# This file defines a FastPointNet model for 3D vertex prediction from point clouds. # It is located at /fast_pointnet_v2.py and includes: # 1. `FastPointNet`: A deep neural network with enhancements like residual connections, # channel attention, and multi-scale pooling. It predicts 3D coordinates, # and optionally, confidence scores and classification labels. # 2. `PatchDataset`: A PyTorch Dataset for loading, preprocessing, and augmenting # 11-dimensional point cloud patches. # 3. Utility functions for: # - Training the model (`train_pointnet`) with custom loss and optimization. # - Loading/saving models, and performing inference (`predict_vertex_from_patch`). import os import torch import torch.nn as nn import torch.nn.functional as F import numpy as np import pickle from torch.utils.data import Dataset, DataLoader from typing import List, Dict, Tuple, Optional import json class FastPointNet(nn.Module): """ Fast PointNet implementation for 3D vertex prediction from point cloud patches. Takes 11D point clouds and predicts 3D vertex coordinates. Enhanced with deeper architecture, efficient attention, and accuracy improvements. """ def __init__(self, input_dim=11, output_dim=3, max_points=1024, predict_score=True, predict_class=True, num_classes=1): super(FastPointNet, self).__init__() self.max_points = max_points self.predict_score = predict_score self.predict_class = predict_class self.num_classes = num_classes # Enhanced point-wise MLPs with residual connections self.conv1 = nn.Conv1d(input_dim, 64, 1) self.conv2 = nn.Conv1d(64, 128, 1) self.conv3 = nn.Conv1d(128, 256, 1) self.conv4 = nn.Conv1d(256, 512, 1) self.conv5 = nn.Conv1d(512, 1024, 1) self.conv6 = nn.Conv1d(1024, 1024, 1) self.conv7 = nn.Conv1d(1024, 2048, 1) # Lightweight channel attention mechanism self.channel_attention = nn.Sequential( nn.AdaptiveAvgPool1d(1), nn.Conv1d(2048, 128, 1), nn.ReLU(inplace=True), nn.Conv1d(128, 2048, 1), nn.Sigmoid() ) # Enhanced shared features with residual connections self.shared_fc1 = nn.Linear(2048, 1024) self.shared_fc2 = nn.Linear(1024, 512) self.shared_fc3 = nn.Linear(512, 512) # Additional layer # Enhanced position prediction head with skip connections self.pos_fc1 = nn.Linear(512, 512) self.pos_fc2 = nn.Linear(512, 256) self.pos_fc3 = nn.Linear(256, 128) self.pos_fc4 = nn.Linear(128, 64) self.pos_fc5 = nn.Linear(64, output_dim) # Enhanced score prediction head if self.predict_score: self.score_fc1 = nn.Linear(512, 512) self.score_fc2 = nn.Linear(512, 256) self.score_fc3 = nn.Linear(256, 128) self.score_fc4 = nn.Linear(128, 64) self.score_fc5 = nn.Linear(64, 1) # Classification head if self.predict_class: self.class_fc1 = nn.Linear(512, 512) self.class_fc2 = nn.Linear(512, 256) self.class_fc3 = nn.Linear(256, 128) self.class_fc4 = nn.Linear(128, 64) self.class_fc5 = nn.Linear(64, num_classes) # Batch normalization layers with momentum for stability self.bn1 = nn.BatchNorm1d(64, momentum=0.1) self.bn2 = nn.BatchNorm1d(128, momentum=0.1) self.bn3 = nn.BatchNorm1d(256, momentum=0.1) self.bn4 = nn.BatchNorm1d(512, momentum=0.1) self.bn5 = nn.BatchNorm1d(1024, momentum=0.1) self.bn6 = nn.BatchNorm1d(1024, momentum=0.1) self.bn7 = nn.BatchNorm1d(2048, momentum=0.1) # Group normalization for shared layers (more stable than BatchNorm for small batches) self.gn1 = nn.GroupNorm(32, 1024) self.gn2 = nn.GroupNorm(16, 512) # Dropout with different rates self.dropout_light = nn.Dropout(0.1) self.dropout_medium = nn.Dropout(0.2) self.dropout_heavy = nn.Dropout(0.3) def forward(self, x): """ Forward pass with residual connections and attention Args: x: (batch_size, input_dim, max_points) tensor Returns: Tuple containing predictions based on configuration """ batch_size = x.size(0) # Enhanced point-wise feature extraction with residual-like connections x1 = F.leaky_relu(self.bn1(self.conv1(x)), negative_slope=0.01, inplace=True) x2 = F.leaky_relu(self.bn2(self.conv2(x1)), negative_slope=0.01, inplace=True) x3 = F.leaky_relu(self.bn3(self.conv3(x2)), negative_slope=0.01, inplace=True) x4 = F.leaky_relu(self.bn4(self.conv4(x3)), negative_slope=0.01, inplace=True) x5 = F.leaky_relu(self.bn5(self.conv5(x4)), negative_slope=0.01, inplace=True) # Residual connection x6 = F.leaky_relu(self.bn6(self.conv6(x5)) + x5, negative_slope=0.01, inplace=True) x7 = F.leaky_relu(self.bn7(self.conv7(x6)), negative_slope=0.01, inplace=True) # Apply channel attention attention_weights = self.channel_attention(x7) x7_attended = x7 * attention_weights # Multi-scale global pooling for richer features max_pool = torch.max(x7_attended, 2)[0] # (batch_size, 2048) avg_pool = torch.mean(x7_attended, 2) # (batch_size, 2048) # Weighted combination of pooling operations global_features = 0.7 * max_pool + 0.3 * avg_pool # (batch_size, 2048) # Enhanced shared features with residual connections and group norm shared1 = F.leaky_relu(self.gn1(self.shared_fc1(global_features).unsqueeze(-1)).squeeze(-1), negative_slope=0.01, inplace=True) shared1 = self.dropout_light(shared1) shared2 = F.leaky_relu(self.gn2(self.shared_fc2(shared1).unsqueeze(-1)).squeeze(-1), negative_slope=0.01, inplace=True) shared2 = self.dropout_medium(shared2) # Additional shared layer with residual connection shared3 = F.leaky_relu(self.shared_fc3(shared2), negative_slope=0.01, inplace=True) shared_features = self.dropout_light(shared3) + shared2 # Residual connection # Enhanced position prediction with skip connections pos1 = F.leaky_relu(self.pos_fc1(shared_features), negative_slope=0.01, inplace=True) pos1 = self.dropout_light(pos1) pos2 = F.leaky_relu(self.pos_fc2(pos1), negative_slope=0.01, inplace=True) pos2 = self.dropout_medium(pos2) pos3 = F.leaky_relu(self.pos_fc3(pos2), negative_slope=0.01, inplace=True) pos3 = self.dropout_light(pos3) pos4 = F.leaky_relu(self.pos_fc4(pos3), negative_slope=0.01, inplace=True) position = self.pos_fc5(pos4) outputs = [position] if self.predict_score: # Enhanced score prediction score1 = F.leaky_relu(self.score_fc1(shared_features), negative_slope=0.01, inplace=True) score1 = self.dropout_light(score1) score2 = F.leaky_relu(self.score_fc2(score1), negative_slope=0.01, inplace=True) score2 = self.dropout_medium(score2) score3 = F.leaky_relu(self.score_fc3(score2), negative_slope=0.01, inplace=True) score3 = self.dropout_light(score3) score4 = F.leaky_relu(self.score_fc4(score3), negative_slope=0.01, inplace=True) score = F.softplus(self.score_fc5(score4)) # Ensure positive distance, smoother than ReLU outputs.append(score) if self.predict_class: # Classification prediction class1 = F.leaky_relu(self.class_fc1(shared_features), negative_slope=0.01, inplace=True) class1 = self.dropout_light(class1) class2 = F.leaky_relu(self.class_fc2(class1), negative_slope=0.01, inplace=True) class2 = self.dropout_medium(class2) class3 = F.leaky_relu(self.class_fc3(class2), negative_slope=0.01, inplace=True) class3 = self.dropout_light(class3) class4 = F.leaky_relu(self.class_fc4(class3), negative_slope=0.01, inplace=True) classification = self.class_fc5(class4) # Raw logits outputs.append(classification) # Return outputs based on configuration if len(outputs) == 1: return outputs[0] # Only position elif len(outputs) == 2: if self.predict_score: return outputs[0], outputs[1] # position, score else: return outputs[0], outputs[1] # position, classification else: return outputs[0], outputs[1], outputs[2] # position, score, classification class PatchDataset(Dataset): """ Dataset class for loading saved patches for PointNet training. Updated for 11D patches. """ def __init__(self, dataset_dir: str, max_points: int = 1024, augment: bool = True): self.dataset_dir = dataset_dir self.max_points = max_points self.augment = augment # Load patch files self.patch_files = [] for file in os.listdir(dataset_dir): if file.endswith('.pkl'): self.patch_files.append(os.path.join(dataset_dir, file)) print(f"Found {len(self.patch_files)} patch files in {dataset_dir}") def __len__(self): return len(self.patch_files) def __getitem__(self, idx): """ Load and process