File size: 25,095 Bytes
33113fd 9518589 33113fd f911a86 f132458 f911a86 f132458 f911a86 f132458 f911a86 f132458 f911a86 f132458 f911a86 f132458 f911a86 f132458 f911a86 f132458 f911a86 f132458 f911a86 f132458 f911a86 f132458 f911a86 f132458 f911a86 f132458 f911a86 f132458 f911a86 f132458 f911a86 f132458 f911a86 f132458 f911a86 f132458 f911a86 f132458 f911a86 f132458 f911a86 f132458 f911a86 f132458 f911a86 f132458 f911a86 f132458 f911a86 fe2e0f5 f911a86 2c5b2f1 f911a86 0994715 f911a86 33113fd 9518589 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 |
# This file defines a FastPointNet model for 3D vertex prediction from point clouds.
# It is located at <YOUR_LOCAL_PATH>/fast_pointnet_v2.py and includes:
# 1. `FastPointNet`: A deep neural network with enhancements like residual connections,
# channel attention, and multi-scale pooling. It predicts 3D coordinates,
# and optionally, confidence scores and classification labels.
# 2. `PatchDataset`: A PyTorch Dataset for loading, preprocessing, and augmenting
# 11-dimensional point cloud patches.
# 3. Utility functions for:
# - Training the model (`train_pointnet`) with custom loss and optimization.
# - Loading/saving models, and performing inference (`predict_vertex_from_patch`).
import os
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
import pickle
from torch.utils.data import Dataset, DataLoader
from typing import List, Dict, Tuple, Optional
import json
class FastPointNet(nn.Module):
"""
Fast PointNet implementation for 3D vertex prediction from point cloud patches.
Takes 11D point clouds and predicts 3D vertex coordinates.
Enhanced with deeper architecture, efficient attention, and accuracy improvements.
"""
def __init__(self, input_dim=11, output_dim=3, max_points=1024, predict_score=True, predict_class=True, num_classes=1):
super(FastPointNet, self).__init__()
self.max_points = max_points
self.predict_score = predict_score
self.predict_class = predict_class
self.num_classes = num_classes
# Enhanced point-wise MLPs with residual connections
self.conv1 = nn.Conv1d(input_dim, 64, 1)
self.conv2 = nn.Conv1d(64, 128, 1)
self.conv3 = nn.Conv1d(128, 256, 1)
self.conv4 = nn.Conv1d(256, 512, 1)
self.conv5 = nn.Conv1d(512, 1024, 1)
self.conv6 = nn.Conv1d(1024, 1024, 1)
self.conv7 = nn.Conv1d(1024, 2048, 1)
# Lightweight channel attention mechanism
self.channel_attention = nn.Sequential(
nn.AdaptiveAvgPool1d(1),
nn.Conv1d(2048, 128, 1),
nn.ReLU(inplace=True),
nn.Conv1d(128, 2048, 1),
nn.Sigmoid()
)
# Enhanced shared features with residual connections
self.shared_fc1 = nn.Linear(2048, 1024)
self.shared_fc2 = nn.Linear(1024, 512)
self.shared_fc3 = nn.Linear(512, 512) # Additional layer
# Enhanced position prediction head with skip connections
self.pos_fc1 = nn.Linear(512, 512)
self.pos_fc2 = nn.Linear(512, 256)
self.pos_fc3 = nn.Linear(256, 128)
self.pos_fc4 = nn.Linear(128, 64)
self.pos_fc5 = nn.Linear(64, output_dim)
# Enhanced score prediction head
if self.predict_score:
self.score_fc1 = nn.Linear(512, 512)
self.score_fc2 = nn.Linear(512, 256)
self.score_fc3 = nn.Linear(256, 128)
self.score_fc4 = nn.Linear(128, 64)
self.score_fc5 = nn.Linear(64, 1)
# Classification head
if self.predict_class:
self.class_fc1 = nn.Linear(512, 512)
self.class_fc2 = nn.Linear(512, 256)
self.class_fc3 = nn.Linear(256, 128)
self.class_fc4 = nn.Linear(128, 64)
self.class_fc5 = nn.Linear(64, num_classes)
# Batch normalization layers with momentum for stability
self.bn1 = nn.BatchNorm1d(64, momentum=0.1)
self.bn2 = nn.BatchNorm1d(128, momentum=0.1)
