|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | from transformers.configuration_utils import PretrainedConfig, layer_type_validation | 
					
						
						|  | from transformers.modeling_rope_utils import rope_config_validation | 
					
						
						|  | from transformers.utils import logging | 
					
						
						|  |  | 
					
						
						|  | logger = logging.get_logger(__name__) | 
					
						
						|  |  | 
					
						
						|  | class RiceConfig(PretrainedConfig): | 
					
						
						|  | model_type = "rice_vit" | 
					
						
						|  | base_config_key = "vision_config" | 
					
						
						|  |  | 
					
						
						|  | def __init__( | 
					
						
						|  | self, | 
					
						
						|  | depth=24, | 
					
						
						|  | embed_dim=1024, | 
					
						
						|  | hidden_size=1024, | 
					
						
						|  | hidden_act="gelu", | 
					
						
						|  | intermediate_size=4096, | 
					
						
						|  | num_heads=16, | 
					
						
						|  | in_channels=3, | 
					
						
						|  | patch_size=14, | 
					
						
						|  | spatial_merge_size=2, | 
					
						
						|  | temporal_patch_size=1, | 
					
						
						|  | initializer_range=0.02, | 
					
						
						|  | layer_norm_eps=1e-05, | 
					
						
						|  | text_hidden_size=2560, | 
					
						
						|  | **kwargs, | 
					
						
						|  | ): | 
					
						
						|  | super().__init__(**kwargs) | 
					
						
						|  |  | 
					
						
						|  | self.depth = depth | 
					
						
						|  | self.embed_dim = embed_dim | 
					
						
						|  | self.hidden_size = hidden_size | 
					
						
						|  | self.hidden_act = hidden_act | 
					
						
						|  | self.intermediate_size = intermediate_size | 
					
						
						|  | self.num_heads = num_heads | 
					
						
						|  | self.in_channels = in_channels | 
					
						
						|  | self.patch_size = patch_size | 
					
						
						|  | self.spatial_merge_size = spatial_merge_size | 
					
						
						|  | self.temporal_patch_size = temporal_patch_size | 
					
						
						|  | self.initializer_range = initializer_range | 
					
						
						|  | self.layer_norm_eps = layer_norm_eps | 
					
						
						|  | self.text_hidden_size = text_hidden_size | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class LLaVAOneVision1_5_TextConfig(PretrainedConfig): | 
					
						
						|  | r""" | 
					
						
						|  | Args: | 
					
						
						|  | vocab_size (`int`, *optional*, defaults to 152064): | 
					
						
						|  | Vocabulary size of the Qwen2VL model. Defines the number of different tokens that can be represented by the | 
					
						
						|  | `inputs_ids` passed when calling [`Qwen2VLModel`] | 
					
						
						|  | hidden_size (`int`, *optional*, defaults to 8192): | 
					
						
						|  | Dimension of the hidden representations. | 
					
						
						|  | intermediate_size (`int`, *optional*, defaults to 29568): | 
					
						
						|  | Dimension of the MLP representations. | 
					
						
						|  | num_hidden_layers (`int`, *optional*, defaults to 80): | 
					
						
						|  | Number of hidden layers in the Transformer encoder. | 
					
						
						|  | num_attention_heads (`int`, *optional*, defaults to 64): | 
					
						
						|  | Number of attention heads for each attention layer in the Transformer encoder. | 
					
						
						|  | num_key_value_heads (`int`, *optional*, defaults to 8): | 
					
						
						|  | This is the number of key_value heads that should be used to implement Grouped Query Attention. If | 
					
						
						|  | `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if | 
					
						
						|  | `num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When | 
					
						
						|  | converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed | 
					
						
						|  | by meanpooling all the original heads within that group. For more details checkout [this | 
					
						
						|  | paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `32`. | 
					
						
						|  | hidden_act (`str` or `function`, *optional*, defaults to `"silu"`): | 
					
						
						|  | The non-linear activation function (function or string) in the decoder. | 
					
						
						|  | max_position_embeddings (`int`, *optional*, defaults to 32768): | 
					
						
						|  | The maximum sequence length that this model might ever be used with. | 
					
						
						|  | initializer_range (`float`, *optional*, defaults to 0.02): | 
					
						
						|  | The standard deviation of the truncated_normal_initializer for initializing all weight matrices. | 
					
