--- base_model: - HuggingFaceM4/idefics2-8b language: - en license: apache-2.0 pipeline_tag: image-text-to-text library_name: transformers --- # Retrospective Learning from Interactions This repository contains the `lil-lab/respect` model, based on the ACL paper [Retrospective Learning from Interactions](https://huggingface.co/papers/2410.13852). For more resources, please see and . ## Sample Usage To get started with the model, follow these steps: ### 1. Setting up Environment Prepare your conda environment: ```bash conda create -n respect python=3.9.18 pip install -r requirements.txt pip install -e . ``` ### 2. Download Data ```python from datasets import load_dataset ds = load_dataset("lil-lab/respect", name="turn", split="train") ``` ### 3. Load Model Checkpoints Download checkpoints and load the model using `transformers` and `peft`: ```python import torch from transformers import Idefics2ForConditionalGeneration from peft import PeftModel checkpoint = "HuggingFaceM4/idefics2-8b" model_id = 'lil-lab/respect' model = Idefics2ForConditionalGeneration.from_pretrained( checkpoint, torch_dtype=torch.bfloat16) peft_model = PeftModel.from_pretrained( model, model_id, adapter_name="r6_bp", revision="r6_bp") ``` ## Reproducibility To generate plots from the paper, run `analysis/plots.ipynb` in the [GitHub repository](https://github.com/lil-lab/respect).