Commit
·
b9e9a88
1
Parent(s):
f4beaf9
add model
Browse files- config.json +5 -3
- pytorch_model.bin +2 -2
- rita_configuration.py +3 -1
- rita_modeling.py +217 -15
config.json
CHANGED
|
@@ -1,17 +1,19 @@
|
|
| 1 |
{
|
| 2 |
-
"_name_or_path": "Seledorn/
|
| 3 |
"architectures": [
|
| 4 |
-
"
|
| 5 |
],
|
| 6 |
"auto_map": {
|
| 7 |
"AutoConfig": "rita_configuration.RITAConfig",
|
| 8 |
"AutoModel": "rita_modeling.RITAModel",
|
| 9 |
-
"AutoModelForCausalLM": "rita_modeling.
|
|
|
|
| 10 |
},
|
| 11 |
"d_feedforward": 6144,
|
| 12 |
"d_model": 1536,
|
| 13 |
"dropout": 0.0,
|
| 14 |
"eos_token_id": 2,
|
|
|
|
| 15 |
"max_seq_len": 1024,
|
| 16 |
"model_type": "rita",
|
| 17 |
"num_heads": 24,
|
|
|
|
| 1 |
{
|
| 2 |
+
"_name_or_path": "Seledorn/RITA_l_2",
|
| 3 |
"architectures": [
|
| 4 |
+
"RITAModelForCausalLM"
|
| 5 |
],
|
| 6 |
"auto_map": {
|
| 7 |
"AutoConfig": "rita_configuration.RITAConfig",
|
| 8 |
"AutoModel": "rita_modeling.RITAModel",
|
| 9 |
+
"AutoModelForCausalLM": "rita_modeling.RITAModelForCausalLM",
|
| 10 |
+
"AutoModelForSequenceClassification": "rita_modeling.RITAModelForSequenceClassification"
|
| 11 |
},
|
| 12 |
"d_feedforward": 6144,
|
| 13 |
"d_model": 1536,
|
| 14 |
"dropout": 0.0,
|
| 15 |
"eos_token_id": 2,
|
| 16 |
+
"initializer_range": 0.02,
|
| 17 |
"max_seq_len": 1024,
|
| 18 |
"model_type": "rita",
|
| 19 |
"num_heads": 24,
|
pytorch_model.bin
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:cdf69894dc52a498abbbbdf1c61ccc5e787fbcfc17b2ab96de67aebd983bb528
|
| 3 |
+
size 1360210505
|
rita_configuration.py
CHANGED
|
@@ -16,6 +16,7 @@ class RITAConfig(PretrainedConfig):
|
|
| 16 |
dropout=0.,
|
| 17 |
ff_ratio=4,
|
| 18 |
eos_token_id=2,
|
|
|
|
| 19 |
**kwargs,
|
| 20 |
):
|
| 21 |
super().__init__(eos_token_id=eos_token_id, **kwargs)
|
|
@@ -26,4 +27,5 @@ class RITAConfig(PretrainedConfig):
|
|
| 26 |
self.num_layers = num_layers
|
| 27 |
self.max_seq_len=max_seq_len
|
| 28 |
self.dropout = dropout
|
| 29 |
-
self.eos_token_id=eos_token_id
|
|
|
|
|
|
| 16 |
dropout=0.,
|
| 17 |
ff_ratio=4,
|
| 18 |
eos_token_id=2,
|
| 19 |
+
initializer_range=0.02,
|
| 20 |
**kwargs,
|
| 21 |
):
|
| 22 |
super().__init__(eos_token_id=eos_token_id, **kwargs)
|
|
|
|
| 27 |
self.num_layers = num_layers
|
| 28 |
self.max_seq_len=max_seq_len
|
| 29 |
self.dropout = dropout
|
| 30 |
+
self.eos_token_id=eos_token_id
|
| 31 |
+
self.initializer_range=0.02
|
rita_modeling.py
CHANGED
|
@@ -6,14 +6,12 @@ from typing import Optional, Tuple, Union
|
|
| 6 |
import torch
|
| 7 |
import torch.utils.checkpoint
|
| 8 |
from torch import nn
|
| 9 |
-
from torch.nn import CrossEntropyLoss
|
| 10 |
|
| 11 |
from transformers.modeling_outputs import (
|
| 12 |
-
|
| 13 |
-
BaseModelOutputWithPastAndCrossAttentions,
|
| 14 |
-
CausalLMOutputWithCrossAttentions,
|
| 15 |
-
CausalLMOutputWithPast,
|
| 16 |
CausalLMOutput,
|
|
|
|
| 17 |
)
|
| 18 |
|
| 19 |
from transformers.modeling_utils import PreTrainedModel
|