a patch for training. Returns: patch_data: (11, max_points) tensor of point cloud data target: (3,) tensor of target 3D coordinates valid_mask: (max_points,) boolean tensor indicating valid points distance_to_gt: scalar tensor of distance from initial prediction to GT classification: scalar tensor for binary classification (1 if GT vertex present, 0 if not) """ patch_file = self.patch_files[idx] with open(patch_file, 'rb') as f: patch_info = pickle.load(f) patch_11d = patch_info['patch_11d'] # (N, 11) - Updated for 11D target = patch_info.get('assigned_wf_vertex', None) # (3,) or None initial_pred = patch_info.get('cluster_center', None) # (3,) or None # Determine classification label based on GT vertex presence has_gt_vertex = 1.0 if target is not None else 0.0 # Handle patches without ground truth if target is None: # Use a dummy target for consistency, but mark as invalid with classification target = np.zeros(3) else: target = np.array(target) # Pad or sample points to max_points num_points = patch_11d.shape[0] if num_points >= self.max_points: # Randomly sample max_points indices = np.random.choice(num_points, self.max_points, replace=False) patch_sampled = patch_11d[indices] valid_mask = np.ones(self.max_points, dtype=bool) else: # Pad with zeros patch_sampled = np.zeros((self.max_points, 11)) # Updated for 11D patch_sampled[:num_points] = patch_11d valid_mask = np.zeros(self.max_points, dtype=bool) valid_mask[:num_points] = True # Data augmentation (only if GT vertex is present) if self.augment and has_gt_vertex > 0: patch_sampled, target = self._augment_patch(patch_sampled, valid_mask, target) # Convert to tensors and transpose for conv1d (channels first) patch_tensor = torch.from_numpy(patch_sampled.T).float() # (11, max_points) target_tensor = torch.from_numpy(target).float() # (3,) valid_mask_tensor = torch.from_numpy(valid_mask) # Handle initial_pred if initial_pred is not None: initial_pred_tensor = torch.from_numpy(initial_pred).float() else: initial_pred_tensor = torch.zeros(3).float() # Classification tensor classification_tensor = torch.tensor(has_gt_vertex).float() return patch_tensor, target_tensor, valid_mask_tensor, initial_pred_tensor, classification_tensor def _augment_patch(self, patch_sampled, valid_mask, target): """ Apply data augmentation to patch and target. Only augment valid points and update target accordingly. """ valid_points = patch_sampled[valid_mask] if len(valid_points) > 0: # Random rotation around Z-axis (small angle) angle = np.random.uniform(-np.pi/12, np.pi/12) # ±15 degrees cos_a, sin_a = np.cos(angle), np.sin(angle) rotation_matrix = np.array([[cos_a, -sin_a, 0], [sin_a, cos_a, 0], [0, 0, 1]]) # Apply rotation to xyz coordinates valid_points[:, :3] = valid_points[:, :3] @ rotation_matrix.T target = target @ rotation_matrix.T # Small random translation translation = np.random.uniform(-0.05, 0.05, 3) valid_points[:, :3] += translation target += translation # Random scaling (small) scale = np.random.uniform(0.95, 1.05) valid_points[:, :3] *= scale target *= scale # Add small noise to features (not coordinates) if valid_points.shape[1] > 3: noise = np.random.normal(0, 0.01, valid_points[:, 3:].shape) valid_points[:, 3:] += noise # Update patch with augmented valid points patch_sampled[valid_mask] = valid_points return patch_sampled, target def save_patches_dataset(patches: List[Dict], dataset_dir: str, entry_id: str): """ Save patches from prediction pipeline to create a training dataset. Args: patches: List of patch dictionaries from generate_patches() dataset_dir: Directory to save the dataset entry_id: Unique identifier for this entry/image """ os.makedirs(dataset_dir, exist_ok=True) for i, patch in enumerate(patches): # Create unique filename filename = f"{entry_id}_patch_{i}.pkl" filepath = os.path.join(dataset_dir, filename) # Skip if file already exists if os.path.exists(filepath): continue # Save patch data with open(filepath, 'wb') as f: pickle.dump(patch, f) print(f"Saved {len(patches)} patches for