Update README.md
Browse files
README.md
CHANGED
|
@@ -5,6 +5,9 @@ license: other
|
|
| 5 |
license_name: tongyi-qianwen-research
|
| 6 |
license_link: LICENSE
|
| 7 |
pipeline_tag: image-text-to-text
|
|
|
|
|
|
|
|
|
|
| 8 |
---
|
| 9 |
|
| 10 |
# LLaVA Interleave Model Card
|
|
@@ -42,10 +45,23 @@ import requests
|
|
| 42 |
|
| 43 |
model_id = "llava-hf/llava-interleave-qwen-7b-dpo-hf"
|
| 44 |
pipe = pipeline("image-to-text", model=model_id)
|
| 45 |
-
url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/ai2d-demo.jpg"
|
| 46 |
|
|
|
|
| 47 |
image = Image.open(requests.get(url, stream=True).raw)
|
| 48 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 49 |
|
| 50 |
outputs = pipe(image, prompt=prompt, generate_kwargs={"max_new_tokens": 200})
|
| 51 |
print(outputs)
|
|
@@ -63,10 +79,6 @@ import torch
|
|
| 63 |
from transformers import AutoProcessor, LlavaForConditionalGeneration
|
| 64 |
|
| 65 |
model_id = "llava-hf/llava-interleave-qwen-7b-dpo-hf"
|
| 66 |
-
|
| 67 |
-
prompt = "<|im_start|>user <image>\nWhat are these?|im_end|><|im_start|>assistant"
|
| 68 |
-
image_file = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
| 69 |
-
|
| 70 |
model = LlavaForConditionalGeneration.from_pretrained(
|
| 71 |
model_id,
|
| 72 |
torch_dtype=torch.float16,
|
|
@@ -75,13 +87,29 @@ model = LlavaForConditionalGeneration.from_pretrained(
|
|
| 75 |
|
| 76 |
processor = AutoProcessor.from_pretrained(model_id)
|
| 77 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 78 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 79 |
raw_image = Image.open(requests.get(image_file, stream=True).raw)
|
| 80 |
inputs = processor(prompt, raw_image, return_tensors='pt').to(0, torch.float16)
|
| 81 |
|
| 82 |
output = model.generate(**inputs, max_new_tokens=200, do_sample=False)
|
| 83 |
print(processor.decode(output[0][2:], skip_special_tokens=True))
|
| 84 |
```
|
|
|
|
|
|
|
| 85 |
When prompting with videos/3D/multi-view input, prompt like following:
|
| 86 |
|
| 87 |
```python
|
|
@@ -89,17 +117,47 @@ When prompting with videos/3D/multi-view input, prompt like following:
|
|
| 89 |
|
| 90 |
image_tokens = "<image>" * n
|
| 91 |
prompt = f"<|im_start|>user {image_tokens}\nWhat are these?|im_end|><|im_start|>assistant"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 92 |
```
|
| 93 |
|
| 94 |
When prompting with interleaved images and videos, prompt like following:
|
| 95 |
|
| 96 |
```python
|
| 97 |
# two interleaved images
|
| 98 |
-
prompt = "<|im_start|>user <image><image>\nWhat
|
| 99 |
|
| 100 |
# two interleaved videos, if you downsampled n frames in total from both videos
|
| 101 |
image_tokens = "<image>" * n
|
| 102 |
prompt = f"<|im_start|>user {image_tokens}\nWhat are these?|im_end|><|im_start|>assistant"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 103 |
```
|
| 104 |
|
| 105 |
|
|
|
|
| 5 |
license_name: tongyi-qianwen-research
|
| 6 |
license_link: LICENSE
|
| 7 |
pipeline_tag: image-text-to-text
|
| 8 |
+
tags:
|
| 9 |
+
- vision
|
| 10 |
+
- image-text-to-text
|
| 11 |
---
|
| 12 |
|
| 13 |
# LLaVA Interleave Model Card
|
|
|
|
| 45 |
|
| 46 |
model_id = "llava-hf/llava-interleave-qwen-7b-dpo-hf"
|
| 47 |
pipe = pipeline("image-to-text", model=model_id)
|
|
|
|
| 48 |
|
| 49 |
+
url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/ai2d-demo.jpg"
|
| 50 |
image = Image.open(requests.get(url, stream=True).raw)
|
| 51 |
+
|
| 52 |
+
# Define a chat histiry and use `apply_chat_template` to get correctly formatted prompt
|
| 53 |
+
# Each value in "content" has to be a list of dicts with types ("text", "image")
|
| 54 |
+
conversation = [
|
| 55 |
+
{
|
| 56 |
+
|
| 57 |
+
"role": "user",
