Upload folder using huggingface_hub
Browse files- __init__.py +0 -0
- config.json +60 -0
- configuration_vmistral.py +310 -0
- generation_config.json +7 -0
- generation_utils.py +376 -0
- model-00001-of-00004.safetensors +3 -0
- model-00002-of-00004.safetensors +3 -0
- model-00003-of-00004.safetensors +3 -0
- model-00004-of-00004.safetensors +3 -0
- model.safetensors.index.json +803 -0
- modeling_vmistral.py +1766 -0
- modeling_web.py +681 -0
- preprocessor_config.json +20 -0
- special_tokens_map.json +30 -0
- tokenizer.json +0 -0
- tokenizer_config.json +59 -0
- vision.py +653 -0
__init__.py
ADDED
|
File without changes
|
config.json
ADDED
|
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_flash_attn_2_enabled": true,
|
| 3 |
+
"_name_or_path": "None",
|
| 4 |
+
"additional_vocab_size": 2,
|
| 5 |
+
"alpha_initializer": "zeros",
|
| 6 |
+
"alpha_type": "float",
|
| 7 |
+
"alphas_initializer_range": 0.0,
|
| 8 |
+
"architectures": [
|
| 9 |
+
"WebForVisionText2Text"
|
| 10 |
+
],
|
| 11 |
+
"attention_dropout": 0.0,
|
| 12 |
+
"auto_map": {
|
| 13 |
+
"AutoConfig": "configuration_vmistral.VMistralConfig",
|
| 14 |
+
"AutoModelForCausalLM": "modeling_web.WebForVisionText2Text"
|
| 15 |
+
},
|
| 16 |
+
"bos_token_id": 1,
|
| 17 |
+
"cross_layer_interval": 1,
|
| 18 |
+
"eos_token_id": 2,
|
| 19 |
+
"freeze_lm_head": false,
|
| 20 |
+
"freeze_text_layers": false,
|
| 21 |
+
"freeze_text_module_exceptions": [],
|
| 22 |
+
"freeze_vision_layers": false,
|
| 23 |
+
"freeze_vision_module_exceptions": [],
|
| 24 |
+
"hidden_act": "silu",
|
| 25 |
+
"hidden_size": 4096,
|
| 26 |
+
"image_token_id": 32001,
|
| 27 |
+
"initializer_range": 0.02,
|
| 28 |
+
"intermediate_size": 14336,
|
| 29 |
+
"max_position_embeddings": 32768,
|
| 30 |
+
"model_type": "vmistral",
|
| 31 |
+
"num_attention_heads": 32,
|
| 32 |
+
"num_hidden_layers": 32,
|
| 33 |
+
"num_key_value_heads": 8,
|
| 34 |
+
"pad_token_id": 0,
|
| 35 |
+
"perceiver_config": {
|
| 36 |
+
"model_type": "vmistral",
|
| 37 |
+
"qk_layer_norms_perceiver": true,
|
| 38 |
+
"resampler_depth": 3
|
| 39 |
+
},
|
| 40 |
+
"qk_layer_norms": true,
|
| 41 |
+
"rms_norm_eps": 1e-05,
|
| 42 |
+
"rope_theta": 10000.0,
|
| 43 |
+
"sliding_window": 4096,
|
| 44 |
+
"tie_word_embeddings": false,
|
| 45 |
+
"torch_dtype": "bfloat16",
|
| 46 |
+
"transformers_version": "4.41.1",
|
| 47 |
+
"use_cache": true,
|
| 48 |
+
"use_resampler": true,
|
| 49 |
+
"vision_config": {
|
| 50 |
+
"hidden_size": 1152,
|
| 51 |
+
"image_size": 960,
|
| 52 |
+
"intermediate_size": 4304,
|
| 53 |
+
"model_type": "vmistral",
|
| 54 |
+
"num_attention_heads": 16,
|
| 55 |
+
"num_hidden_layers": 27,
|
| 56 |
+
"patch_size": 14
|
| 57 |
+
},
|
| 58 |
+
"vocab_size": 32000,
|
| 59 |
+
"web_attention_range": 2
|
| 60 |
+
}
|
configuration_vmistral.py
ADDED
|
@@ -0,0 +1,310 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# coding=utf-8
|
| 2 |
+
# Copyright 2023 Mistral AI and the HuggingFace Inc. team. All rights reserved.
|
| 3 |
+
#
|
| 4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 5 |
+
# you may not use this file except in compliance with the License.
|
| 6 |
+
# You may obtain a copy of the License at
|
| 7 |
+
#
|
| 8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 9 |
+
#
|
| 10 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 13 |
+
# See the License for the specific language governing permissions and
|
| 14 |
+
# limitations under the License.
|
| 15 |
+
""" VMistral model configuration"""
|
| 16 |
+
from transformers.configuration_utils import PretrainedConfig
|
| 17 |
+
from transformers.utils import logging
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
logger = logging.get_logger(__name__)
|
| 21 |
+
|
| 22 |
+
MISTRAL_PRETRAINED_CONFIG_ARCHIVE_MAP = {
|
| 23 |
+
"lt-asset/Waffle_VLM_WebSight": "https://huggingface.co/lt-asset/Waffle_VLM_WebSight/blob/main/configuration_vmistral.py",
|
| 24 |
+
}
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
class VMistralVisionConfig(PretrainedConfig):
|
| 28 |
+
r"""
|
| 29 |
+
"""
|
| 30 |
+
model_type = "vmistral"
|
| 31 |
+
|
| 32 |
+
def __init__(
|
| 33 |
+
self,
|
| 34 |
+
hidden_size=768,
|
| 35 |
+
intermediate_size=3072,
|
| 36 |
+
num_hidden_layers=12,
|
| 37 |
+
num_attention_heads=12,
|
| 38 |
+
num_channels=3,
|
| 39 |
+
image_size=224,
|
| 40 |
+
patch_size=32,
|
| 41 |
+
hidden_act="gelu_pytorch_tanh",
|
| 42 |
+
layer_norm_eps=1e-6,
|
| 43 |
+
attention_dropout=0.0,
|
| 44 |
+
initializer_range=0.02,
|
| 45 |
+
initializer_factor=1.0,
|
| 46 |
+
web_attention_range=1,
|
| 47 |
+
_flash_attn_2_enabled=True,
|
| 48 |
+
**kwargs,
|
| 49 |
+
):
|
| 50 |
+
super().__init__(**kwargs)
|
| 51 |
+
|
| 52 |
+
self.hidden_size = hidden_size
|
| 53 |
+
self.intermediate_size = intermediate_size
|
| 54 |
+
self.num_hidden_layers = num_hidden_layers
|
| 55 |
+
self.num_attention_heads = num_attention_heads
|
| 56 |
+
self.num_channels = num_channels
|
| 57 |
+
self.patch_size = patch_size
|
| 58 |
+
self.image_size = image_size
|
| 59 |
+
self.initializer_range = initializer_range
|
| 60 |
+
self.initializer_factor = initializer_factor
|
| 61 |
+
self.attention_dropout = attention_dropout
|
| 62 |
+
self.layer_norm_eps = layer_norm_eps
|
| 63 |
+
self.hidden_act = hidden_act
|
| 64 |
+
self.web_attention_range = web_attention_range
|
| 65 |
+
self._flash_attn_2_enabled = _flash_attn_2_enabled
|
| 66 |
+
|
| 67 |
+
|
| 68 |
+
class VMistralPerceiverConfig(PretrainedConfig):
|
| 69 |
+
r"""
|
| 70 |
+
TThis is the configuration class to store the configuration of a [`MistralModel`]. It is used to instantiate an
|
| 71 |
+
Mistral model according to the specified arguments, defining the model architecture. Instantiating a configuration
|
| 72 |
+
with the defaults will yield a similar configuration to that of the Mistral-7B-v0.1 or Mistral-7B-Instruct-v0.1.
