gec-score-model / README.md
robinhad's picture
Update README.md
c5bc689 verified
|
raw
history blame
2.96 kB
metadata
library_name: transformers
license: mit
base_model: intfloat/multilingual-e5-base
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - accuracy
model-index:
  - name: gec-score-model
    results: []
datasets:
  - peterua/OmniGEC-ModelTraining
language:
  - uk

gec-score-model

This model is a fine-tuned version of intfloat/multilingual-e5-base on the peterua/OmniGEC-ModelTraining dataset.

Training script is available here: https://github.com/lapa-llm/lapa-llm/blob/main/pretraining/quality-classifiers/gec_score.py

It achieves the following results on the evaluation set:

  • Loss: 0.1941
  • Precision: 0.7031
  • Recall: 0.7030
  • F1 Macro: 0.7030
  • Accuracy: 0.7030

Model description

This model outputs a score how grammatical correct is the provided text.

Intended uses & limitations

Pretraining data filtering.

Training and evaluation data

Training script is located here: https://github.com/lapa-llm/lapa-llm/blob/main/pretraining/quality-classifiers/gec_score.py

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 32
  • eval_batch_size: 128
  • seed: 0
  • distributed_type: multi-GPU
  • num_devices: 8
  • total_train_batch_size: 256
  • total_eval_batch_size: 1024
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 60

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Macro Accuracy
No log 0 0 0.2963 0.5503 0.5013 0.3409 0.5013
0.2297 7.4074 400 0.2287 0.6545 0.6336 0.6208 0.6336
0.2051 14.8148 800 0.2041 0.6722 0.6660 0.6630 0.6660
0.1957 22.2222 1200 0.1982 0.6889 0.6885 0.6883 0.6885
0.1939 29.6296 1600 0.1963 0.6971 0.6964 0.6962 0.6964
0.1916 37.0370 2000 0.1946 0.7005 0.7004 0.7004 0.7004
0.1907 44.4444 2400 0.1944 0.7018 0.7017 0.7017 0.7017
0.1888 51.8519 2800 0.1944 0.6990 0.6984 0.6982 0.6984
0.1884 59.2593 3200 0.1941 0.7031 0.7030 0.7030 0.7030

Framework versions

  • Transformers 4.56.1
  • Pytorch 2.6.0a0+ecf3bae40a.nv25.01
  • Datasets 4.0.0
  • Tokenizers 0.22.0