--- license: mit tags: - generated_from_trainer metrics: - accuracy model-index: - name: test_trainer results: [] --- # test_trainer This model is a fine-tuned version of [flaubert/flaubert_small_cased](https://huggingface.co/flaubert/flaubert_small_cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0163 - Accuracy: 0.6225 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 6 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 345 | 1.0352 | 0.5435 | | 1.2697 | 2.0 | 690 | 1.0254 | 0.5696 | | 1.0075 | 3.0 | 1035 | 1.0079 | 0.5891 | | 1.0075 | 4.0 | 1380 | 0.9745 | 0.6101 | | 0.8314 | 5.0 | 1725 | 0.9866 | 0.6188 | | 0.738 | 6.0 | 2070 | 1.0163 | 0.6225 | ### Framework versions - Transformers 4.30.0.dev0 - Pytorch 2.0.0+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3