						
						|  | rms_norm_eps (`float`, *optional*, defaults to 1e-05): | 
					
						
						|  | The epsilon used by the rms normalization layers. | 
					
						
						|  | use_cache (`bool`, *optional*, defaults to `True`): | 
					
						
						|  | Whether or not the model should return the last key/values attentions (not used by all models). Only | 
					
						
						|  | relevant if `config.is_decoder=True`. | 
					
						
						|  | tie_word_embeddings (`bool`, *optional*, defaults to `False`): | 
					
						
						|  | Whether the model's input and output word embeddings should be tied. | 
					
						
						|  | rope_theta (`float`, *optional*, defaults to 1000000.0): | 
					
						
						|  | The base period of the RoPE embeddings. | 
					
						
						|  | use_sliding_window (`bool`, *optional*, defaults to `False`): | 
					
						
						|  | Whether to use sliding window attention. | 
					
						
						|  | sliding_window (`int`, *optional*, defaults to 4096): | 
					
						
						|  | Sliding window attention (SWA) window size. If not specified, will default to `4096`. | 
					
						
						|  | max_window_layers (`int`, *optional*, defaults to 80): | 
					
						
						|  | The number of layers that use SWA (Sliding Window Attention). The bottom layers use SWA while the top use full attention. | 
					
						
						|  | attention_dropout (`float`, *optional*, defaults to 0.0): | 
					
						
						|  | The dropout ratio for the attention probabilities. | 
					
						
						|  | rope_scaling (`Dict`, *optional*): | 
					
						
						|  | Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type | 
					
						
						|  | and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value | 
					
						
						|  | accordingly. | 
					
						
						|  | Expected contents: | 
					
						
						|  | `rope_type` (`str`): | 
					
						
						|  | The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope', | 
					
						
						|  | 'llama3'], with 'default' being the original RoPE implementation. | 
					
						
						|  | `factor` (`float`, *optional*): | 
					
						
						|  | Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In | 
					
						
						|  | most scaling types, a `factor` of x will enable the model to handle sequences of length x * | 
					
						
						|  | original maximum pre-trained length. | 
					
						
						|  | `original_max_position_embeddings` (`int`, *optional*): | 
					
						
						|  | Used with 'dynamic', 'longrope' and 'llama3'. The original max position embeddings used during | 
					
						
						|  | pretraining. | 
					
						
						|  | `attention_factor` (`float`, *optional*): | 
					
						
						|  | Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention | 
					
						
						|  | computation. If unspecified, it defaults to value recommended by the implementation, using the | 
					
						
						|  | `factor` field to infer the suggested value. | 
					
						
						|  | `beta_fast` (`float`, *optional*): | 
					
						
						|  | Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear | 
					
						
						|  | ramp function. If unspecified, it defaults to 32. | 
					
						
						|  | `beta_slow` (`float`, *optional*): | 
					
						
						|  | Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear | 
					
						
						|  | ramp function. If unspecified, it defaults to 1. | 
					
						
						|  | `short_factor` (`List[float]`, *optional*): | 
					
						
						|  | Only used with 'longrope'. The scaling factor to be applied to short contexts (< | 
					
						
						|  | `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden | 
					
						
						|  | size divided by the number of attention heads divided by 2 | 
					
						
						|  | `long_factor` (`List[float]`, *optional*): | 
					
						
						|  | Only used with 'longrope'. The scaling factor to be applied to long contexts (< | 
					
						
						|  | `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden | 
					
						
						|  | size divided by the number of attention heads divided by 2 | 
					
						
						|  | `low_freq_factor` (`float`, *optional*): | 
					
						
						|  | Only used with 'llama3'. Scaling factor applied to low frequency components of the RoPE | 
					
						
						|  | `high_freq_factor` (`float`, *optional*): | 
					
						
						|  | Only used with 'llama3'. Scaling factor applied to high frequency components of the RoPE | 
					