self.bn3 = nn.BatchNorm1d(256, momentum=0.1)
self.bn4 = nn.BatchNorm1d(512, momentum=0.1)
self.bn5 = nn.BatchNorm1d(1024, momentum=0.1)
self.bn6 = nn.BatchNorm1d(1024, momentum=0.1)
self.bn7 = nn.BatchNorm1d(2048, momentum=0.1)
# Group normalization for shared layers (more stable than BatchNorm for small batches)
self.gn1 = nn.GroupNorm(32, 1024)
self.gn2 = nn.GroupNorm(16, 512)
# Dropout with different rates
self.dropout_light = nn.Dropout(0.1)
self.dropout_medium = nn.Dropout(0.2)
self.dropout_heavy = nn.Dropout(0.3)
def forward(self, x):
"""
Forward pass with residual connections and attention
Args:
x: (batch_size, input_dim, max_points) tensor
Returns:
Tuple containing predictions based on configuration
"""
batch_size = x.size(0)
# Enhanced point-wise feature extraction with residual-like connections
x1 = F.leaky_relu(self.bn1(self.conv1(x)), negative_slope=0.01, inplace=True)
x2 = F.leaky_relu(self.bn2(self.conv2(x1)), negative_slope=0.01, inplace=True)
x3 = F.leaky_relu(self.bn3(self.conv3(x2)), negative_slope=0.01, inplace=True)
x4 = F.leaky_relu(self.bn4(self.conv4(x3)), negative_slope=0.01, inplace=True)
x5 = F.leaky_relu(self.bn5(self.conv5(x4)), negative_slope=0.01, inplace=True)
# Residual connection
x6 = F.leaky_relu(self.bn6(self.conv6(x5)) + x5, negative_slope=0.01, inplace=True)
x7 = F.leaky_relu(self.bn7(self.conv7(x6)), negative_slope=0.01, inplace=True)
# Apply channel attention
attention_weights = self.channel_attention(x7)
x7_attended = x7 * attention_weights
# Multi-scale global pooling for richer features
max_pool = torch.max(x7_attended, 2)[0] # (batch_size, 2048)
avg_pool = torch.mean(x7_attended, 2) # (batch_size, 2048)
# Weighted combination of pooling operations
global_features = 0.7 * max_pool + 0.3 * avg_pool # (batch_size, 2048)
# Enhanced shared features with residual connections and group norm
shared1 = F.leaky_relu(self.gn1(self.shared_fc1(global_features).unsqueeze(-1)).squeeze(-1),
negative_slope=0.01, inplace=True)
shared1 = self.dropout_light(shared1)
shared2 = F.leaky_relu(self.gn2(self.shared_fc2(shared1).unsqueeze(-1)).squeeze(-1),
negative_slope=0.01, inplace=True)
shared2 = self.dropout_medium(shared2)
# Additional shared layer with residual connection
shared3 = F.leaky_relu(self.shared_fc3(shared2), negative_slope=0.01, inplace=True)
shared_features = self.dropout_light(shared3) + shared2 # Residual connection
# Enhanced position prediction with skip connections
pos1 = F.leaky_relu(self.pos_fc1(shared_features), negative_slope=0.01, inplace=True)
pos1 = self.dropout_light(pos1)
pos2 = F.leaky_relu(self.pos_fc2(pos1), negative_slope=0.01, inplace=True)
pos2 = self.dropout_medium(pos2)
pos3 = F.leaky_relu(self.pos_fc3(pos2), negative_slope=0.01, inplace=True)
pos3 = self.dropout_light(pos3)
pos4 = F.leaky_relu(self.pos_fc4(pos3), negative_slope=0.01, inplace=True)
position = self.pos_fc5(pos4)
outputs = [position]
if self.predict_score:
# Enhanced score prediction
score1 = F.leaky_relu(self.score_fc1(shared_features), negative_slope=0.01, inplace=True)
score1 = self.dropout_light(score1)
score2 = F.leaky_relu(self.score_fc2(score1), negative_slope=0.01, inplace=True)
score2 = self.dropout_medium(score2)
score3 = F.leaky_relu(self.score_fc3(score2), negative_slope=0.01, inplace=True)
score3 = self.dropout_light(score3)
score4 = F.leaky_relu(self.score_fc4(score3), negative_slope=0.01, inplace=True)
score = F.softplus(self.score_fc5(score4)) # Ensure positive distance, smoother than ReLU
outputs.append(score)
if self.predict_class:
# Classification prediction
class1 = F.leaky_relu(self.class_fc1(shared_features), negative_slope=0.01, inplace=True)
class1 = self.dropout_light(class1)
class2 = F.leaky_relu(self.class_fc2(class1), negative_slope=0.01, inplace=True)
class2 = self.dropout_medium(class2)
class3 = F.leaky_relu(self.class_fc3(class2), negative_slope=0.01, inplace=True)
class3 = self.dropout_light(class3)
class4 = F.leaky_relu(self.class_fc4(class3), negative_slope=0.01, inplace=True)
classification = self.class_fc5(class4) # Raw logits
outputs.append(classification)
# Return outputs based on configuration
if len(outputs) == 1:
return outputs[0] # Only position
elif len(outputs) == 2:
if self.predict_score:
return outputs[0], outputs[1] # position, score
else:
return outputs[0], outputs[1] # position, classification
else:
return outputs[0], outputs[1], outputs[2] # position, score, classification
class PatchDataset(Dataset):
"""
Dataset class for loading saved patches for PointNet training.
Updated for 11D patches.
"""
def __init__(self, dataset_dir: str, max_points: int = 1024, augment: bool = True):
self.dataset_dir = dataset_dir
self.max_points = max_points
self.augment = augment
# Load patch files
self.patch_files = []
for file in os.listdir(dataset_dir):
if file.endswith('.pkl'):
self.patch_files.append(os.path.join(dataset_dir, file))
print(f"Found {len(self.patch_files)} patch files in {dataset_dir}")
def __len__(self):
return len(self.patch_files)
def __getitem__(self, idx):
"""
Load and process a patch for training.
Returns:
patch_data: (11, max_points) tensor of point cloud data
target: (3,) tensor of target 3D coordinates
valid_mask: (max_points,) boolean tensor indicating valid points
distance_to_gt: scalar tensor of distance from initial prediction to GT
classification: scalar tensor for binary classification (1 if GT vertex present, 0 if not)
"""
patch_file = self.patch_files[idx]
with open(patch_file, 'rb') as f:
patch_info = pickle.load(f)
patch_11d = patch_info['patch_11d'] # (N, 11) - Updated for 11D
target = patch_info.get('assigned_wf_vertex', None) # (3,) or None
initial_pred = patch_info.get('cluster_center', None) # (3,) or None
# Determine classification label based on GT vertex presence
has_gt_vertex = 1.0 if target is not None else 0.0
# Handle patches without ground truth
if target is None:
# Use a dummy target for consistency, but mark as invalid with classification
target = np.zeros(3)
else:
target = np.array(target)
# Pad or sample points to max_points
num_points = patch_11d.shape[0]
if num_points >= self.max_points:
# Randomly sample max_points
indices = np.random.choice(num_points, self.max_points, replace=False)
patch_sampled = patch_11d[indices]
valid_mask = np.ones(self.max_points, dtype=bool)
else:
# Pad with zeros
patch_sampled = np.zeros((self.max_points, 11)) # Updated for 11D
patch_sampled[:num_points] = patch_11d
valid_mask = np.zeros(self.max_points, dtype=bool)
valid_mask[:num_points] = True
# Data augmentation (only if GT vertex is present)
if self.augment and has_gt_vertex > 0:
patch_sampled, target = self._augment_patch(patch_sampled, valid_mask, target)
# Convert to tensors and transpose for conv1d (channels first)
patch_tensor = torch.from_numpy(patch_sampled.T).float() # (11, max_points)
target_tensor = torch.from_numpy(target).float() # (3,)
valid_mask_tensor = torch.from_numpy(valid_mask)
# Handle initial_pred
if initial_pred is not None:
initial_pred_tensor = torch.from_numpy(initial_pred).float()
else:
initial_pred_tensor = torch.zeros(3).float()
