--- library_name: transformers license: mit base_model: intfloat/multilingual-e5-base tags: - generated_from_trainer metrics: - precision - recall - accuracy model-index: - name: manipulative-score-model results: [] --- # manipulative-score-model This model is a fine-tuned version of [intfloat/multilingual-e5-base](https://huggingface.co/intfloat/multilingual-e5-base) on an UNLP 2025 Shared Task dataset. It achieves the following results on the evaluation set: - Loss: 0.1483 - Precision: 0.7768 - Recall: 0.7324 - F1 Macro: 0.7468 - Accuracy: 0.7962 ## Model description This model measure how likely the given text is of manipulative nature. ## Intended uses & limitations Data filtering and evaluation of pretraining data at scale ## Training and evaluation data Take a look into https://github.com/lapa-llm/lapa-llm/blob/main/pretraining/quality-classifiers/manipulative_detector.py ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 128 - seed: 0 - distributed_type: multi-GPU - num_devices: 8 - total_train_batch_size: 256 - total_eval_batch_size: 1024 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 60 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 Macro | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:--------:|:--------:| | No log | 0 | 0 | 0.2718 | 0.3406 | 0.5 | 0.4052 | 0.6813 | | No log | 1.0 | 15 | 0.2254 | 0.5393 | 0.5041 | 0.4294 | 0.6764 | | No log | 2.0 | 30 | 0.2176 | 0.6641 | 0.5041 | 0.4161 | 0.6828 | | No log | 3.0 | 45 | 0.2020 | 0.7742 | 0.5255 | 0.4603 | 0.6959 | | No log | 4.0 | 60 | 0.1851 | 0.7603 | 0.5817 | 0.5649 | 0.7255 | | No log | 5.0 | 75 | 0.1731 | 0.7466 | 0.6506 | 0.6624 | 0.7550 | | No log | 6.0 | 90 | 0.1654 | 0.7556 | 0.6772 | 0.6924 | 0.7683 | | 0.203 | 7.0 | 105 | 0.1606 | 0.7602 | 0.6873 | 0.7032 | 0.7737 | | 0.203 | 8.0 | 120 | 0.1574 | 0.7701 | 0.6920 | 0.7089 | 0.7789 | | 0.203 | 9.0 | 135 | 0.1557 | 0.7798 | 0.6845 | 0.7017 | 0.7787 | | 0.203 | 10.0 | 150 | 0.1548 | 0.7858 | 0.6824 | 0.6998 | 0.7794 | | 0.203 | 11.0 | 165 | 0.1525 | 0.7812 | 0.7002 | 0.7182 | 0.7859 | | 0.203 | 12.0 | 180 | 0.1517 | 0.7862 | 0.7023 | 0.7208 | 0.7883 | | 0.203 | 13.0 | 195 | 0.1515 | 0.7895 | 0.6991 | 0.7178 | 0.7880 | | 0.1516 | 14.0 | 210 | 0.1502 | 0.7724 | 0.7295 | 0.7435 | 0.7932 | | 0.1516 | 15.0 | 225 | 0.1495 | 0.7751 | 0.7293 | 0.7440 | 0.7944 | | 0.1516 | 16.0 | 240 | 0.1489 | 0.7763 | 0.7277 | 0.7429 | 0.7944 | | 0.1516 | 17.0 | 255 | 0.1485 | 0.7781 | 0.7230 | 0.7391 | 0.7935 | | 0.1516 | 18.0 | 270 | 0.1483 | 0.7781 | 0.7275 | 0.7430 | 0.7951 | | 0.1516 | 19.0 | 285 | 0.1482 | 0.7787 | 0.7258 | 0.7417 | 0.7948 | | 0.1421 | 20.0 | 300 | 0.1483 | 0.7768 | 0.7324 | 0.7468 | 0.7962 | ### Framework versions - Transformers 4.56.1 - Pytorch 2.6.0a0+ecf3bae40a.nv25.01 - Datasets 4.0.0 - Tokenizers 0.22.0