|
| 73 |
+
|
| 74 |
+
[mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1)
|
| 75 |
+
[mistralai/Mistral-7B-Instruct-v0.1](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1)
|
| 76 |
+
|
| 77 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
| 78 |
+
documentation from [`PretrainedConfig`] for more information.
|
| 79 |
+
|
| 80 |
+
Args:
|
| 81 |
+
use_resampler (`bool`, *optional*, defaults to `False`):
|
| 82 |
+
Whether or not to use the resampler
|
| 83 |
+
resampler_n_latents (`int`, *optional*, defaults to ):
|
| 84 |
+
Number of latent embeddings to resample ("compress") the input sequence to (usually < 128).
|
| 85 |
+
resampler_depth (`int`, *optional*, defaults to 6):
|
| 86 |
+
Depth of the Perceiver Resampler (Transformer w/ cross attention). Should be shallow (< 3).
|
| 87 |
+
resampler_n_heads (`int`, *optional*, defaults to 16):
|
| 88 |
+
Number of heads in each Transformer block (for multi-headed self-attention).
|
| 89 |
+
resampler_head_dim (`int`, *optional*, defaults to 96):
|
| 90 |
+
Dimensionality of each head projection in the Transformer block.
|
| 91 |
+
qk_layer_norms_perceiver (`bool`, *optional*, defaults to `False`):
|
| 92 |
+
Whether or not to use qk layer norms in perceiver
|
| 93 |
+
"""
|
| 94 |
+
model_type = "vmistral"
|
| 95 |
+
|
| 96 |
+
def __init__(
|
| 97 |
+
self,
|
| 98 |
+
resampler_n_latents=64,
|
| 99 |
+
resampler_depth=6,
|
| 100 |
+
resampler_n_heads=16,
|
| 101 |
+
resampler_head_dim=96,
|
| 102 |
+
qk_layer_norms_perceiver=False,
|
| 103 |
+
**kwargs,
|
| 104 |
+
):
|
| 105 |
+
self.resampler_n_latents = resampler_n_latents
|
| 106 |
+
self.resampler_depth = resampler_depth
|
| 107 |
+
self.resampler_n_heads = resampler_n_heads
|
| 108 |
+
self.resampler_head_dim = resampler_head_dim
|
| 109 |
+
self.qk_layer_norms_perceiver = qk_layer_norms_perceiver
|
| 110 |
+
|
| 111 |
+
super().__init__(**kwargs)
|
| 112 |
+
|
| 113 |
+
|
| 114 |
+
class VMistralConfig(PretrainedConfig):
|
| 115 |
+
r"""
|
| 116 |
+
This is the configuration class to store the configuration of a [`MistralModel`]. It is used to instantiate an
|
| 117 |
+
Mistral model according to the specified arguments, defining the model architecture. Instantiating a configuration
|
| 118 |
+
with the defaults will yield a similar configuration to that of the Mistral-7B-v0.1 or Mistral-7B-Instruct-v0.1.
|
| 119 |
+
|
| 120 |
+
[mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1)
|
| 121 |
+
[mistralai/Mistral-7B-Instruct-v0.1](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1)
|
| 122 |
+
|
| 123 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
| 124 |
+
documentation from [`PretrainedConfig`] for more information.
|
| 125 |
+
|
| 126 |
+
Args:
|
| 127 |
+
additional_vocab_size (`int`, *optional`, defaults to 0):
|
| 128 |
+
Additional vocabulary size of the model, typically for the special "<img>" token. Additional vocab tokens
|
| 129 |
+
are always trainable whereas regular vocab tokens can be frozen or not.
|
| 130 |
+
vocab_size (`int`, *optional*, defaults to 32000):
|
| 131 |
+
Vocabulary size of the Mistral model. Defines the number of different tokens that can be represented by the
|
| 132 |
+
`inputs_ids` passed when calling [`MistralModel`]
|
| 133 |
+
hidden_size (`int`, *optional*, defaults to 4096):
|
| 134 |
+
Dimension of the hidden representations.
|
| 135 |
+
intermediate_size (`int`, *optional*, defaults to 14336):
|
| 136 |
+
Dimension of the MLP representations.
|
| 137 |
+
num_hidden_layers (`int`, *optional*, defaults to 32):
|
| 138 |
+
Number of hidden layers in the Transformer encoder.
|
| 139 |
+
num_attention_heads (`int`, *optional*, defaults to 32):
|
| 140 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
| 141 |
+
num_key_value_heads (`int`, *optional*, defaults to 8):
|
| 142 |
+
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
|
| 143 |
+
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
|
| 144 |
+
`num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
|
| 145 |
+
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
|
| 146 |
+
by meanpooling all the original heads within that group. For more details checkout [this
|
| 147 |
+
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `8`.
|
| 148 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
|
| 149 |
+
The non-linear activation function (function or string) in the decoder.
|
| 150 |
+
max_position_embeddings (`int`, *optional*, defaults to `4096*32`):
|
| 151 |
+
The maximum sequence length that this model might ever be used with. Mistral's sliding window attention
|
| 152 |
+
allows sequence of up to 4096*32 tokens.
|
| 153 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
| 154 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
| 155 |
+
alpha_initializer (`str`, *optional*, defaults to `"zeros"`):
|
| 156 |
+
Initialization type for the alphas.
|
| 157 |
+
alphas_initializer_range (`float`, *optional*, defaults to 0.0):
|
| 158 |
+
The standard deviation of the truncated_normal_initializer for initializing the alphas in the Gated Cross
|
| 159 |
+
Attention.
|
| 160 |
+
alpha_type (`str`, *optional*, defaults to `"float"`):
|
| 161 |
+
Whether the gating alphas should be vectors or single floats.
|
| 162 |
+
rms_norm_eps (`float`, *optional*, defaults to 1e-06):
|
| 163 |
+
The epsilon used by the rms normalization layers.
|
| 164 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
| 165 |
+
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
| 166 |
+
relevant if `config.is_decoder=True`.
|
| 167 |
+
pad_token_id (`int`, *optional*):
|
| 168 |
+
The id of the padding token.
|
| 169 |
+
bos_token_id (`int`, *optional*, defaults to 1):
|
| 170 |
+
The id of the "beginning-of-sequence" token.