|
@@ -210,9 +208,12 @@ class DecoderLayer(nn.Module):
|
|
| 210 |
y = self.mlp(y)
|
| 211 |
x = x + self.mlp_dropout(y)
|
| 212 |
return x
|
| 213 |
-
|
| 214 |
class RITAModel(PreTrainedModel):
|
| 215 |
config_class = RITAConfig
|
|
|
|
|
|
|
|
|
|
| 216 |
def __init__(
|
| 217 |
self,
|
| 218 |
config
|
|
@@ -221,7 +222,6 @@ class RITAModel(PreTrainedModel):
|
|
| 221 |
self.embedding = nn.Embedding(config.vocab_size, config.d_model)
|
| 222 |
self.layers = nn.ModuleList([DecoderLayer(config) for _ in range(config.num_layers)])
|
| 223 |
self.final_norm = nn.LayerNorm(config.d_model)
|
| 224 |
-
self.projector = nn.Linear(config.d_model, config.vocab_size, bias = False)
|
| 225 |
|
| 226 |
def forward(
|
| 227 |
self,
|
|
@@ -251,7 +251,78 @@ class RITAModel(PreTrainedModel):
|
|
| 251 |
x = layer(x, attn_mask=attention_mask)
|
| 252 |
x = self.final_norm(x) # N x L x D
|
| 253 |
|
| 254 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 255 |
loss = None
|
| 256 |
if labels is not None:
|
| 257 |
# Shift so that tokens < n predict n
|
|
@@ -264,19 +335,150 @@ class RITAModel(PreTrainedModel):
|
|
| 264 |
return CausalLMOutput(
|
| 265 |
loss=loss,
|
| 266 |
logits=logits,
|
| 267 |
-
hidden_states=
|
| 268 |
)
|
| 269 |
|
| 270 |
-
|
| 271 |
#Some common HF functions.
|
| 272 |
def get_input_embeddings(self):
|
| 273 |
-
return self.embedding
|
| 274 |
|
| 275 |
def set_input_embeddings(self, new_embeddings):
|
| 276 |
-
self.embedding = new_embeddings
|
| 277 |
|
| 278 |
def get_output_embeddings(self):
|
| 279 |
-
return self.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 280 |
|
| 281 |
-
|
| 282 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
import torch
|
| 7 |
import torch.utils.checkpoint
|
| 8 |
from torch import nn
|
| 9 |
+
from torch.nn import CrossEntropyLoss, BCEWithLogitsLoss, MSELoss
|
| 10 |
|
| 11 |
from transformers.modeling_outputs import (
|
| 12 |
+
BaseModelOutput,
|
|
|
|
|
|
|
|
|
|
| 13 |
CausalLMOutput,
|
| 14 |
+
SequenceClassifierOutput
|
| 15 |
)
|
| 16 |
|
| 17 |
from transformers.modeling_utils import PreTrainedModel
|
|
|
|
| 208 |
y = self.mlp(y)
|
| 209 |
x = x + self.mlp_dropout(y)
|
| 210 |
return x
|
| 211 |
+
|
| 212 |
class RITAModel(PreTrainedModel):
|
| 213 |
config_class = RITAConfig
|
| 214 |
+
base_model_prefix = "transformer"
|
| 215 |
+
is_parallelizable = False
|
| 216 |
+
|
| 217 |
def __init__(
|
| 218 |
self,
|
| 219 |
config
|
|
|
|
| 222 |
self.embedding = nn.Embedding(config.vocab_size, config.d_model)
|
| 223 |
self.layers = nn.ModuleList([DecoderLayer(config) for _ in range(config.num_layers)])
|
| 224 |
self.final_norm = nn.LayerNorm(config.d_model)
|
|
|
|
| 225 |
|
| 226 |
def forward(
|
| 227 |
self,
|
|
|
|
| 251 |
x = layer(x, attn_mask=attention_mask)
|
| 252 |
x = self.final_norm(x) # N x L x D
|
| 253 |
|
| 254 |
+
return BaseModelOutput(
|
| 255 |
+
hidden_states=x,
|
| 256 |
+
)
|
| 257 |
+
|
| 258 |
+
#Some common HF functions.