						
						|  | image_token_id (`int`, *optional*): | 
					
						
						|  | Token index used as placeholder for image embeddings. | 
					
						
						|  | video_token_id (`int`, *optional*): | 
					
						
						|  | Token index used as placeholder for video embeddings. | 
					
						
						|  |  | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | model_type = "LLaVAOneVision1_5_text" | 
					
						
						|  | base_config_key = "text_config" | 
					
						
						|  | keys_to_ignore_at_inference = ["past_key_values"] | 
					
						
						|  |  | 
					
						
						|  | base_model_tp_plan = { | 
					
						
						|  | "layers.*.self_attn.q_proj": "colwise", | 
					
						
						|  | "layers.*.self_attn.k_proj": "colwise", | 
					
						
						|  | "layers.*.self_attn.v_proj": "colwise", | 
					
						
						|  | "layers.*.self_attn.o_proj": "rowwise", | 
					
						
						|  | "layers.*.mlp.gate_proj": "colwise", | 
					
						
						|  | "layers.*.mlp.up_proj": "colwise", | 
					
						
						|  | "layers.*.mlp.down_proj": "rowwise", | 
					
						
						|  | } | 
					
						
						|  | base_model_pp_plan = { | 
					
						
						|  | "embed_tokens": (["input_ids"], ["inputs_embeds"]), | 
					
						
						|  | "layers": (["hidden_states", "attention_mask"], ["hidden_states"]), | 
					
						
						|  | "norm": (["hidden_states"], ["hidden_states"]), | 
					
						
						|  | } | 
					
						
						|  |  | 
					
						
						|  | def __init__( | 
					
						
						|  | self, | 
					
						
						|  | vocab_size=151936, | 
					
						
						|  | hidden_size=4096, | 
					
						
						|  | intermediate_size=12288, | 
					
						
						|  | num_hidden_layers=36, | 
					
						
						|  | num_attention_heads=32, | 
					
						
						|  | num_key_value_heads=8, | 
					
						
						|  | head_dim=128, | 
					
						
						|  | hidden_act="silu", | 
					
						
						|  | max_position_embeddings=32768, | 
					
						
						|  | initializer_range=0.02, | 
					
						
						|  | rms_norm_eps=1e-06, | 
					
						
						|  | use_cache=True, | 
					
						
						|  | tie_word_embeddings=False, | 
					
						
						|  | rope_theta=1000000.0, | 
					
						
						|  | attention_bias=False, | 
					
						
						|  | use_sliding_window=False, | 
					
						
						|  | sliding_window=None, | 
					
						
						|  | max_window_layers=36, | 
					
						
						|  | attention_dropout=0.0, | 
					
						
						|  | rope_scaling=None, | 
					
						
						|  | layer_types=None, | 
					
						
						|  | image_token_id=None, | 
					
						
						|  | video_token_id=None, | 
					
						
						|  | **kwargs, | 
					
						
						|  | ): | 
					
						
						|  | self.vocab_size = vocab_size | 
					
						
						|  | self.max_position_embeddings = max_position_embeddings | 
					
						
						|  | self.hidden_size = hidden_size | 
					
						
						|  | self.intermediate_size = intermediate_size | 
					
						
						|  | self.num_hidden_layers = num_hidden_layers | 
					
						
						|  | self.num_attention_heads = num_attention_heads | 
					
						
						|  | self.use_sliding_window = use_sliding_window | 
					
						
						|  | self.sliding_window = sliding_window | 
					
						
						|  | self.max_window_layers = max_window_layers | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if num_key_value_heads is None: | 
					
						
						|  | num_key_value_heads = num_attention_heads | 
					
						
						|  |  | 
					
						
						|  | self.num_key_value_heads = num_key_value_heads | 
					
						
						|  | self.head_dim = head_dim | 
					
						
						|  | self.hidden_act = hidden_act | 
					
						
						|  | self.initializer_range = initializer_range | 
					
						
						|  | self.rms_norm_eps = rms_norm_eps | 
					
						
						|  | self.use_cache = use_cache | 
					
						
						|  | self.rope_theta = rope_theta | 
					
						
						|  | self.attention_dropout = attention_dropout | 
					
						
						|  | self.rope_scaling = rope_scaling | 
					
						
						|  | self.attention_bias = attention_bias | 
					
						
						|  | self.tie_word_embeddings = tie_word_embeddings | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if self.rope_scaling is not None and "type" in self.rope_scaling: | 
					