|
| 171 |
+
eos_token_id (`int`, *optional*, defaults to 2):
|
| 172 |
+
The id of the "end-of-sequence" token.
|
| 173 |
+
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
|
| 174 |
+
Whether the model's input and output word embeddings should be tied.
|
| 175 |
+
rope_theta (`float`, *optional*, defaults to 10000.0):
|
| 176 |
+
The base period of the RoPE embeddings.
|
| 177 |
+
sliding_window (`int`, *optional*, defaults to 4096):
|
| 178 |
+
Sliding window attention window size. If not specified, will default to `4096`.
|
| 179 |
+
cross_layer_interval (`int`, *optional*, default to 1)
|
| 180 |
+
Interval for cross attention (from text to image) layers.
|
| 181 |
+
qk_layer_norms (`bool`, *optional*, defaults to `False`): Whether to add layer norm after q and k
|
| 182 |
+
freeze_text_layers (`bool`, *optional*, defaults to `True`): Whether to freeze text layers
|
| 183 |
+
freeze_text_module_exceptions (`bool`, *optional*, defaults to `[]`):
|
| 184 |
+
Exceptions to freezing text layers when `freeze_text_layers` is `True`
|
| 185 |
+
freeze_lm_head (`bool`, *optional*, defaults to `False`): Whether to freeze lm head
|
| 186 |
+
freeze_vision_layers (`bool`, *optional*, defaults to `True`): Whether to freeze vision layers
|
| 187 |
+
freeze_vision_module_exceptions (`bool`, *optional*, defaults to `[]`):
|
| 188 |
+
Exceptions to freezing vision layers when `freeze_vision_layers` is `True`
|
| 189 |
+
use_resampler (`bool`, *optional*, defaults to `False`): Whether to use the Resampler
|
| 190 |
+
vision_config (`IdeficsVisionConfig`, *optional*): Custom vision config or dict
|
| 191 |
+
perceiver_config (`IdeficsPerceiverConfig`, *optional*): Custom perceiver config or dict
|
| 192 |
+
|
| 193 |
+
Example:
|
| 194 |
+
```python
|
| 195 |
+
>>> from transformers import MistralModel, MistralConfig
|
| 196 |
+
|
| 197 |
+
>>> # Initializing a Mistral 7B style configuration
|
| 198 |
+
>>> configuration = MistralConfig()
|
| 199 |
+
|
| 200 |
+
>>> # Initializing a model from the Mistral 7B style configuration
|
| 201 |
+
>>> model = MistralModel(configuration)
|
| 202 |
+
|
| 203 |
+
>>> # Accessing the model configuration
|
| 204 |
+
>>> configuration = model.config
|
| 205 |
+
```"""
|
| 206 |
+
model_type = "vmistral"
|
| 207 |
+
is_composition = False
|
| 208 |
+
|
| 209 |
+
def __init__(
|
| 210 |
+
self,
|
| 211 |
+
additional_vocab_size=0,
|
| 212 |
+
vocab_size=32000,
|
| 213 |
+
hidden_size=4096,
|
| 214 |
+
intermediate_size=14336,
|
| 215 |
+
num_hidden_layers=32,
|
| 216 |
+
num_attention_heads=32,
|
| 217 |
+
num_key_value_heads=8,
|
| 218 |
+
hidden_act="silu",
|
| 219 |
+
max_position_embeddings=4096 * 32,
|
| 220 |
+
initializer_range=0.02,
|
| 221 |
+
alpha_initializer="zeros",
|
| 222 |
+
alphas_initializer_range=0.0,
|
| 223 |
+
alpha_type="float",
|
| 224 |
+
rms_norm_eps=1e-6,
|
| 225 |
+
use_cache=True,
|
| 226 |
+
pad_token_id=0, # None in the original configuration_mistral, we set it to the unk_token_id
|
| 227 |
+
bos_token_id=1,
|
| 228 |
+
eos_token_id=2,
|
| 229 |
+
image_token_id=32_001,
|
| 230 |
+
tie_word_embeddings=False,
|
| 231 |
+
rope_theta=10000.0,
|
| 232 |
+
sliding_window=4096,
|
| 233 |
+
cross_layer_interval=1,
|
| 234 |
+
qk_layer_norms=False,
|
| 235 |
+
freeze_text_layers=True,
|
| 236 |
+
freeze_text_module_exceptions=[],
|
| 237 |
+
freeze_lm_head=False,
|
| 238 |
+
freeze_vision_layers=True,
|
| 239 |
+
freeze_vision_module_exceptions=[],
|
| 240 |
+
attention_dropout=0.0,
|
| 241 |
+
_flash_attn_2_enabled=True,
|
| 242 |
+
use_resampler=False,
|
| 243 |
+
vision_config=None,
|
| 244 |
+
perceiver_config=None,
|
| 245 |
+
**kwargs,
|
| 246 |
+
):
|
| 247 |
+
self.vocab_size = vocab_size
|
| 248 |
+
self.additional_vocab_size = additional_vocab_size
|
| 249 |
+
self.image_token_id = image_token_id
|
| 250 |
+
self.max_position_embeddings = max_position_embeddings
|
| 251 |
+
self.hidden_size = hidden_size
|
| 252 |
+
self.intermediate_size = intermediate_size
|
| 253 |
+
self.num_hidden_layers = num_hidden_layers
|
| 254 |
+
self.num_attention_heads = num_attention_heads
|
| 255 |
+
self.sliding_window = sliding_window
|
| 256 |
+
|
| 257 |
+
# for backward compatibility
|
| 258 |
+
if num_key_value_heads is None:
|
| 259 |
+
num_key_value_heads = num_attention_heads
|
| 260 |
+
|
| 261 |
+
self.num_key_value_heads = num_key_value_heads
|
| 262 |
+
self.hidden_act = hidden_act
|
| 263 |
+
self.initializer_range = initializer_range
|
| 264 |
+
self.alpha_initializer = alpha_initializer
|
| 265 |
+
self.alphas_initializer_range = alphas_initializer_range
|
| 266 |
+
self.alpha_type = alpha_type
|
| 267 |
+
self.rms_norm_eps = rms_norm_eps
|
| 268 |
+
self.use_cache = use_cache
|
| 269 |
+
self.rope_theta = rope_theta
|
| 270 |
+
|
| 271 |
+
self.cross_layer_interval = cross_layer_interval
|
| 272 |
+
self.qk_layer_norms = qk_layer_norms
|
| 273 |
+
self.freeze_vision_layers = freeze_vision_layers
|
| 274 |
+
|
| 275 |
+
self.freeze_text_layers = freeze_text_layers
|
| 276 |
+
self.freeze_text_module_exceptions = freeze_text_module_exceptions
|
| 277 |
+
self.freeze_vision_module_exceptions = freeze_vision_module_exceptions
|
| 278 |
+
self.freeze_lm_head = freeze_lm_head
|
| 279 |
+
|
| 280 |
+
self.use_resampler = use_resampler
|
| 281 |
+
self._flash_attn_2_enabled = _flash_attn_2_enabled
|
| 282 |
+
self.attention_dropout = attention_dropout
|
| 283 |
+
|
| 284 |
+
if perceiver_config is None:
|
| 285 |
+
self.perceiver_config = VMistralPerceiverConfig()
|
| 286 |
+
elif isinstance(perceiver_config, dict):
|
| 287 |
+
self.perceiver_config = VMistralPerceiverConfig(**perceiver_config)
|
| 288 |
+
elif isinstance(perceiver_config, VMistralPerceiverConfig):
|
| 289 |
+
self.perceiver_config = perceiver_config
|
| 290 |
+
|
| 291 |
+
if vision_config is None:
|
| 292 |
+
self.vision_config = VMistralVisionConfig()
|
| 293 |
+
elif isinstance(vision_config, dict):
|
| 294 |
+
self.vision_config = VMistralVisionConfig(**vision_config)
|
| 295 |
+
elif isinstance(vision_config, VMistralVisionConfig):
|
| 296 |
+
self.vision_config = vision_config
|
| 297 |
+
|
| 298 |
+
super().__init__(
|
| 299 |
+
pad_token_id=pad_token_id,
|
| 300 |
+
bos_token_id=bos_token_id,
|
| 301 |
+
eos_token_id=eos_token_id,
|
| 302 |
+
tie_word_embeddings=tie_word_embeddings,
|
| 303 |
+
**kwargs,
|
| 304 |
+
)
