.fc4(x))
        x = self.dropout4(x)
        x = F.relu(self.fc5(x))
        x = self.dropout5(x)
        classification = self.fc6(x)  # (batch_size, 1)
        
        return classification

class PatchClassificationDataset(Dataset):
    """
    Dataset class for loading saved patches for PointNet classification training.
    """
    
    def __init__(self, dataset_dir: str, max_points: int = 1024, augment: bool = True):
        self.dataset_dir = dataset_dir
        self.max_points = max_points
        self.augment = augment
        
        # Load patch files
        self.patch_files = []
        for file in os.listdir(dataset_dir):
            if file.endswith('.pkl'):
                self.patch_files.append(os.path.join(dataset_dir, file))
                
        print(f"Found {len(self.patch_files)} patch files in {dataset_dir}")

    def __len__(self):
        return len(self.patch_files)

    def __getitem__(self, idx):
        """
        Load and process a patch for training.
        Returns:
            patch_data: (6, max_points) tensor of point cloud data
            label: scalar tensor for binary classification (0 or 1)
            valid_mask: (max_points,) boolean tensor indicating valid points
        """
        patch_file = self.patch_files[idx]
        
        with open(patch_file, 'rb') as f:
            patch_info = pickle.load(f)
        
        patch_6d = patch_info['patch_6d']  # (N, 6)
        label = patch_info.get('label', 0)  # Get binary classification label (0 or 1)
        
        # Pad or sample points to max_points
        num_points = patch_6d.shape[0]
        
        if num_points >= self.max_points:
            # Randomly sample max_points
            indices = np.random.choice(num_points, self.max_points, replace=False)
            patch_sampled = patch_6d[indices]
            valid_mask = np.ones(self.max_points, dtype=bool)
        else:
            # Pad with zeros
            patch_sampled = np.zeros((self.max_points, 6))
            patch_sampled[:num_points] = patch_6d
            valid_mask = np.zeros(self.max_points, dtype=bool)
            valid_mask[:num_points] = True
        
        # Data augmentation
        if self.augment:
            patch_sampled = self._augment_patch(patch_sampled, valid_mask)
        
        # Convert to tensors and transpose for conv1d (channels first)
        patch_tensor = torch.from_numpy(patch_sampled.T).float()  # (6, max_points)
        label_tensor = torch.tensor(label, dtype=torch.float32)  # Float for BCE loss
        valid_mask_tensor = torch.from_numpy(valid_mask)
        
        return patch_tensor, label_tensor, valid_mask_tensor

    def _augment_patch(self, patch, valid_mask):
        """
        Apply data augmentation to the patch.
        """
        valid_points = patch[valid_mask]
        
        if len(valid_points) == 0:
            return patch
        
        # Random rotation around z-axis
        angle = np.random.uniform(0, 2 * np.pi)
        cos_angle = np.cos(angle)
        sin_angle = np.sin(angle)
        rotation_matrix = np.array([
            [cos_angle, -sin_angle, 0],
            [sin_angle, cos_angle, 0],
            [0, 0, 1]
        ])
        
        # Apply rotation to xyz coordinates
        valid_points[:, :3] = valid_points[:, :3] @ rotation_matrix.T
        
        # Random jittering
        noise = np.random.normal(0, 0.01, valid_points[:, :3].shape)
        valid_points[:, :3] += noise
        
        # Random scaling
        scale = np.random.uniform(0.9, 1.1)
        valid_points[:, :3] *= scale
        
        patch[valid_mask] = valid_points
        return patch

def save_patches_dataset(patches: List[Dict], dataset_dir: str, entry_id: str):
    """
    Save patches from prediction pipeline to create a training dataset.
    
    Args:
        patches: List of patch dictionaries from generate_patches()
        dataset_dir: Directory to save the dataset
        entry_id: Unique identifier for this entry/image
    """
    os.makedirs(dataset_dir, exist_ok=True)
    
    for i, patch in enumerate(patches):
        # Create unique filename
        filename = f"{entry_id}_patch_{i}.pkl"
        filepath = os.path.join(dataset_dir, filename)
        
        # Skip if file already exists
        if os.path.exists(filepath):
            continue
        
        # Save patch data
        with open(filepath, 'wb') as f:
            pickle.dump(patch, f)
    
    print(f"Saved {len(patches)} patches for entry {entry_id}")

# Create dataloader with custom collate function to filter invalid samples
def collate_fn(batch):
    valid_batch = []
    for patch_data, label, valid_mask in batch:
        # Filter out invalid samples (no valid points)
        if valid_mask.sum() > 0:
            valid_batch.append((patch_data, label, valid_mask))
    
    if len(valid_batch) == 0:
        return None
    
    # Stack valid samples
    patch_data = torch.stack([item[0] for item in valid_batch])
    labels = torch.stack([item[1] for item in valid_batch])
    valid_masks = torch.stack([item[2] for item in valid_batch])
    
    return patch_data, labels, valid_masks

# Initialize weights using Xavier/Glorot initialization
def init_weights(m):
    if isinstance(m, nn.Conv1d):
        nn.init.xavier_uniform_(m.weight)
        if m.bias is not None:
            nn.init.zeros_(m.bias)
    elif isinstance(m, nn.Linear):
        nn.init.xavier_uniform_(m.weight)
        if m.bias is not None:
            nn.init.zeros_(m.bias)
    elif isinstance(m, nn.BatchNorm1d):
        nn.init.ones_(m.weight)
        nn.init.zeros_(m.bias)

def train_pointnet(dataset_dir: str, model_save_path: str, epochs: int = 100, batch_size: int = 32, 
                  lr: float = 0.001):
    """
    Train the ClassificationPointNet model on saved patches.
    
