--- base_model: Qwen/Qwen2.5-7B library_name: peft license: apache-2.0 tags: - llama-factory - lora - generated_from_trainer model-index: - name: Inverse-Qwen-2.5-BlackBox-7B-LoRA-Adapter results: [] pipeline_tag: text-generation --- # Inverse-Qwen-2.5-BlackBox-7B-LoRA-Adapter This model is a fine-tuned version of [Qwen/Qwen2.5-7B](https://huggingface.co/Qwen/Qwen2.5-7B) on the inv_qwen_inf-ins_660k dataset for paper [Beyond One-Size-Fits-All: Inversion Learning for Highly Effective NLG Evaluation Prompts](arxiv.org/abs/2504.21117). Code: https://github.com/blackboxllm/llm_evaluation_inversion/tree/main. ## Model description LoRA Adapter for Inverse-Qwen-2.5-7B. Please use with the originl Qwen2.5-7B base model. The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 32 - total_train_batch_size: 1024 - total_eval_batch_size: 4 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.95) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3.0 ### Framework versions - PEFT 0.12.0 - Transformers 4.46.1 - Pytorch 2.4.0+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3 --- license: apache-2.0 ---