|
| 305 |
+
|
| 306 |
+
# IMPORTANT: Do not do any __init__ args-based checks in the constructor, since
|
| 307 |
+
# PretrainedConfig.from_dict first instantiates the class with the config dict and only then
|
| 308 |
+
# updates the config object with `kwargs` from from_pretrained, so during the instantiation
|
| 309 |
+
# of this object many attributes have default values and haven't yet been overridden.
|
| 310 |
+
# Do any required checks inside `from_pretrained` once the superclass' `from_pretrained` was run.
|
generation_config.json
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_from_model_config": true,
|
| 3 |
+
"bos_token_id": 1,
|
| 4 |
+
"eos_token_id": 2,
|
| 5 |
+
"pad_token_id": 0,
|
| 6 |
+
"transformers_version": "4.41.1"
|
| 7 |
+
}
|
generation_utils.py
ADDED
|
@@ -0,0 +1,376 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import Any, Dict, Optional, List
|
| 2 |
+
import torch
|
| 3 |
+
from transformers import GenerationMixin
|
| 4 |
+
from transformers import AutoTokenizer
|
| 5 |
+
import re
|
| 6 |
+
import traceback
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
class WebGenerationMixin(GenerationMixin):
|
| 10 |
+
def _update_model_kwargs_for_generation(
|
| 11 |
+
self,
|
| 12 |
+
outputs,
|
| 13 |
+
model_kwargs: Dict[str, Any],
|
| 14 |
+
is_encoder_decoder: bool = False,
|
| 15 |
+
standardize_cache_format: bool = False,
|
| 16 |
+
) -> Dict[str, Any]:
|
| 17 |
+
# update past_key_values
|
| 18 |
+
|
| 19 |
+
model_kwargs["past_key_values"] = self._extract_past_from_model_output(
|
| 20 |
+
outputs, standardize_cache_format=standardize_cache_format
|
| 21 |
+
)
|
| 22 |
+
if getattr(outputs, "state", None) is not None:
|
| 23 |
+
model_kwargs["state"] = outputs.state
|
| 24 |
+
|
| 25 |
+
# update token_type_ids with last value
|
| 26 |
+
if "token_type_ids" in model_kwargs:
|
| 27 |
+
token_type_ids = model_kwargs["token_type_ids"]
|
| 28 |
+
model_kwargs["token_type_ids"] = torch.cat([token_type_ids, token_type_ids[:, -1].unsqueeze(-1)], dim=-1)
|
| 29 |
+
|
| 30 |
+
if not is_encoder_decoder:
|
| 31 |
+
# update attention mask
|
| 32 |
+
if 'web_attention_mask' not in model_kwargs:
|
| 33 |
+
attention_mask = model_kwargs["attention_mask"]
|
| 34 |
+
model_kwargs['web_attention_mask'] = torch.tril(torch.ones((attention_mask.shape[-1], attention_mask.shape[-1]), dtype = attention_mask.dtype)).unsqueeze(0)
|
| 35 |
+
|
| 36 |
+
if "attention_mask" in model_kwargs:
|
| 37 |
+
attention_mask = model_kwargs["attention_mask"]
|
| 38 |
+
model_kwargs["attention_mask"] = torch.cat(
|
| 39 |
+
[attention_mask, attention_mask.new_ones((attention_mask.shape[0], 1))], dim=-1
|
| 40 |
+
)
|
| 41 |
+
|
| 42 |
+
model_kwargs['html_tree'] = outputs.html_tree
|
| 43 |
+
|
| 44 |
+
else:
|
| 45 |
+
# update decoder attention mask
|
| 46 |
+
if "decoder_attention_mask" in model_kwargs:
|
| 47 |
+
decoder_attention_mask = model_kwargs["decoder_attention_mask"]
|
| 48 |
+
model_kwargs["decoder_attention_mask"] = torch.cat(
|
| 49 |
+
[decoder_attention_mask, decoder_attention_mask.new_ones((decoder_attention_mask.shape[0], 1))],
|
| 50 |
+
dim=-1,
|
| 51 |
+
)
|
| 52 |
+
|
| 53 |
+
if "cache_position" in model_kwargs and model_kwargs["cache_position"] is not None:
|
| 54 |
+
model_kwargs["cache_position"] = model_kwargs["cache_position"][-1:] + 1
|
| 55 |
+
return model_kwargs
|
| 56 |
+
|
| 57 |
+
def _reorder_cache(self, past_key_values, beam_idx):
|
| 58 |
+
raise NotImplementedError(
|
| 59 |
+
f"Make sure that a `_reorder_cache` function is correctly implemented in {self.__class__.__module__} to"
|
| 60 |
+
f" enable beam search for {self.__class__}"
|
| 61 |
+
)
|
| 62 |
+
|
| 63 |
+
|
| 64 |
+
class TreeNode():
|
| 65 |
+
def __init__(self,content: list, idx: int):
|
| 66 |
+
self.open_tag: List[str] = content
|
| 67 |
+
self.end_tag: Optional[List[str]] = None
|
| 68 |
+
self.self_closing_tag: Optional[List[str]] = None
|
| 69 |
+
self.text = ""
|
| 70 |
+
|
| 71 |
+
self.name: Optional[str] = None
|
| 72 |
+
self.parent: Optional['TreeNode'] = None # Use 'TreeNode' as a string for forward reference
|
| 73 |
+
|
| 74 |
+
self.open_tag_range: Optional[List[int]] = None
|
| 75 |
+
self.end_tag_range: Optional[List[int]] = None
|
| 76 |
+
self.text_range = [-1,-1]
|
| 77 |
+
self.self_closing_tag_range = [-1,-1]
|
| 78 |
+
|
| 79 |
+
self.idx: int = idx
|
| 80 |
+
self.children: List['TreeNode'] = [] # List of TreeNode instances
|
| 81 |
+
|
| 82 |
+
|
| 83 |
+
def partially_open(self):
|
| 84 |
+
if not self.open_tag: return False
|
| 85 |
+
if any('<' in s for s in self.open_tag) and not any('>' in s for s in self.open_tag):
|
| 86 |
+
return True
|
| 87 |
+
return False
|
| 88 |
+
|
| 89 |
+
def add_child(self,child):
|
| 90 |
+
assert child.parent is None, "Child already has a parent"
|
| 91 |
+
assert child not in self.children, "Child is already in children list"
|
| 92 |
+
child.parent = self
|
| 93 |
+
self.children.append(child)
|
| 94 |
+
|
| 95 |
+
def get_range(self):
|
| 96 |
+
if self.text:
|
| 97 |
+
return list(range(*self.text_range))
|
| 98 |
+
elif self.self_closing_tag:
|
| 99 |
+
return list(range(*self.self_closing_tag_range))
|
| 100 |
+
else:
|
| 101 |
+
attn_range = []
|
| 102 |
+
if self.open_tag_range:
|
| 103 |
+
attn_range += list(range(*self.open_tag_range))
|
| 104 |
+
if self.end_tag_range:
|
| 105 |
+
attn_range += list(range(*self.end_tag_range))
|
| 106 |
+
return attn_range
|
| 107 |
+
|
| 108 |
+
def __repr__(self):
|
| 109 |
+
return f"Node(name='{self.open_tag}', idx = {self.idx})"
|
| 110 |
+
|
| 111 |
+
def print_tree(self, level=0, input_ids = None, tokenizer = None):
|
| 112 |
+
if level == 0:
|
| 113 |
+
print("--------")
|
| 114 |
+
indent = " " * level
|
| 115 |
+
if self.text:
|
| 116 |
+
print(f"{indent}{tokenizer.convert_tokens_to_string(self.text).strip()}, level = {level} ")
|
| 117 |
+
elif self.self_closing_tag:
|
| 118 |
+
print(f"{indent}{tokenizer.convert_tokens_to_string(self.self_closing_tag).strip()}, level = {level} ")
|
| 119 |
+
elif self.open_tag:
|
| 120 |
+
print(f"{indent}{tokenizer.convert_tokens_to_string(self.open_tag).strip()}, level = {level} ")
|
| 121 |
+
for child in self.children:
|
| 122 |
+
child.print_tree(level + 1, input_ids, tokenizer)
|
| 123 |
+
if self.end_tag:
|
| 124 |
+
print(f"{indent}{tokenizer.convert_tokens_to_string(self.end_tag).strip()}, level = {level} ")
|
| 125 |
+
else:
|
| 126 |
+
for child in self.children:
|
| 127 |
+
child.print_tree(level + 1, input_ids, tokenizer)
|
| 128 |
+
if level == 0:
|
| 129 |
+
print("--------")
|
| 130 |
+
|
| 131 |
+
def get_tree(self, level=0, input_ids = None, tokenizer=None):
|
| 132 |
+
tree_str = ""
|
| 133 |
+
|
| 134 |
+
indent = " " * level
|
| 135 |
+
if self.text:
|
| 136 |
+
tree_str+=f"{indent}{tokenizer.convert_tokens_to_string(self.text).strip()} \n"