entry {entry_id}") # Create dataloader with custom collate function to filter invalid samples def collate_fn(batch): valid_batch = [] for patch_data, target, valid_mask, initial_pred, classification in batch: # Filter out invalid samples (no valid points) if valid_mask.sum() > 0: valid_batch.append((patch_data, target, valid_mask, initial_pred, classification)) if len(valid_batch) == 0: return None # Stack valid samples patch_data = torch.stack([item[0] for item in valid_batch]) targets = torch.stack([item[1] for item in valid_batch]) valid_masks = torch.stack([item[2] for item in valid_batch]) initial_preds = torch.stack([item[3] for item in valid_batch]) classifications = torch.stack([item[4] for item in valid_batch]) return patch_data, targets, valid_masks, initial_preds, classifications # Initialize weights using Kaiming initialization for LeakyReLU def init_weights(m): if isinstance(m, nn.Conv1d): nn.init.kaiming_uniform_(m.weight, a=0.01, mode='fan_in', nonlinearity='leaky_relu') if m.bias is not None: nn.init.zeros_(m.bias) elif isinstance(m, nn.Linear): nn.init.kaiming_uniform_(m.weight, a=0.01, mode='fan_in', nonlinearity='leaky_relu') if m.bias is not None: nn.init.zeros_(m.bias) elif isinstance(m, (nn.BatchNorm1d, nn.GroupNorm)): nn.init.ones_(m.weight) nn.init.zeros_(m.bias) def train_pointnet(dataset_dir: str, model_save_path: str, epochs: int = 100, batch_size: int = 32, lr: float = 0.001, score_weight: float = 0.1, class_weight: float = 0.5): """ Train the FastPointNet model on saved patches. Updated for 11D input. """ device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') print(f"Training on device: {device}") # Create dataset and dataloader dataset = PatchDataset(dataset_dir, max_points=1024, augment=True) # Enable augmentation print(f"Dataset loaded with {len(dataset)} samples") dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True, num_workers=20, collate_fn=collate_fn, drop_last=True) # Initialize model with 11D input model = FastPointNet(input_dim=11, output_dim=3, max_points=1024, predict_score=True, predict_class=True, num_classes=1) model.apply(init_weights) model.to(device) # Loss functions with label smoothing for classification position_criterion = nn.SmoothL1Loss() # More robust than MSE score_criterion = nn.SmoothL1Loss() classification_criterion = nn.BCEWithLogitsLoss(pos_weight=torch.tensor(2.0)) # Weight positive class more # AdamW optimizer with weight decay optimizer = torch.optim.AdamW(model.parameters(), lr=lr, weight_decay=1e-4, betas=(0.9, 0.999)) # Cosine annealing scheduler for better convergence scheduler = torch.optim.lr_scheduler.CosineAnnealingWarmRestarts(optimizer, T_0=20, T_mult=2) # Training loop model.train() for epoch in range(epochs): total_loss = 0.0 total_pos_loss = 0.0 total_score_loss = 0.0 total_class_loss = 0.0 num_batches = 0 for batch_idx, batch_data in enumerate(dataloader): if batch_data is None: # Skip invalid batches continue patch_data, targets, valid_masks, initial_preds, classifications = batch_data patch_data = patch_data.to(device) # (batch_size, 11, max_points) targets = targets.to(device) # (batch_size, 3) classifications = classifications.to(device) # (batch_size,) # Forward pass optimizer.zero_grad() predictions, predicted_scores, predicted_classes = model(patch_data) # Compute actual distance from predictions to targets actual_distances = torch.norm(predictions - targets, dim=1, keepdim=True) # Only compute position and score losses for samples with GT vertices has_gt_mask = classifications > 0.5 if has_gt_mask.sum() > 0: # Position loss only for samples with GT vertices pos_loss = position_criterion(predictions[has_gt_mask], targets[has_gt_mask]) score_loss = score_criterion(predicted_scores[has_gt_mask], actual_distances[has_gt_mask]) else: pos_loss = torch.tensor(0.0, device=device) score_loss = torch.tensor(0.0, device=device) # Classification loss for all samples class_loss = classification_criterion(predicted_classes.squeeze(), classifications) # Combined