# Classification tensor
classification_tensor = torch.tensor(has_gt_vertex).float()
return patch_tensor, target_tensor, valid_mask_tensor, initial_pred_tensor, classification_tensor
def _augment_patch(self, patch_sampled, valid_mask, target):
"""
Apply data augmentation to patch and target.
Only augment valid points and update target accordingly.
"""
valid_points = patch_sampled[valid_mask]
if len(valid_points) > 0:
# Random rotation around Z-axis (small angle)
angle = np.random.uniform(-np.pi/12, np.pi/12) # ±15 degrees
cos_a, sin_a = np.cos(angle), np.sin(angle)
rotation_matrix = np.array([[cos_a, -sin_a, 0],
[sin_a, cos_a, 0],
[0, 0, 1]])
# Apply rotation to xyz coordinates
valid_points[:, :3] = valid_points[:, :3] @ rotation_matrix.T
target = target @ rotation_matrix.T
# Small random translation
translation = np.random.uniform(-0.05, 0.05, 3)
valid_points[:, :3] += translation
target += translation
# Random scaling (small)
scale = np.random.uniform(0.95, 1.05)
valid_points[:, :3] *= scale
target *= scale
# Add small noise to features (not coordinates)
if valid_points.shape[1] > 3:
noise = np.random.normal(0, 0.01, valid_points[:, 3:].shape)
valid_points[:, 3:] += noise
# Update patch with augmented valid points
patch_sampled[valid_mask] = valid_points
return patch_sampled, target
def save_patches_dataset(patches: List[Dict], dataset_dir: str, entry_id: str):
"""
Save patches from prediction pipeline to create a training dataset.
Args:
patches: List of patch dictionaries from generate_patches()
dataset_dir: Directory to save the dataset
entry_id: Unique identifier for this entry/image
"""
os.makedirs(dataset_dir, exist_ok=True)
for i, patch in enumerate(patches):
# Create unique filename
filename = f"{entry_id}_patch_{i}.pkl"
filepath = os.path.join(dataset_dir, filename)
# Skip if file already exists
if os.path.exists(filepath):
continue
# Save patch data
with open(filepath, 'wb') as f:
pickle.dump(patch, f)
print(f"Saved {len(patches)} patches for entry {entry_id}")
# Create dataloader with custom collate function to filter invalid samples
def collate_fn(batch):
valid_batch = []
for patch_data, target, valid_mask, initial_pred, classification in batch:
# Filter out invalid samples (no valid points)
if valid_mask.sum() > 0:
valid_batch.append((patch_data, target, valid_mask, initial_pred, classification))
if len(valid_batch) == 0:
return None
# Stack valid samples
patch_data = torch.stack([item[0] for item in valid_batch])
targets = torch.stack([item[1] for item in valid_batch])
valid_masks = torch.stack([item[2] for item in valid_batch])
initial_preds = torch.stack([item[3] for item in valid_batch])
classifications = torch.stack([item[4] for item in valid_batch])
return patch_data, targets, valid_masks, initial_preds, classifications
# Initialize weights using Kaiming initialization for LeakyReLU
def init_weights(m):
if isinstance(m, nn.Conv1d):
nn.init.kaiming_uniform_(m.weight, a=0.01, mode='fan_in', nonlinearity='leaky_relu')
if m.bias is not None:
nn.init.zeros_(m.bias)
elif isinstance(m, nn.Linear):
nn.init.kaiming_uniform_(m.weight, a=0.01, mode='fan_in', nonlinearity='leaky_relu')
if m.bias is not None:
nn.init.zeros_(m.bias)
elif isinstance(m, (nn.BatchNorm1d, nn.GroupNorm)):
nn.init.ones_(m.weight)
nn.init.zeros_(m.bias)
def train_pointnet(dataset_dir: str, model_save_path: str, epochs: int = 100, batch_size: int = 32, lr: float = 0.001,
score_weight: float = 0.1, class_weight: float = 0.5):
"""
Train the FastPointNet model on saved patches.