|
| 137 |
+
elif self.self_closing_tag:
|
| 138 |
+
tree_str+=f"{indent}{tokenizer.convert_tokens_to_string(self.self_closing_tag).strip()} \n"
|
| 139 |
+
elif self.open_tag:
|
| 140 |
+
tree_str+=f"{indent}{tokenizer.convert_tokens_to_string(self.open_tag).strip()} \n"
|
| 141 |
+
for child in self.children:
|
| 142 |
+
tree_str+=child.get_tree(level + 1, input_ids, tokenizer)
|
| 143 |
+
if self.end_tag:
|
| 144 |
+
tree_str+=f"{indent}{tokenizer.convert_tokens_to_string(self.end_tag).strip()} \n"
|
| 145 |
+
else:
|
| 146 |
+
for child in self.children:
|
| 147 |
+
tree_str+=child.get_tree(level + 1, input_ids, tokenizer)
|
| 148 |
+
|
| 149 |
+
return tree_str
|
| 150 |
+
|
| 151 |
+
|
| 152 |
+
class TreeBuilder():
|
| 153 |
+
def __init__(self, tokenizer: AutoTokenizer = None, root: TreeNode = None, cur_node: TreeNode = None):
|
| 154 |
+
self.tokenizer = tokenizer
|
| 155 |
+
self.root = TreeNode(None, 0)
|
| 156 |
+
self.cur_node = self.root
|
| 157 |
+
self.buffer = []
|
| 158 |
+
self.buffer_start_index = 0
|
| 159 |
+
self.idx = 0
|
| 160 |
+
self.full_attention_list= None
|
| 161 |
+
self.web_attention_mask = None
|
| 162 |
+
self.input_ids = None
|
| 163 |
+
self.void_elements = [
|
| 164 |
+
"area",
|
| 165 |
+
"base",
|
| 166 |
+
"br",
|
| 167 |
+
"col",
|
| 168 |
+
"embed",
|
| 169 |
+
"hr",
|
| 170 |
+
"img",
|
| 171 |
+
"input",
|
| 172 |
+
"link",
|
| 173 |
+
"meta",
|
| 174 |
+
"param",
|
| 175 |
+
"source",
|
| 176 |
+
"track",
|
| 177 |
+
"wbr"
|
| 178 |
+
]
|
| 179 |
+
|
| 180 |
+
def is_empty(self):
|
| 181 |
+
return self.root == None
|
| 182 |
+
|
| 183 |
+
def in_buffer(self, text):
|
| 184 |
+
if len(self.buffer) == 0:
|
| 185 |
+
return False
|
| 186 |
+
return any(text in s for s in self.buffer)
|
| 187 |
+
|
| 188 |
+
def find_buffer(self, text):
|
| 189 |
+
# Iterate over the list of strings with their indices
|
| 190 |
+
for index, s in enumerate(self.buffer):
|
| 191 |
+
if text in s:
|
| 192 |
+
return index
|
| 193 |
+
return -1
|
| 194 |
+
|
| 195 |
+
# Function to extract xxx from <xxx> or <xxx yyy>
|
| 196 |
+
def extract_open_tag_name(self,buffer):
|
| 197 |
+
input_string = self.tokenizer.convert_tokens_to_string(buffer)
|
| 198 |
+
match = re.search(r'<\s*(\w+)(?:\s+[^>]*)?>', input_string)
|
| 199 |
+
if match:
|
| 200 |
+
return match.group(1)
|
| 201 |
+
return None
|
| 202 |
+
|
| 203 |
+
def extract_close_tag_name(self,buffer):
|
| 204 |
+
# if isinstance(input_string, list):
|
| 205 |
+
# input_string = "".join(input_string).replace('Ċ', '\n').replace('Ġ', ' ').replace('ĉ', '\t')
|
| 206 |
+
input_string = self.tokenizer.convert_tokens_to_string(buffer)
|
| 207 |
+
match = re.search(r'</\s*(\w+)(?:\s+[^>]*)?>', input_string)
|
| 208 |
+
if match:
|
| 209 |
+
return match.group(1)
|
| 210 |
+
return None
|
| 211 |
+
|
| 212 |
+
def is_not_empty_buffer(self):
|
| 213 |
+
return self.tokenizer.convert_tokens_to_string(self.buffer).strip() != ''
|
| 214 |
+
|
| 215 |
+
def get_parent_and_siblings_attention_range(self):
|
| 216 |
+
attn_range = []
|
| 217 |
+
if self.cur_node.parent:
|
| 218 |
+
parent = self.cur_node.parent
|
| 219 |
+
if parent.open_tag_range:
|
| 220 |
+
attn_range += list(range(*parent.open_tag_range))
|
| 221 |
+
for child in parent.children:
|
| 222 |
+
if child is not self.cur_node:
|
| 223 |
+
if child.open_tag and child.end_tag:
|
| 224 |
+
attn_range += list(range(*child.open_tag_range))
|
| 225 |
+
attn_range += list(range(*child.end_tag_range))
|
| 226 |
+
elif child.text:
|
| 227 |
+
attn_range += list(range(*child.text_range))
|
| 228 |
+
elif child.self_closing_tag:
|
| 229 |
+
attn_range += list(range(*child.self_closing_tag_range))
|
| 230 |
+
else:
|
| 231 |
+
raise Exception(f"??? line 151, get p and s attention range")
|
| 232 |
+
|
| 233 |
+
return attn_range
|
| 234 |
+
|
| 235 |
+
def update_buffer(self, cur_decoded_token):
|
| 236 |
+
# open tag situations
|
| 237 |
+
assert isinstance(cur_decoded_token,list), f"{cur_decoded_token}"
|
| 238 |
+
self.buffer+=cur_decoded_token
|
| 239 |
+
assert isinstance(cur_decoded_token[0],str)
|
| 240 |
+
# print(self.buffer)
|
| 241 |
+
try:
|
| 242 |
+
# dealing with end tag
|
| 243 |
+
if self.in_buffer('</' ) and self.in_buffer('>') and self.find_buffer('</') <= self.find_buffer('>'):
|
| 244 |
+
close_tag_name = self.extract_close_tag_name(self.buffer)
|
| 245 |
+
|
| 246 |
+
if self.cur_node.open_tag and not self.cur_node.end_tag:
|
| 247 |
+
assert close_tag_name == self.extract_open_tag_name(self.cur_node.open_tag), f"close_tag_name is {close_tag_name}, with buffer: {self.buffer}, open is-----{self.cur_node.open_tag}---"
|
| 248 |
+
elif self.cur_node.text or self.cur_node.self_closing_tag or self.cur_node.end_tag:
|
| 249 |
+
content = None
|
| 250 |
+
if self.cur_node.text: content = self.cur_node.text
|
| 251 |
+
elif self.cur_node.self_closing_tag: content = self.cur_node.self_closing_tag
|
| 252 |
+
elif self.cur_node.end_tag: content = self.cur_node.end_tag
|
| 253 |
+
self.root.print_tree(0,None,self.tokenizer)
|
| 254 |
+
raise Exception(f"This should never happen\n {content}, buffer is {self.buffer}")
|
| 255 |
+
|
| 256 |
+
# assert close_tag_name == extract_open_tag_name(self.cur_node.open_tag), f"close_tag_name is {close_tag_name}, with buffer: {self.buffer}, open is-----{self.cur_node.open_tag}---"
|
| 257 |
+
else:
|
| 258 |
+
raise Exception(f"having end tag without having an open tag\n {self.cur_node.text}")
|
| 259 |
+
|
| 260 |
+
self.cur_node.end_tag = self.buffer[:self.find_buffer('>')+1]
|
| 261 |
+
self.cur_node.end_tag_range = [self.buffer_start_index, self.buffer_start_index + self.find_buffer('>')+1]
|
| 262 |
+
self.buffer_start_index += self.find_buffer('>')+1
|
| 263 |
+
self.buffer = self.buffer[self.find_buffer('>')+1:]
|
| 264 |
+
# dealing with open tag
|
| 265 |
+
elif self.in_buffer('</'):
|
| 266 |
+
if self.cur_node.open_tag and not self.cur_node.end_tag:
|
| 267 |
+
pass
|
| 268 |
+
elif self.cur_node.text or self.cur_node.self_closing_tag or (self.cur_node.open_tag and self.cur_node.end_tag):
|
| 269 |
+
cur_end_tag_index = self.find_buffer('</')
|
| 270 |
+
# import pdb;pdb.set_trace()
|
| 271 |
+
if self.cur_node.text:
|
| 272 |
+
self.cur_node.text += self.buffer[:cur_end_tag_index]
|
| 273 |
+
self.cur_node.text_range[1] += len(self.buffer[:cur_end_tag_index])
|
| 274 |
+
elif self.cur_node.self_closing_tag:
|
| 275 |
+
self.cur_node.self_closing_tag += self.buffer[:cur_end_tag_index]
|
| 276 |
+
self.cur_node.self_closing_tag_range[1] += len(self.buffer[:cur_end_tag_index])
|
| 277 |
+
else:
|
| 278 |
+
self.cur_node.end_tag += self.buffer[:cur_end_tag_index]
|
| 279 |
+
self.cur_node.end_tag_range[1] += len(self.buffer[:cur_end_tag_index])
|
| 280 |
+
self.buffer_start_index += len(self.buffer[:cur_end_tag_index])
|