|
| 259 |
+
def get_input_embeddings(self):
|
| 260 |
+
return self.embedding
|
| 261 |
+
|
| 262 |
+
def set_input_embeddings(self, new_embeddings):
|
| 263 |
+
self.embedding = new_embeddings
|
| 264 |
+
|
| 265 |
+
def _init_weights(self, module):
|
| 266 |
+
"""Initialize the weights."""
|
| 267 |
+
if isinstance(module, nn.Linear):
|
| 268 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
| 269 |
+
if module.bias is not None:
|
| 270 |
+
module.bias.data.zero_()
|
| 271 |
+
elif isinstance(module, nn.Embedding):
|
| 272 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
| 273 |
+
if module.padding_idx is not None:
|
| 274 |
+
module.weight.data[module.padding_idx].zero_()
|
| 275 |
+
elif isinstance(module, nn.LayerNorm):
|
| 276 |
+
module.bias.data.zero_()
|
| 277 |
+
module.weight.data.fill_(1.0)
|
| 278 |
+
|
| 279 |
+
|
| 280 |
+
class RITAModelForCausalLM(PreTrainedModel):
|
| 281 |
+
config_class = RITAConfig
|
| 282 |
+
base_model_prefix = "transformer"
|
| 283 |
+
is_parallelizable = False
|
| 284 |
+
|
| 285 |
+
def __init__(
|
| 286 |
+
self,
|
| 287 |
+
config
|
| 288 |
+
):
|
| 289 |
+
super().__init__(config)
|
| 290 |
+
self.transformer = RITAModel(config)
|
| 291 |
+
self.lm_head = nn.Linear(config.d_model, config.vocab_size, bias=False)
|
| 292 |
+
|
| 293 |
+
def forward(
|
| 294 |
+
self,
|
| 295 |
+
input_ids=None,
|
| 296 |
+
past_key_values=None, # NOT USED
|
| 297 |
+
attention_mask=None,
|
| 298 |
+
token_type_ids=None, # NOT USED
|
| 299 |
+
position_ids=None, # NOT USED
|
| 300 |
+
head_mask=None, # NOT USED
|
| 301 |
+
inputs_embeds=None,
|
| 302 |
+
encoder_hidden_states=None, # NOT USED
|
| 303 |
+
encoder_attention_mask=None, # NOT USED
|
| 304 |
+
labels=None,
|
| 305 |
+
use_cache=None, # NOT USED
|
| 306 |
+
output_attentions=None, # NOT USED
|
| 307 |
+
output_hidden_states=None, # NOT USED
|
| 308 |
+
return_dict=None # NOT USED
|
| 309 |
+
) -> torch.FloatTensor:
|
| 310 |
+
|
| 311 |
+
transformer_outputs = self.transformer(
|
| 312 |
+
input_ids,
|
| 313 |
+
past_key_values=past_key_values,
|
| 314 |
+
attention_mask=attention_mask,
|
| 315 |
+
token_type_ids=token_type_ids,
|
| 316 |
+
position_ids=position_ids,
|
| 317 |
+
head_mask=head_mask,
|
| 318 |
+
inputs_embeds=inputs_embeds,
|
| 319 |
+
use_cache=use_cache,
|
| 320 |
+
output_attentions=output_attentions,
|
| 321 |
+
output_hidden_states=output_hidden_states,
|
| 322 |
+
return_dict=return_dict,
|
| 323 |
+
)
|
| 324 |
+
|
| 325 |
+
logits = self.lm_head(transformer_outputs.hidden_states)
|
| 326 |
loss = None
|
| 327 |
if labels is not None:
|
| 328 |
# Shift so that tokens < n predict n
|
|
|
|
| 335 |
return CausalLMOutput(
|
| 336 |
loss=loss,
|
| 337 |
logits=logits,
|
| 338 |
+
hidden_states=transformer_outputs.hidden_states,
|
| 339 |
)
|
| 340 |
|
|
|
|
| 341 |
#Some common HF functions.