						
						|  | if self.rope_scaling["type"] == "mrope": | 
					
						
						|  | self.rope_scaling["type"] = "default" | 
					
						
						|  | self.rope_scaling["rope_type"] = self.rope_scaling["type"] | 
					
						
						|  | rope_config_validation(self, ignore_keys={"mrope_section"}) | 
					
						
						|  | self.image_token_id = image_token_id | 
					
						
						|  | self.video_token_id = video_token_id | 
					
						
						|  |  | 
					
						
						|  | self.layer_types = layer_types | 
					
						
						|  | if self.layer_types is None: | 
					
						
						|  | self.layer_types = [ | 
					
						
						|  | "sliding_attention" | 
					
						
						|  | if self.sliding_window is not None and i >= self.max_window_layers | 
					
						
						|  | else "full_attention" | 
					
						
						|  | for i in range(self.num_hidden_layers) | 
					
						
						|  | ] | 
					
						
						|  | layer_type_validation(self.layer_types) | 
					
						
						|  |  | 
					
						
						|  | super().__init__(tie_word_embeddings=tie_word_embeddings, **kwargs) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class Llavaonevision1_5Config(PretrainedConfig): | 
					
						
						|  | r""" | 
					
						
						|  | Args: | 
					
						
						|  | text_config (`Union[PreTrainedConfig, dict]`, *optional*, defaults to `LLaVAOneVision1_5_TextConfig`): | 
					
						
						|  | The config object or dictionary of the text backbone. | 
					
						
						|  | vision_config (`Union[PreTrainedConfig, dict]`,  *optional*, defaults to `LLaVAOneVision1_5_VisionConfig`): | 
					
						
						|  | The config object or dictionary of the vision backbone. | 
					
						
						|  | image_token_id (`int`, *optional*, defaults to 151655): | 
					
						
						|  | The image token index to encode the image prompt. | 
					
						
						|  | video_token_id (`int`, *optional*, defaults to 151656): | 
					
						
						|  | The video token index to encode the image prompt. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | model_type = "llavaonevision1_5" | 
					
						
						|  | sub_configs = {"vision_config": RiceConfig, "text_config": LLaVAOneVision1_5_TextConfig} | 
					
						
						|  | keys_to_ignore_at_inference = ["past_key_values"] | 
					
						
						|  |  | 
					
						
						|  | def __init__( | 
					
						
						|  | self, | 
					
						
						|  | text_config=None, | 
					
						
						|  | vision_config=None, | 
					
						
						|  | image_token_id=151655, | 
					
						
						|  | video_token_id=151656, | 
					
						
						|  | vocab_size=152064, | 
					
						
						|  | **kwargs, | 
					
						
						|  | ): | 
					
						
						|  | if isinstance(vision_config, dict): | 
					
						
						|  | self.vision_config = self.sub_configs["vision_config"](**vision_config) | 
					
						
						|  | elif vision_config is None: | 
					
						
						|  | self.vision_config = self.sub_configs["vision_config"]() | 
					
						
						|  |  | 
					
						
						|  | if isinstance(text_config, dict): | 
					
						
						|  | self.text_config = self.sub_configs["text_config"](**text_config) | 
					
						
						|  | elif text_config is None: | 
					
						
						|  |  | 
					
						
						|  | self.text_config = self.sub_configs["text_config"](**kwargs) | 
					
						
						|  |  | 
					
						
						|  | self.image_token_id = image_token_id | 
					
						
						|  | self.video_token_id = video_token_id | 
					
						
						|  | self.vocab_size = vocab_size | 
					
						
						|  |  | 
					
						
						|  | super().__init__(**kwargs) | 
					
						
						|  |  | 
					
						
						|  | __all__ = ["Llavaonevision1_5Config", "LLaVAOneVision1_5_TextConfig"] |