--- library_name: transformers license: mit base_model: intfloat/multilingual-e5-base tags: - generated_from_trainer metrics: - precision - recall - accuracy model-index: - name: gec-score-model results: [] datasets: - peterua/OmniGEC-ModelTraining language: - uk --- # gec-score-model This model is a fine-tuned version of [intfloat/multilingual-e5-base](https://huggingface.co/intfloat/multilingual-e5-base) on the peterua/OmniGEC-ModelTraining dataset. Training script is available here: https://github.com/lapa-llm/lapa-llm/blob/main/pretraining/quality-classifiers/gec_score.py It achieves the following results on the evaluation set: - Loss: 0.1941 - Precision: 0.7031 - Recall: 0.7030 - F1 Macro: 0.7030 - Accuracy: 0.7030 ## Model description This model outputs a score how grammatical correct is the provided text. ## Intended uses & limitations Pretraining data filtering. ## Training and evaluation data Training script is located here: https://github.com/lapa-llm/lapa-llm/blob/main/pretraining/quality-classifiers/gec_score.py ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 128 - seed: 0 - distributed_type: multi-GPU - num_devices: 8 - total_train_batch_size: 256 - total_eval_batch_size: 1024 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 500 - num_epochs: 60 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 Macro | Accuracy | |:-------------:|:-------:|:----:|:---------------:|:---------:|:------:|:--------:|:--------:| | No log | 0 | 0 | 0.2963 | 0.5503 | 0.5013 | 0.3409 | 0.5013 | | 0.2297 | 7.4074 | 400 | 0.2287 | 0.6545 | 0.6336 | 0.6208 | 0.6336 | | 0.2051 | 14.8148 | 800 | 0.2041 | 0.6722 | 0.6660 | 0.6630 | 0.6660 | | 0.1957 | 22.2222 | 1200 | 0.1982 | 0.6889 | 0.6885 | 0.6883 | 0.6885 | | 0.1939 | 29.6296 | 1600 | 0.1963 | 0.6971 | 0.6964 | 0.6962 | 0.6964 | | 0.1916 | 37.0370 | 2000 | 0.1946 | 0.7005 | 0.7004 | 0.7004 | 0.7004 | | 0.1907 | 44.4444 | 2400 | 0.1944 | 0.7018 | 0.7017 | 0.7017 | 0.7017 | | 0.1888 | 51.8519 | 2800 | 0.1944 | 0.6990 | 0.6984 | 0.6982 | 0.6984 | | 0.1884 | 59.2593 | 3200 | 0.1941 | 0.7031 | 0.7030 | 0.7030 | 0.7030 | ### Framework versions - Transformers 4.56.1 - Pytorch 2.6.0a0+ecf3bae40a.nv25.01 - Datasets 4.0.0 - Tokenizers 0.22.0