Updated for 11D input.
"""
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
print(f"Training on device: {device}")
# Create dataset and dataloader
dataset = PatchDataset(dataset_dir, max_points=1024, augment=True) # Enable augmentation
print(f"Dataset loaded with {len(dataset)} samples")
dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True, num_workers=20,
collate_fn=collate_fn, drop_last=True)
# Initialize model with 11D input
model = FastPointNet(input_dim=11, output_dim=3, max_points=1024, predict_score=True, predict_class=True, num_classes=1)
model.apply(init_weights)
model.to(device)
# Loss functions with label smoothing for classification
position_criterion = nn.SmoothL1Loss() # More robust than MSE
score_criterion = nn.SmoothL1Loss()
classification_criterion = nn.BCEWithLogitsLoss(pos_weight=torch.tensor(2.0)) # Weight positive class more
# AdamW optimizer with weight decay
optimizer = torch.optim.AdamW(model.parameters(), lr=lr, weight_decay=1e-4, betas=(0.9, 0.999))
# Cosine annealing scheduler for better convergence
scheduler = torch.optim.lr_scheduler.CosineAnnealingWarmRestarts(optimizer, T_0=20, T_mult=2)
# Training loop
model.train()
for epoch in range(epochs):
total_loss = 0.0
total_pos_loss = 0.0
total_score_loss = 0.0
total_class_loss = 0.0
num_batches = 0
for batch_idx, batch_data in enumerate(dataloader):
if batch_data is None: # Skip invalid batches
continue
patch_data, targets, valid_masks, initial_preds, classifications = batch_data
patch_data = patch_data.to(device) # (batch_size, 11, max_points)
targets = targets.to(device) # (batch_size, 3)
classifications = classifications.to(device) # (batch_size,)
# Forward pass
optimizer.zero_grad()
predictions, predicted_scores, predicted_classes = model(patch_data)
# Compute actual distance from predictions to targets
actual_distances = torch.norm(predictions - targets, dim=1, keepdim=True)
# Only compute position and score losses for samples with GT vertices
has_gt_mask = classifications > 0.5
if has_gt_mask.sum() > 0:
# Position loss only for samples with GT vertices
pos_loss = position_criterion(predictions[has_gt_mask], targets[has_gt_mask])
score_loss = score_criterion(predicted_scores[has_gt_mask], actual_distances[has_gt_mask])
else:
pos_loss = torch.tensor(0.0, device=device)
score_loss = torch.tensor(0.0, device=device)
# Classification loss for all samples
class_loss = classification_criterion(predicted_classes.squeeze(), classifications)
# Combined loss
total_batch_loss = pos_loss + score_weight * score_loss + class_weight * class_loss
# Backward pass
total_batch_loss.backward()
# Gradient clipping for stability
torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=1.0)
optimizer.step()
total_loss += total_batch_loss.item()
total_pos_loss += pos_loss.item()
total_score_loss += score_loss.item()
total_class_loss += class_loss.item()
num_batches += 1
if batch_idx % 50 == 0:
print(f"Epoch {epoch+1}/{epochs}, Batch {batch_idx}, "
f"Total Loss: {total_batch_loss.item():.6f}, "
f"Pos Loss: {pos_loss.item():.6f}, "
f"Score Loss: {score_loss.item():.6f}, "
f"Class Loss: {class_loss.item():.6f}")
avg_loss = total_loss / num_batches if num_batches > 0 else 0