loss total_batch_loss = pos_loss + score_weight * score_loss + class_weight * class_loss # Backward pass total_batch_loss.backward() # Gradient clipping for stability torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=1.0) optimizer.step() total_loss += total_batch_loss.item() total_pos_loss += pos_loss.item() total_score_loss += score_loss.item() total_class_loss += class_loss.item() num_batches += 1 if batch_idx % 50 == 0: print(f"Epoch {epoch+1}/{epochs}, Batch {batch_idx}, " f"Total Loss: {total_batch_loss.item():.6f}, " f"Pos Loss: {pos_loss.item():.6f}, " f"Score Loss: {score_loss.item():.6f}, " f"Class Loss: {class_loss.item():.6f}") avg_loss = total_loss / num_batches if num_batches > 0 else 0 avg_pos_loss = total_pos_loss / num_batches if num_batches > 0 else 0 avg_score_loss = total_score_loss / num_batches if num_batches > 0 else 0 avg_class_loss = total_class_loss / num_batches if num_batches > 0 else 0 print(f"Epoch {epoch+1}/{epochs} completed, " f"Avg Total Loss: {avg_loss:.6f}, " f"Avg Pos Loss: {avg_pos_loss:.6f}, " f"Avg Score Loss: {avg_score_loss:.6f}, " f"Avg Class Loss: {avg_class_loss:.6f}") scheduler.step() # Save model checkpoint every 10 epochs if (epoch + 1) % 10 == 0: checkpoint_path = model_save_path.replace('.pth', f'_epoch_{epoch+1}.pth') torch.save({ 'model_state_dict': model.state_dict(), 'optimizer_state_dict': optimizer.state_dict(), 'epoch': epoch + 1, 'loss': avg_loss, }, checkpoint_path) # Save the trained model torch.save({ 'model_state_dict': model.state_dict(), 'optimizer_state_dict': optimizer.state_dict(), 'epoch': epochs, }, model_save_path) print(f"Model saved to {model_save_path}") return model def load_pointnet_model(model_path: str, device: torch.device = None, predict_score: bool = True) -> FastPointNet: """ Load a trained FastPointNet model. Updated for 11D input. """ if device is None: device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') model = FastPointNet(input_dim=11, output_dim=3, max_points=1024, predict_score=predict_score) checkpoint = torch.load(model_path, map_location=device) model.load_state_dict(checkpoint['model_state_dict']) model.to(device) model.eval() return model def predict_vertex_from_patch(model: FastPointNet, patch: np.ndarray, device: torch.device = None) -> Tuple[np.ndarray, float, float]: """ Predict 3D vertex coordinates, confidence score, and classification from a patch using trained PointNet. Updated for 11D patches. """ if device is None: device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') patch_11d = patch['patch_11d'] # (N, 11) - Updated for 11D # Prepare input max_points = 1024 num_points = patch_11d.shape[0] if num_points >= max_points: # Sample points indices = np.random.choice(num_points, max_points, replace=False) patch_sampled = patch_11d[indices] else: # Pad with zeros patch_sampled = np.zeros((max_points, 11)) # Updated for 11D patch_sampled[:num_points] = patch_11d # Convert to tensor patch_tensor = torch.from_numpy(patch_sampled.T).float().unsqueeze(0) # (1, 11, max_points) patch_tensor = patch_tensor.to(device) # Predict with torch.no_grad(): outputs = model(patch_tensor) if model.predict_score and model.predict_class: position, score, classification = outputs position = position.cpu().numpy().squeeze() score = score.cpu().numpy().squeeze() classification = torch.sigmoid(classification).cpu().numpy().squeeze() # Apply sigmoid for probability elif model.predict_score: position, score = outputs position = position.cpu().numpy().squeeze() score = score.cpu().numpy().squeeze() classification = None elif model.predict_class: position, classification = outputs position = position.cpu().numpy().squeeze() score = None classification = torch.sigmoid(classification).cpu().numpy().squeeze() # Apply sigmoid for probability else: position = outputs position = position.cpu().numpy().squeeze() score = None classification = None # Apply offset correction offset = patch['cluster_center'] position += offset return position, score, classification