|
| 342 |
def get_input_embeddings(self):
|
| 343 |
+
return self.transformer.embedding
|
| 344 |
|
| 345 |
def set_input_embeddings(self, new_embeddings):
|
| 346 |
+
self.transformer.embedding = new_embeddings
|
| 347 |
|
| 348 |
def get_output_embeddings(self):
|
| 349 |
+
return self.lm_head
|
| 350 |
+
|
| 351 |
+
def set_output_embeddings(self, lm_head):
|
| 352 |
+
self.lm_head = lm_head
|
| 353 |
+
|
| 354 |
+
def _init_weights(self, module):
|
| 355 |
+
"""Initialize the weights."""
|
| 356 |
+
if isinstance(module, nn.Linear):
|
| 357 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
| 358 |
+
if module.bias is not None:
|
| 359 |
+
module.bias.data.zero_()
|
| 360 |
+
elif isinstance(module, nn.Embedding):
|
| 361 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
| 362 |
+
if module.padding_idx is not None:
|
| 363 |
+
module.weight.data[module.padding_idx].zero_()
|
| 364 |
+
elif isinstance(module, nn.LayerNorm):
|
| 365 |
+
module.bias.data.zero_()
|
| 366 |
+
module.weight.data.fill_(1.0)
|
| 367 |
+
|
| 368 |
+
|
| 369 |
+
class RITAModelForSequenceClassification(PreTrainedModel):
|
| 370 |
+
config_class = RITAConfig
|
| 371 |
+
base_model_prefix = "transformer"
|
| 372 |
+
is_parallelizable = False
|
| 373 |
+
|
| 374 |
+
def __init__(self, config):
|
| 375 |
+
super().__init__(config)
|
| 376 |
+
self.num_labels = config.num_labels
|
| 377 |
+
self.transformer = RITAModel(config)
|
| 378 |
+
self.score = nn.Linear(config.d_model, self.num_labels, bias=False)
|
| 379 |
+
|
| 380 |
+
def forward(
|
| 381 |
+
self,
|
| 382 |
+
input_ids=None,
|
| 383 |
+
past_key_values=None,
|
| 384 |
+
attention_mask=None,
|
| 385 |
+
token_type_ids=None,
|
| 386 |
+
position_ids=None,
|
| 387 |
+
head_mask=None,
|
| 388 |
+
inputs_embeds=None,
|
| 389 |
+
labels=None,
|
| 390 |
+
use_cache=None,
|
| 391 |
+
output_attentions=None,
|
| 392 |
+
output_hidden_states=None,
|
| 393 |
+
return_dict=None,
|
| 394 |
+
):
|
| 395 |
+
r"""
|
| 396 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
| 397 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
| 398 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
| 399 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
| 400 |
+
"""
|
| 401 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 402 |
|
| 403 |
+
transformer_outputs = self.transformer(
|
| 404 |
+
input_ids,
|
| 405 |
+
past_key_values=past_key_values,
|
| 406 |
+
attention_mask=attention_mask,
|
| 407 |
+
token_type_ids=token_type_ids,
|
| 408 |
+
position_ids=position_ids,
|
| 409 |
+
head_mask=head_mask,
|
| 410 |
+
inputs_embeds=inputs_embeds,
|
| 411 |
+
use_cache=use_cache,
|
| 412 |
+
output_attentions=output_attentions,
|
| 413 |
+
output_hidden_states=output_hidden_states,
|
| 414 |
+
return_dict=return_dict,
|
| 415 |
+
)
|
| 416 |
+
hidden_states = transformer_outputs[0]
|
| 417 |
+
logits = self.score(hidden_states)
|
| 418 |
+
|
| 419 |
+
if input_ids is not None:
|
| 420 |
+
batch_size, sequence_length = input_ids.shape[:2]
|
| 421 |
+
else:
|
| 422 |
+
batch_size, sequence_length = inputs_embeds.shape[:2]
|
| 423 |
+
|
| 424 |
+
assert (
|
| 425 |
+
self.config.pad_token_id is not None or batch_size == 1
|
| 426 |
+
), "Cannot handle batch sizes > 1 if no padding token is defined."