avg_pos_loss = total_pos_loss / num_batches if num_batches > 0 else 0
avg_score_loss = total_score_loss / num_batches if num_batches > 0 else 0
avg_class_loss = total_class_loss / num_batches if num_batches > 0 else 0
print(f"Epoch {epoch+1}/{epochs} completed, "
f"Avg Total Loss: {avg_loss:.6f}, "
f"Avg Pos Loss: {avg_pos_loss:.6f}, "
f"Avg Score Loss: {avg_score_loss:.6f}, "
f"Avg Class Loss: {avg_class_loss:.6f}")
scheduler.step()
# Save model checkpoint every 10 epochs
if (epoch + 1) % 10 == 0:
checkpoint_path = model_save_path.replace('.pth', f'_epoch_{epoch+1}.pth')
torch.save({
'model_state_dict': model.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'epoch': epoch + 1,
'loss': avg_loss,
}, checkpoint_path)
# Save the trained model
torch.save({
'model_state_dict': model.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'epoch': epochs,
}, model_save_path)
print(f"Model saved to {model_save_path}")
return model
def load_pointnet_model(model_path: str, device: torch.device = None, predict_score: bool = True) -> FastPointNet:
"""
Load a trained FastPointNet model.
Updated for 11D input.
"""
if device is None:
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = FastPointNet(input_dim=11, output_dim=3, max_points=1024, predict_score=predict_score)
checkpoint = torch.load(model_path, map_location=device)
model.load_state_dict(checkpoint['model_state_dict'])
model.to(device)
model.eval()
return model
def predict_vertex_from_patch(model: FastPointNet, patch: np.ndarray, device: torch.device = None) -> Tuple[np.ndarray, float, float]:
"""
Predict 3D vertex coordinates, confidence score, and classification from a patch using trained PointNet.
Updated for 11D patches.
"""
if device is None:
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
patch_11d = patch['patch_11d'] # (N, 11) - Updated for 11D
# Prepare input
max_points = 1024
num_points = patch_11d.shape[0]
if num_points >= max_points:
# Sample points
indices = np.random.choice(num_points, max_points, replace=False)
patch_sampled = patch_11d[indices]
else:
# Pad with zeros
patch_sampled = np.zeros((max_points, 11)) # Updated for 11D
patch_sampled[:num_points] = patch_11d
# Convert to tensor
patch_tensor = torch.from_numpy(patch_sampled.T).float().unsqueeze(0) # (1, 11, max_points)
patch_tensor = patch_tensor.to(device)
# Predict
with torch.no_grad():
outputs = model(patch_tensor)
if model.predict_score and model.predict_class:
position, score, classification = outputs
position = position.cpu().numpy().squeeze()
score = score.cpu().numpy().squeeze()
classification = torch.sigmoid(classification).cpu().numpy().squeeze() # Apply sigmoid for probability
elif model.predict_score:
position, score = outputs
position = position.cpu().numpy().squeeze()
score = score.cpu().numpy().squeeze()
classification = None
elif model.predict_class:
position, classification = outputs
position = position.cpu().numpy().squeeze()
score = None
classification = torch.sigmoid(classification).cpu().numpy().squeeze() # Apply sigmoid for probability
else:
position = outputs
position = position.cpu().numpy().squeeze()
score = None
classification = None
# Apply offset correction
offset = patch['cluster_center']
position += offset
return position, score, classification
|