|
| 58 |
+
"content": [
|
| 59 |
+
{"type": "text", "text": "What does the label 15 represent? (1) lava (2) core (3) tunnel (4) ash cloud"},
|
| 60 |
+
{"type": "image"},
|
| 61 |
+
],
|
| 62 |
+
},
|
| 63 |
+
]
|
| 64 |
+
prompt = processor.apply_chat_template(conversation, add_generation_prompt=True)
|
| 65 |
|
| 66 |
outputs = pipe(image, prompt=prompt, generate_kwargs={"max_new_tokens": 200})
|
| 67 |
print(outputs)
|
|
|
|
| 79 |
from transformers import AutoProcessor, LlavaForConditionalGeneration
|
| 80 |
|
| 81 |
model_id = "llava-hf/llava-interleave-qwen-7b-dpo-hf"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 82 |
model = LlavaForConditionalGeneration.from_pretrained(
|
| 83 |
model_id,
|
| 84 |
torch_dtype=torch.float16,
|
|
|
|
| 87 |
|
| 88 |
processor = AutoProcessor.from_pretrained(model_id)
|
| 89 |
|
| 90 |
+
# Define a chat histiry and use `apply_chat_template` to get correctly formatted prompt
|
| 91 |
+
# Each value in "content" has to be a list of dicts with types ("text", "image")
|
| 92 |
+
conversation = [
|
| 93 |
+
{
|
| 94 |
|
| 95 |
+
"role": "user",
|
| 96 |
+
"content": [
|
| 97 |
+
{"type": "text", "text": "What are these?"},
|
| 98 |
+
{"type": "image"},
|
| 99 |
+
],
|
| 100 |
+
},
|
| 101 |
+
]
|
| 102 |
+
prompt = processor.apply_chat_template(conversation, add_generation_prompt=True)
|
| 103 |
+
|
| 104 |
+
image_file = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
| 105 |
raw_image = Image.open(requests.get(image_file, stream=True).raw)
|
| 106 |
inputs = processor(prompt, raw_image, return_tensors='pt').to(0, torch.float16)
|
| 107 |
|
| 108 |
output = model.generate(**inputs, max_new_tokens=200, do_sample=False)
|
| 109 |
print(processor.decode(output[0][2:], skip_special_tokens=True))
|
| 110 |
```
|
| 111 |
+
|
| 112 |
+
|
| 113 |
When prompting with videos/3D/multi-view input, prompt like following:
|
| 114 |
|
| 115 |
```python
|
|
|
|
| 117 |
|
| 118 |
image_tokens = "<image>" * n
|
| 119 |
prompt = f"<|im_start|>user {image_tokens}\nWhat are these?|im_end|><|im_start|>assistant"
|
| 120 |
+
|
| 121 |
+
# With chat template if you sampled 6 frames you have to have 8 images in one conversation turn
|
| 122 |
+
conversation = [
|
| 123 |
+
{
|
| 124 |
+
|
| 125 |
+
"role": "user",
|
| 126 |
+
"content": [
|
| 127 |
+
{"type": "text", "text": "What are these?"},
|
| 128 |
+
{"type": "image"},
|
| 129 |
+
{"type": "image"},
|
| 130 |
+
{"type": "image"},
|
| 131 |
+
{"type": "image"},
|
| 132 |
+
{"type": "image"},
|
| 133 |
+
],
|
| 134 |
+
},
|
| 135 |
+
]
|
| 136 |
+
prompt = processor.apply_chat_template(conversation, add_generation_prompt=True)
|
| 137 |
```
|
| 138 |
|
| 139 |
When prompting with interleaved images and videos, prompt like following:
|
| 140 |
|
| 141 |
```python
|
| 142 |
# two interleaved images
|
| 143 |
+
prompt = "<|im_start|>user <image><image>\nWhat is the difference between these two images?|im_end|><|im_start|>assistant"
|
| 144 |
|
| 145 |
# two interleaved videos, if you downsampled n frames in total from both videos
|
| 146 |
image_tokens = "<image>" * n
|
| 147 |
prompt = f"<|im_start|>user {image_tokens}\nWhat are these?|im_end|><|im_start|>assistant"
|
| 148 |
+
|
| 149 |
+
# chat template in interleaved format work same as in sampling videos. Just pass in as many images you want for a prompt
|
| 150 |
+
conversation = [
|
| 151 |
+
{
|
| 152 |
+
|
| 153 |
+
"role": "user",
|
| 154 |
+
"content": [
|
| 155 |
+
{"type": "text", "text": "What is the difference between these two images?"},
|
| 156 |
+
{"type": "image"},
|
| 157 |
+
{"type": "image"},
|
| 158 |
+
],
|
| 159 |
+
},
|
| 160 |
+
]
|
| 161 |
```
|
| 162 |
|
| 163 |
|