Update README.md with new model card content
Browse files
README.md
CHANGED
|
@@ -1,11 +1,93 @@
|
|
| 1 |
---
|
| 2 |
library_name: keras-hub
|
| 3 |
---
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
library_name: keras-hub
|
| 3 |
---
|
| 4 |
+
### Model Overview
|
| 5 |
+
SigLIP model pre-trained on WebLi at resolution 224x224. It was introduced in the paper [Sigmoid Loss for Language Image Pre-Training](https://arxiv.org/abs/2303.15343) by Zhai et al. and first released in this [repository](https://github.com/google-research/big_vision).
|
| 6 |
+
SigLIP is [CLIP](https://huggingface.co/docs/transformers/model_doc/clip), a multimodal model, with a better loss function. The sigmoid loss operates solely on image-text pairs and does not require a global view of the pairwise similarities for normalization. This allows further scaling up the batch size, while also performing better at smaller batch sizes.
|
| 7 |
+
A TLDR of SigLIP by one of the authors can be found [here](https://twitter.com/giffmana/status/1692641733459267713).
|
| 8 |
+
|
| 9 |
+
Weights are released under the [Apache 2 License](https://github.com/keras-team/keras-hub/blob/master/LICENSE) . Keras model code is released under the [Apache 2 License](https://github.com/keras-team/keras-hub/blob/master/LICENSE).
|
| 10 |
+
|
| 11 |
+
## Links
|
| 12 |
+
|
| 13 |
+
* [SigLIP Quickstart Notebook](https://www.kaggle.com/code/laxmareddypatlolla/siglip-quickstart-notebook-with-hub)
|
| 14 |
+
* [SigLIP API Documentation](coming soon)
|
| 15 |
+
* [SigLIP Model Card](https://arxiv.org/abs/2303.15343)
|
| 16 |
+
* [KerasHub Beginner Guide](https://keras.io/guides/keras_hub/getting_started/)
|
| 17 |
+
* [KerasHub Model Publishing Guide](https://keras.io/guides/keras_hub/upload/)
|
| 18 |
+
|
| 19 |
+
## Installation
|
| 20 |
+
|
| 21 |
+
Keras and KerasHub can be installed with:
|
| 22 |
+
|
| 23 |
+
```
|
| 24 |
+
pip install -U -q keras-hub
|
| 25 |
+
pip install -U -q keras
|
| 26 |
+
```
|
| 27 |
+
|
| 28 |
+
Jax, TensorFlow, and Torch come preinstalled in Kaggle Notebooks. For instructions on installing them in another environment see the [Keras Getting Started](https://keras.io/getting_started/) page.
|
| 29 |
+
|
| 30 |
+
## Presets
|
| 31 |
+
|
| 32 |
+
The following model checkpoints are provided by the Keras team. Full code examples for each are available below.
|
| 33 |
+
|
| 34 |
+
| Preset name | Parameters | Description |
|
| 35 |
+
|---------------------------------------|------------|--------------------------------------------------------------------------------------------------------------|
|
| 36 |
+
| | | |
|
| 37 |
+
|
| 38 |
+
## Example Usage
|
| 39 |
+
```Python
|
| 40 |
+
import keras
|
| 41 |
+
import numpy as np
|
| 42 |
+
import matplotlib.pyplot as plt
|
| 43 |
+
from keras_hub.models import SigLIPBackbone, SigLIPTokenizer
|
| 44 |
+
from keras_hub.layers import SigLIPImageConverter
|
| 45 |
+
|
| 46 |
+
# instantiate the model and preprocessing tools
|
| 47 |
+
siglip = SigLIPBackbone.from_preset("siglip2_base_patch16_256")
|
| 48 |
+
tokenizer = SigLIPTokenizer.from_preset("siglip2_base_patch16_256",
|
| 49 |
+
sequence_length=64)
|
| 50 |
+
image_converter = SigLIPImageConverter.from_preset("siglip2_base_patch16_256")
|
| 51 |
+
|
| 52 |
+
# obtain tokens for some input text
|
| 53 |
+
tokens = tokenizer.tokenize(["mountains", "cat on tortoise", "house"])
|
| 54 |
+
|
| 55 |
+
# preprocess image and text
|
| 56 |
+
image = keras.utils.load_img("cat.jpg")
|
| 57 |
+
image = image_converter(np.array([image]).astype(float))
|
| 58 |
+
|
| 59 |
+
# query the model for similarities
|
| 60 |
+
siglip({
|
| 61 |
+
"images": image,
|
| 62 |
+
"token_ids": tokens,
|
| 63 |
+
})
|
| 64 |
+
```
|
| 65 |
+
|
| 66 |
+
## Example Usage with Hugging Face URI
|
| 67 |
+
|
| 68 |
+
```Python
|
| 69 |
+
import keras
|
| 70 |
+
import numpy as np
|
| 71 |
+
import matplotlib.pyplot as plt
|
| 72 |
+
from keras_hub.models import SigLIPBackbone, SigLIPTokenizer
|
| 73 |
+
from keras_hub.layers import SigLIPImageConverter
|
| 74 |
+
|
| 75 |
+
# instantiate the model and preprocessing tools
|
| 76 |
+
siglip = SigLIPBackbone.from_preset("hf://keras/siglip2_base_patch16_256")
|
| 77 |
+
tokenizer = SigLIPTokenizer.from_preset("hf://keras/siglip2_base_patch16_256",
|
| 78 |
+
sequence_length=64)
|
| 79 |
+
image_converter = SigLIPImageConverter.from_preset("hf://keras/siglip2_base_patch16_256")
|
| 80 |
+
|
| 81 |
+
# obtain tokens for some input text
|
| 82 |
+
tokens = tokenizer.tokenize(["mountains", "cat on tortoise", "house"])
|
| 83 |
+
|
| 84 |
+
# preprocess image and text
|
| 85 |
+
image = keras.utils.load_img("cat.jpg")
|
| 86 |
+
image = image_converter(np.array([image]).astype(float))
|
| 87 |
+
|
| 88 |
+
# query the model for similarities
|
| 89 |
+
siglip({
|
| 90 |
+
"images": image,
|
| 91 |
+
"token_ids": tokens,
|
| 92 |
+
})
|
| 93 |
+
```
|