keerthikoganti commited on
Commit
10d797d
·
verified ·
1 Parent(s): 03e6662

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +154 -0
README.md ADDED
@@ -0,0 +1,154 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ # For reference on model card metadata, see the spec: https://github.com/huggingface/hub-docs/blob/main/modelcard.md?plain=1
3
+ # Doc / guide: https://huggingface.co/docs/hub/model-cards
4
+ {}
5
+ ---
6
+
7
+ # Model Card for keerthikoganti/architecture-design-stages-compact-cnn
8
+
9
+ <!-- Provide a quick summary of what the model is/does. -->
10
+
11
+ ArchiTutor is a compact convolutional neural network (CNN) that classifies images
12
+
13
+ ## Model Details
14
+
15
+ ### Model Description
16
+
17
+ ArchiTutor is a compact convolutional neural network (CNN) that classifies images of architecture projects into discrete design stages commonly seen in studio workflows: Brainstorm, Design Iteration, Optimization/Detailing, and Final Review/Presentation (class names configurable). The goal is to support design pedagogy and analytics by tagging studio artifacts over time.
18
+
19
+ Task: Image classification (multi-class)
20
+
21
+ Inputs: RGB images of architecture artifacts (sketches, diagrams, renders, boards, screenshots)
22
+
23
+ Outputs: One of the design-stage labels, with class probabilities
24
+
25
+ Intended audience: Architecture students, instructors, design researchers, education tech tools
26
+
27
+
28
+
29
+ - **Developed by:** Keerthi Koganti (Carnegie Mellon University)
30
+ - **Model type:** Compact Convolutional Neural Network (CNN)
31
+ - **Language(s) (NLP):** English
32
+ - **License:** MIT
33
+
34
+ ## Uses
35
+
36
+ ### Direct Use
37
+
38
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
39
+
40
+ Auto-tagging student submissions by stage for feedback dashboards
41
+
42
+ Curating datasets of process images for research on studio workflows
43
+
44
+ Searching/filtering large archives by stage
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ Not a critique engine; it does not assess design quality
57
+
58
+ May struggle with ambiguous mixed-stage boards or atypical media (e.g., code screenshots)
59
+
60
+ Performance depends on domain similarity (studio imagery vs. unrelated graphics)
61
+
62
+ ## Bias, Risks, and Limitations
63
+
64
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
65
+
66
+ Data imbalance: The dataset may contain more examples of final presentation boards than early sketches or optimization models, biasing predictions toward later stages.
67
+
68
+ Style bias: If most training images come from specific software (e.g., Rhino/Grasshopper or Revit renderings), the model may underperform on hand drawings, mixed-media collages, or atypical workflows.
69
+
70
+ ### Recommendations
71
+
72
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
73
+
74
+ Diversify training data: Expand datasets to include hand sketches, BIM screenshots, and diverse cultural/academic styles to reduce bias.
75
+
76
+ Apply fairness checks: Periodically assess per-class and per-style accuracy metrics to ensure no overfitting to dominant visual tropes.
77
+
78
+ Document provenance: Keep metadata on dataset sources, creators, and usage consent for transparency.
79
+
80
+ Avoid high-stakes use: The model should not be used for academic assessment, admissions, or publication decisions.
81
+
82
+ ## How to Get Started with the Model
83
+
84
+ Use the code below to get started with the model.
85
+
86
+ import torch
87
+ from torchvision import transforms
88
+ from PIL import Image
89
+ from model import load_model # your helper
90
+ from labels import IDX2LABEL # list or dict mapping
91
+
92
+ device = "cuda" if torch.cuda.is_available() else "cpu"
93
+ model = load_model(checkpoint_path="checkpoints/best.pt").to(device).eval()
94
+
95
+ tfm = transforms.Compose([
96
+ transforms.Resize(256),
97
+ transforms.CenterCrop(224),
98
+ transforms.ToTensor(),
99
+ transforms.Normalize(mean=[0.485,0.456,0.406],
100
+ std=[0.229,0.224,0.225]),
101
+ ])
102
+
103
+ img = Image.open("example.jpg").convert("RGB")
104
+ with torch.no_grad():
105
+ logits = model(tfm(img).unsqueeze(0).to(device))
106
+ probs = torch.softmax(logits, dim=1).squeeze().cpu().tolist()
107
+
108
+ pred_idx = int(torch.argmax(logits, dim=1).item())
109
+ print(IDX2LABEL[pred_idx], probs[pred_idx])
110
+
111
+
112
+ ## Training Details
113
+
114
+ ### Training Data
115
+
116
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
117
+
118
+ [More Information Needed]
119
+
120
+ ### Training Procedure
121
+
122
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
123
+
124
+ #### Training Hyperparameters
125
+
126
+ - **Training regime:** Framework: PyTorch
127
+
128
+ Backbone: Compact CNN (e.g., MobileNetV3-Small or custom ~1–3M params)
129
+
130
+ Head: Global pooling → Dropout → Linear (num_classes)
131
+
132
+ Loss: Cross-entropy
133
+
134
+ Optimizer: AdamW (lr=3e-4, wd=1e-4)
135
+
136
+ Scheduler: Cosine decay with warmup (e.g., 5 epochs)
137
+
138
+ Augmentations: RandomResizedCrop(224), RandomHorizontalFlip, small ColorJitter
139
+
140
+ Batch size / Epochs: [e.g., 64 / 30] (early stopping on val loss)
141
+
142
+ Mixed precision: Recommended (AMP)
143
+
144
+ Hardware: [e.g., 1× A100 / 1× RTX 3060]
145
+
146
+ Reproducibility: Set seeds, log versions (torch, cuda), save train/val metrics <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
147
+
148
+ ## Citation
149
+
150
+ Gen AI used to made this - ChatGPT and Google Colab
151
+
152
+ ## Model Card Contact
153
+
154
+ Maintainer: Keerthi Koganti