| 281 |
+
self.buffer =self.buffer[cur_end_tag_index:]
|
| 282 |
+
self.cur_node = self.cur_node.parent
|
| 283 |
+
else:
|
| 284 |
+
raise Exception(f"having end tag without having an open tag\n {self.cur_node.text} {self.cur_node} {self.cur_node.parent.open_tag}")
|
| 285 |
+
|
| 286 |
+
elif self.in_buffer('<') and self.in_buffer('>'):
|
| 287 |
+
# in the case of self_closing tag
|
| 288 |
+
if self.in_buffer('/>'):
|
| 289 |
+
self.cur_node.open_tag = None
|
| 290 |
+
self.cur_node.self_closing_tag = self.buffer[:self.find_buffer(">")+1]
|
| 291 |
+
self.cur_node.self_closing_tag_range = [self.buffer_start_index, self.buffer_start_index + self.find_buffer('>')+1]
|
| 292 |
+
else:
|
| 293 |
+
open_tag_name = self.extract_open_tag_name(self.buffer)
|
| 294 |
+
if open_tag_name in self.void_elements:
|
| 295 |
+
self.cur_node.open_tag = None
|
| 296 |
+
self.cur_node.self_closing_tag = self.buffer[:self.find_buffer(">")+1]
|
| 297 |
+
self.cur_node.self_closing_tag_range = [self.buffer_start_index, self.buffer_start_index + self.find_buffer('>')+1]
|
| 298 |
+
else:
|
| 299 |
+
self.cur_node.open_tag = self.buffer[:self.find_buffer(">")+1]
|
| 300 |
+
self.cur_node.open_tag_range = [self.buffer_start_index, self.buffer_start_index + self.find_buffer('>')+1]
|
| 301 |
+
|
| 302 |
+
self.buffer_start_index += self.find_buffer('>')+1
|
| 303 |
+
self.buffer = self.buffer[self.find_buffer(">")+1:]
|
| 304 |
+
elif self.in_buffer('<'):
|
| 305 |
+
if self.full_attention_list is None:
|
| 306 |
+
self.full_attention_list = self.buffer[:-1]
|
| 307 |
+
self.buffer = self.buffer[-1:]
|
| 308 |
+
self.buffer_start_index = len(self.full_attention_list)
|
| 309 |
+
else:
|
| 310 |
+
cur_open_tag_index = self.find_buffer('<')
|
| 311 |
+
# full open tag, indicating a pair of open and close tags, or a single open tag
|
| 312 |
+
if not self.cur_node.partially_open() and self.cur_node.open_tag:
|
| 313 |
+
if self.cur_node.end_tag:
|
| 314 |
+
self.cur_node.end_tag += self.buffer[:cur_open_tag_index]
|
| 315 |
+
self.cur_node.end_tag_range[1] += len(self.buffer[:cur_open_tag_index])
|
| 316 |
+
self.buffer_start_index += len(self.buffer[:cur_open_tag_index])
|
| 317 |
+
self.buffer =self.buffer[cur_open_tag_index:]
|
| 318 |
+
child_node = TreeNode(self.buffer, self.idx)
|
| 319 |
+
if self.cur_node.parent:
|
| 320 |
+
self.cur_node.parent.add_child(child_node)
|
| 321 |
+
else:
|
| 322 |
+
raise Exception(f"This should never happen, a html element with full open tag should have a parent, {self.cur_node.open_tag}")
|
| 323 |
+
self.idx += 1
|
| 324 |
+
self.cur_node = child_node
|
| 325 |
+
else:
|
| 326 |
+
child_node = TreeNode(self.buffer, self.idx)
|
| 327 |
+
self.cur_node.add_child(child_node)
|
| 328 |
+
self.idx += 1
|
| 329 |
+
self.cur_node = child_node
|
| 330 |
+
elif self.cur_node.text or self.cur_node.self_closing_tag:
|
| 331 |
+
if self.cur_node.text:
|
| 332 |
+
self.cur_node.text += self.buffer[:cur_open_tag_index]
|
| 333 |
+
self.cur_node.text_range[1] += len(self.buffer[:cur_open_tag_index])
|
| 334 |
+
elif self.cur_node.self_closing_tag:
|
| 335 |
+
self.cur_node.self_closing_tag += self.buffer[:cur_open_tag_index]
|
| 336 |
+
self.cur_node.self_closing_tag_range[1] += len(self.buffer[:cur_open_tag_index])
|
| 337 |
+
|
| 338 |
+
self.buffer_start_index += len(self.buffer[:cur_open_tag_index])
|
| 339 |
+
self.buffer =self.buffer[cur_open_tag_index:]
|
| 340 |
+
child_node = TreeNode(self.buffer, self.idx)
|
| 341 |
+
self.cur_node.parent.add_child(child_node)
|
| 342 |
+
self.idx += 1
|
| 343 |
+
self.cur_node = child_node
|
| 344 |
+
# if the current node has an open tag, and we are encountering texts, we create a new text node, and move down a level
|
| 345 |
+
elif (self.cur_node.open_tag or self.cur_node.self_closing_tag) and not self.in_buffer('<') and self.is_not_empty_buffer():
|
| 346 |
+
child_node = TreeNode(None, self.idx)
|
| 347 |
+
child_node.text = self.buffer
|
| 348 |
+
child_node.text_range[0] = self.buffer_start_index
|
| 349 |
+
child_node.text_range[1] = self.buffer_start_index + len(self.buffer)
|
| 350 |
+
|
| 351 |
+
if self.cur_node.end_tag or self.cur_node.self_closing_tag:
|
| 352 |
+
self.cur_node.parent.add_child(child_node)
|
| 353 |
+
else:
|
| 354 |
+
self.cur_node.add_child(child_node)
|
| 355 |
+
|
| 356 |
+
self.idx += 1
|
| 357 |
+
self.cur_node = child_node
|
| 358 |
+
self.buffer_start_index += len(self.buffer)
|
| 359 |
+
self.buffer = []
|
| 360 |
+
# if the current node does not have an open tag, but we are encountering text, we add to the exisitng text node
|
| 361 |
+
elif self.cur_node.text and not self.in_buffer('<') and self.is_not_empty_buffer():
|
| 362 |
+
self.cur_node.text += self.buffer
|
| 363 |
+
assert self.cur_node.text_range[0] != -1 and self.cur_node.text_range[1] != -1, f"self.cur_node.text_range[0] and [1] should not be -1 but: {self.cur_node.text_range[0]}, {self.cur_node.text_range[1]}"
|
| 364 |
+
self.cur_node.text_range[1] += len(self.buffer)
|
| 365 |
+
self.buffer_start_index += len(self.buffer)
|
| 366 |
+
self.buffer =[]
|
| 367 |
+
|
| 368 |
+
except Exception as e:
|
| 369 |
+
traceback.format_exc()
|
| 370 |
+
raise Exception(e)
|
| 371 |
+
|
| 372 |
+
if self.full_attention_list is None:
|
| 373 |
+
attn_range = list(range(len(self.buffer)))
|
| 374 |
+
else:
|
| 375 |
+
attn_range = list(range(len(self.full_attention_list))) + self.get_parent_and_siblings_attention_range() + self.cur_node.get_range() + [i + self.buffer_start_index for i in list(range(len(self.buffer)))]
|
| 376 |
+
return attn_range
|
model-00001-of-00004.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:7f3ab17e6766272fd3e1a53624c9b428796aeea8c4a917401c1b7c9814135922
|
| 3 |
+
size 4895986336
|
model-00002-of-00004.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:7c9c4577adcbbfe172eea0ddd138bf858bafbb7d40805290ff0b1033a56ec994
|
| 3 |
+
size 4915916144
|
model-00003-of-00004.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:8c607a9800a94135d0b2498983d92d63adf64d4e3500310d774bf36a2b230f5a
|
| 3 |
+
size 4915916176
|
model-00004-of-00004.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:24c9fa2dcc493160239537f0b227c04ceb208fe2b2710ad62d3f234e5228a769
|
| 3 |
+
size 1688301256
|
model.safetensors.index.json
ADDED
|
@@ -0,0 +1,803 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"metadata": {
|
| 3 |
+
"total_size": 16416014464
|
| 4 |
+
},
|
| 5 |
+
"weight_map": {
|
| 6 |
+
"lm_head.additional_fc.weight": "model-00004-of-00004.safetensors",
|
| 7 |
+
"lm_head.weight": "model-00004-of-00004.safetensors",
|
| 8 |
+
"model.embed_tokens.additional_embedding.weight": "model-00001-of-00004.safetensors",
|
| 9 |
+
"model.embed_tokens.weight": "model-00001-of-00004.safetensors",
|
| 10 |
+
"model.layers.0.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 11 |
