update usage
Browse files
README.md
CHANGED
|
@@ -91,39 +91,69 @@ We evaluate the models using **Word Error Rate (WER)**. To ensure a fair compari
|
|
| 91 |
## Quick Usage
|
| 92 |
To use the ChunkFormer model for English Automatic Speech Recognition, follow these steps:
|
| 93 |
|
| 94 |
-
1
|
| 95 |
```bash
|
| 96 |
-
|
| 97 |
-
cd chunkformer
|
| 98 |
-
pip install -r requirements.txt
|
| 99 |
```
|
| 100 |
-
|
|
|
|
| 101 |
```bash
|
| 102 |
-
|
| 103 |
-
|
|
|
|
| 104 |
```
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 109 |
```
|
| 110 |
-
This will download the model checkpoint to the checkpoints folder inside your chunkformer directory.
|
| 111 |
|
| 112 |
-
|
|
|
|
|
|
|
| 113 |
```bash
|
| 114 |
-
|
| 115 |
-
--model_checkpoint
|
| 116 |
--long_form_audio path/to/audio.wav \
|
| 117 |
-
--total_batch_duration 14400 \
|
| 118 |
--chunk_size 64 \
|
| 119 |
--left_context_size 128 \
|
| 120 |
--right_context_size 128
|
| 121 |
```
|
|
|
|
| 122 |
Example Output:
|
| 123 |
```
|
| 124 |
[00:00:01.200] - [00:00:02.400]: this is a transcription example
|
| 125 |
[00:00:02.500] - [00:00:03.700]: testing the long-form audio
|
| 126 |
```
|
|
|
|
| 127 |
**Advanced Usage** can be found [HERE](https://github.com/khanld/chunkformer/tree/main?tab=readme-ov-file#usage)
|
| 128 |
|
| 129 |
|
|
|
|
| 91 |
## Quick Usage
|
| 92 |
To use the ChunkFormer model for English Automatic Speech Recognition, follow these steps:
|
| 93 |
|
| 94 |
+
### Option 1: Install from PyPI (Recommended)
|
| 95 |
```bash
|
| 96 |
+
pip install chunkformer
|
|
|
|
|
|
|
| 97 |
```
|
| 98 |
+
|
| 99 |
+
### Option 2: Install from source
|
| 100 |
```bash
|
| 101 |
+
git clone https://github.com/khanld/chunkformer.git
|
| 102 |
+
cd chunkformer
|
| 103 |
+
pip install -e .
|
| 104 |
```
|
| 105 |
+
|
| 106 |
+
### Python API Usage
|
| 107 |
+
```python
|
| 108 |
+
from chunkformer import ChunkFormerModel
|
| 109 |
+
|
| 110 |
+
# Load the English model from Hugging Face
|
| 111 |
+
model = ChunkFormerModel.from_pretrained("khanhld/chunkformer-large-en-libri-960h")
|
| 112 |
+
|
| 113 |
+
# For single long-form audio transcription
|
| 114 |
+
transcription = model.endless_decode(
|
| 115 |
+
audio_path="path/to/long_audio.wav",
|
| 116 |
+
chunk_size=64,
|
| 117 |
+
left_context_size=128,
|
| 118 |
+
right_context_size=128,
|
| 119 |
+
total_batch_duration=14400, # in seconds
|
| 120 |
+
return_timestamps=True
|
| 121 |
+
)
|
| 122 |
+
print(transcription)
|
| 123 |
+
|
| 124 |
+
# For batch processing of multiple audio files
|
| 125 |
+
audio_files = ["audio1.wav", "audio2.wav", "audio3.wav"]
|
| 126 |
+
transcriptions = model.batch_decode(
|
| 127 |
+
audio_paths=audio_files,
|
| 128 |
+
chunk_size=64,
|
| 129 |
+
left_context_size=128,
|
| 130 |
+
right_context_size=128,
|
| 131 |
+
total_batch_duration=1800 # Total batch duration in seconds
|
| 132 |
+
)
|
| 133 |
+
|
| 134 |
+
for i, transcription in enumerate(transcriptions):
|
| 135 |
+
print(f"Audio {i+1}: {transcription}")
|
| 136 |
```
|
|
|
|
| 137 |
|
| 138 |
+
### Command Line Usage
|
| 139 |
+
After installation, you can use the command line interface:
|
| 140 |
+
|
| 141 |
```bash
|
| 142 |
+
chunkformer-decode \
|
| 143 |
+
--model_checkpoint khanhld/chunkformer-large-en-libri-960h \
|
| 144 |
--long_form_audio path/to/audio.wav \
|
| 145 |
+
--total_batch_duration 14400 \
|
| 146 |
--chunk_size 64 \
|
| 147 |
--left_context_size 128 \
|
| 148 |
--right_context_size 128
|
| 149 |
```
|
| 150 |
+
|
| 151 |
Example Output:
|
| 152 |
```
|
| 153 |
[00:00:01.200] - [00:00:02.400]: this is a transcription example
|
| 154 |
[00:00:02.500] - [00:00:03.700]: testing the long-form audio
|
| 155 |
```
|
| 156 |
+
|
| 157 |
**Advanced Usage** can be found [HERE](https://github.com/khanld/chunkformer/tree/main?tab=readme-ov-file#usage)
|
| 158 |
|
| 159 |
|