    Args:
        dataset_dir: Directory containing saved patch files
        model_save_path: Path to save the trained model
        epochs: Number of training epochs
        batch_size: Training batch size
        lr: Learning rate
    """
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    print(f"Training on device: {device}")
    
    # Create dataset and dataloader
    dataset = PatchClassificationDataset(dataset_dir, max_points=1024, augment=True)
    print(f"Dataset loaded with {len(dataset)} samples")
    
    dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True, num_workers=8, 
                           collate_fn=collate_fn, drop_last=True)
    
    # Initialize model
    model = ClassificationPointNet(input_dim=6, max_points=1024)
    model.apply(init_weights)
    model.to(device)
    
    # Loss function and optimizer (BCE for binary classification)
    criterion = nn.BCEWithLogitsLoss()
    optimizer = torch.optim.Adam(model.parameters(), lr=lr, weight_decay=1e-4)
    scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=30, gamma=0.5)
    
    # Training loop
    model.train()
    for epoch in range(epochs):
        total_loss = 0.0
        correct = 0
        total = 0
        num_batches = 0
        
        for batch_idx, batch_data in enumerate(dataloader):
            if batch_data is None:  # Skip invalid batches
                continue
                
            patch_data, labels, valid_masks = batch_data
            patch_data = patch_data.to(device)  # (batch_size, 6, max_points)
            labels = labels.to(device).unsqueeze(1)  # (batch_size, 1)
            
            # Forward pass
            optimizer.zero_grad()
            outputs = model(patch_data)  # (batch_size, 1)
            loss = criterion(outputs, labels)
            
            # Backward pass
            loss.backward()
            optimizer.step()
            
            # Statistics
            total_loss += loss.item()
            predicted = (torch.sigmoid(outputs) > 0.5).float()
            total += labels.size(0)
            correct += (predicted == labels).sum().item()
            num_batches += 1
            
            if batch_idx % 50 == 0:
                print(f"Epoch {epoch+1}/{epochs}, Batch {batch_idx}, "
                      f"Loss: {loss.item():.6f}, "
                      f"Accuracy: {100 * correct / total:.2f}%")
        
        avg_loss = total_loss / num_batches if num_batches > 0 else 0
        accuracy = 100 * correct / total if total > 0 else 0
        
        print(f"Epoch {epoch+1}/{epochs} completed, "
              f"Avg Loss: {avg_loss:.6f}, "
              f"Accuracy: {accuracy:.2f}%")
        
        scheduler.step()

        # Save model checkpoint every epoch
        checkpoint_path = model_save_path.replace('.pth', f'_epoch_{epoch+1}.pth')
        torch.save({
            'model_state_dict': model.state_dict(),
            'optimizer_state_dict': optimizer.state_dict(),
            'epoch': epoch + 1,
            'loss': avg_loss,
            'accuracy': accuracy,
        }, checkpoint_path)
    
    # Save the trained model
    torch.save({
        'model_state_dict': model.state_dict(),
        'optimizer_state_dict': optimizer.state_dict(),
        'epoch': epochs,
    }, model_save_path)
    
    print(f"Model saved to {model_save_path}")
    return model

def load_pointnet_model(model_path: str, device: torch.device = None) -> ClassificationPointNet:
    """
    Load a trained ClassificationPointNet model.
    
    Args:
        model_path: Path to the saved model
        device: Device to load the model on
        
    Returns:
        Loaded ClassificationPointNet model
    """
    if device is None:
        device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    
    model = ClassificationPointNet(input_dim=6, max_points=1024)
    
    checkpoint = torch.load(model_path, map_location=device)
    model.load_state_dict(checkpoint['model_state_dict'])
    
    model.to(device)
    model.eval()
    
    return model

def predict_class_from_patch(model: ClassificationPointNet, patch: Dict, device: torch.device = None) -> Tuple[int, float]:
    """
    Predict binary classification from a patch using trained PointNet.
    
    Args:
        model: Trained ClassificationPointNet model
        patch: Dictionary containing patch data with 'patch_6d' key
        device: Device to run prediction on
        
    Returns:
        tuple of (predicted_class, confidence)
            predicted_class: int (0 for not edge, 1 for edge)
            confidence: float representing confidence score (0-1)
    """
    if device is None:
        device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    
    patch_6d = patch['patch_6d']  # (N, 6)
    
    # Prepare input
    max_points = 1024
    num_points = patch_6d.shape[0]
    
    if num_points >= max_points:
        # Sample points
        indices = np.random.choice(num_points, max_points, replace=False)
        patch_sampled = patch_6d[indices]
    else:
        # Pad with zeros
        patch_sampled = np.zeros((max_points, 6))
        patch_sampled[:num_points] = patch_6d
    
    # Convert to tensor
    patch_tensor = torch.from_numpy(patch_sampled.T).float().unsqueeze(0)  # (1, 6, max_points)
    patch_tensor = patch_tensor.to(device)
    
    # Predict
    with torch.no_grad():
        outputs = model(patch_tensor)  # (1, 1)
        probability = torch.sigmoid(outputs).item()
        predicted_class = int(probability > 0.5)
        
        return predicted_class, probability