+
"model.layers.0.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 12 |
+
"model.layers.0.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 13 |
+
"model.layers.0.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 14 |
+
"model.layers.0.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 15 |
+
"model.layers.0.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 16 |
+
"model.layers.0.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
| 17 |
+
"model.layers.0.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 18 |
+
"model.layers.0.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 19 |
+
"model.layers.1.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 20 |
+
"model.layers.1.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 21 |
+
"model.layers.1.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 22 |
+
"model.layers.1.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 23 |
+
"model.layers.1.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 24 |
+
"model.layers.1.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 25 |
+
"model.layers.1.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
| 26 |
+
"model.layers.1.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 27 |
+
"model.layers.1.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 28 |
+
"model.layers.10.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 29 |
+
"model.layers.10.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 30 |
+
"model.layers.10.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 31 |
+
"model.layers.10.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 32 |
+
"model.layers.10.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 33 |
+
"model.layers.10.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 34 |
+
"model.layers.10.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 35 |
+
"model.layers.10.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 36 |
+
"model.layers.10.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 37 |
+
"model.layers.11.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 38 |
+
"model.layers.11.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 39 |
+
"model.layers.11.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 40 |
+
"model.layers.11.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 41 |
+
"model.layers.11.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 42 |
+
"model.layers.11.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 43 |
+
"model.layers.11.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 44 |
+
"model.layers.11.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 45 |
+
"model.layers.11.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 46 |
+
"model.layers.12.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 47 |
+
"model.layers.12.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 48 |
+
"model.layers.12.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 49 |
+
"model.layers.12.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 50 |
+
"model.layers.12.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 51 |
+
"model.layers.12.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 52 |
+
"model.layers.12.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 53 |
+
"model.layers.12.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 54 |
+
"model.layers.12.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 55 |
+
"model.layers.13.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 56 |
+
"model.layers.13.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 57 |
+
"model.layers.13.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 58 |
+
"model.layers.13.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 59 |
+
"model.layers.13.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 60 |
+
"model.layers.13.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 61 |
+
"model.layers.13.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 62 |
+
"model.layers.13.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 63 |
+
"model.layers.13.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 64 |
+
"model.layers.14.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 65 |
+
"model.layers.14.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 66 |
+
"model.layers.14.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 67 |
+
"model.layers.14.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 68 |
+
"model.layers.14.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 69 |
+
"model.layers.14.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 70 |
+
"model.layers.14.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 71 |
+
"model.layers.14.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 72 |
+
"model.layers.14.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 73 |
+
"model.layers.15.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 74 |
+
"model.layers.15.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 75 |
+
"model.layers.15.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 76 |
+
"model.layers.15.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 77 |
+
"model.layers.15.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 78 |
+
"model.layers.15.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 79 |
+
"model.layers.15.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 80 |
+
"model.layers.15.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 81 |
+
"model.layers.15.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 82 |
+
"model.layers.16.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 83 |
+
"model.layers.16.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 84 |
+
"model.layers.16.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 85 |
+
"model.layers.16.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 86 |
+
"model.layers.16.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 87 |
+
"model.layers.16.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 88 |
+
"model.layers.16.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 89 |
+
"model.layers.16.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 90 |
+
"model.layers.16.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 91 |
+
"model.layers.17.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 92 |
+
"model.layers.17.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 93 |
+
"model.layers.17.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 94 |
+
"model.layers.17.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 95 |
+
"model.layers.17.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 96 |
+
"model.layers.17.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 97 |
+
"model.layers.17.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 98 |
+
"model.layers.17.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 99 |