|
| 427 |
+
if self.config.pad_token_id is None:
|
| 428 |
+
sequence_lengths = -1
|
| 429 |
+
else:
|
| 430 |
+
if input_ids is not None:
|
| 431 |
+
sequence_lengths = torch.ne(input_ids, self.config.pad_token_id).sum(-1) - 1
|
| 432 |
+
else:
|
| 433 |
+
sequence_lengths = -1
|
| 434 |
+
logger.warning(
|
| 435 |
+
f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be "
|
| 436 |
+
f"unexpected if using padding tokens in conjunction with `inputs_embeds.`"
|
| 437 |
+
)
|
| 438 |
+
|
| 439 |
+
pooled_logits = logits[torch.arange(batch_size, device=self.device), sequence_lengths]
|
| 440 |
+
|
| 441 |
+
loss = None
|
| 442 |
+
if labels is not None:
|
| 443 |
+
if self.config.problem_type is None:
|
| 444 |
+
if self.num_labels == 1:
|
| 445 |
+
self.config.problem_type = "regression"
|
| 446 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
| 447 |
+
self.config.problem_type = "single_label_classification"
|
| 448 |
+
else:
|
| 449 |
+
self.config.problem_type = "multi_label_classification"
|
| 450 |
+
|
| 451 |
+
if self.config.problem_type == "regression":
|
| 452 |
+
loss_fct = MSELoss()
|
| 453 |
+
if self.num_labels == 1:
|
| 454 |
+
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
|
| 455 |
+
else:
|
| 456 |
+
loss = loss_fct(pooled_logits, labels)
|
| 457 |
+
elif self.config.problem_type == "single_label_classification":
|
| 458 |
+
loss_fct = CrossEntropyLoss()
|
| 459 |
+
loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
|
| 460 |
+
elif self.config.problem_type == "multi_label_classification":
|
| 461 |
+
loss_fct = BCEWithLogitsLoss()
|
| 462 |
+
loss = loss_fct(pooled_logits, labels)
|
| 463 |
+
if not return_dict:
|
| 464 |
+
output = (pooled_logits,) + transformer_outputs[1:]
|
| 465 |
+
return ((loss,) + output) if loss is not None else output
|
| 466 |
+
|
| 467 |
+
return SequenceClassifierOutput(
|
| 468 |
+
loss=loss,
|
| 469 |
+
logits=pooled_logits,
|
| 470 |
+
)
|
| 471 |
+
|
| 472 |
+
def _init_weights(self, module):
|
| 473 |
+
"""Initialize the weights."""
|
| 474 |
+
if isinstance(module, nn.Linear):
|
| 475 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
| 476 |
+
if module.bias is not None:
|
| 477 |
+
module.bias.data.zero_()
|
| 478 |
+
elif isinstance(module, nn.Embedding):
|
| 479 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
| 480 |
+
if module.padding_idx is not None:
|
| 481 |
+
module.weight.data[module.padding_idx].zero_()
|
| 482 |
+
elif isinstance(module, nn.LayerNorm):
|
| 483 |
+
module.bias.data.zero_()
|
| 484 |
+
module.weight.data.fill_(1.0)
|