+
"model.layers.17.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 100 |
+
"model.layers.18.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 101 |
+
"model.layers.18.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 102 |
+
"model.layers.18.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 103 |
+
"model.layers.18.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 104 |
+
"model.layers.18.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 105 |
+
"model.layers.18.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 106 |
+
"model.layers.18.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 107 |
+
"model.layers.18.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 108 |
+
"model.layers.18.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 109 |
+
"model.layers.19.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 110 |
+
"model.layers.19.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 111 |
+
"model.layers.19.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 112 |
+
"model.layers.19.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 113 |
+
"model.layers.19.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 114 |
+
"model.layers.19.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 115 |
+
"model.layers.19.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 116 |
+
"model.layers.19.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 117 |
+
"model.layers.19.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 118 |
+
"model.layers.2.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 119 |
+
"model.layers.2.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 120 |
+
"model.layers.2.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 121 |
+
"model.layers.2.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 122 |
+
"model.layers.2.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 123 |
+
"model.layers.2.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 124 |
+
"model.layers.2.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
| 125 |
+
"model.layers.2.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 126 |
+
"model.layers.2.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 127 |
+
"model.layers.20.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 128 |
+
"model.layers.20.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 129 |
+
"model.layers.20.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 130 |
+
"model.layers.20.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 131 |
+
"model.layers.20.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 132 |
+
"model.layers.20.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 133 |
+
"model.layers.20.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 134 |
+
"model.layers.20.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 135 |
+
"model.layers.20.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 136 |
+
"model.layers.21.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 137 |
+
"model.layers.21.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 138 |
+
"model.layers.21.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 139 |
+
"model.layers.21.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 140 |
+
"model.layers.21.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 141 |
+
"model.layers.21.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 142 |
+
"model.layers.21.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 143 |
+
"model.layers.21.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 144 |
+
"model.layers.21.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 145 |
+
"model.layers.22.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 146 |
+
"model.layers.22.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 147 |
+
"model.layers.22.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 148 |
+
"model.layers.22.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 149 |
+
"model.layers.22.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 150 |
+
"model.layers.22.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 151 |
+
"model.layers.22.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 152 |
+
"model.layers.22.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 153 |
+
"model.layers.22.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 154 |
+
"model.layers.23.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 155 |
+
"model.layers.23.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 156 |
+
"model.layers.23.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 157 |
+
"model.layers.23.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 158 |
+
"model.layers.23.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 159 |
+
"model.layers.23.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 160 |
+
"model.layers.23.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 161 |
+
"model.layers.23.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 162 |
+
"model.layers.23.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 163 |
+
"model.layers.24.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 164 |
+
"model.layers.24.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 165 |
+
"model.layers.24.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 166 |
+
"model.layers.24.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 167 |
+
"model.layers.24.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 168 |
+
"model.layers.24.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 169 |
+
"model.layers.24.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 170 |
+
"model.layers.24.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 171 |
+
"model.layers.24.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 172 |
+
"model.layers.25.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 173 |
+
"model.layers.25.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 174 |
+
"model.layers.25.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 175 |
+
"model.layers.25.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 176 |
+
"model.layers.25.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 177 |
+
"model.layers.25.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 178 |
+
"model.layers.25.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 179 |
+
"model.layers.25.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 180 |
+
"model.layers.25.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 181 |
+
"model.layers.26.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 182 |
+
"model.layers.26.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 183 |
+
"model.layers.26.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 184 |
+
"model.layers.26.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 185 |
+
"model.layers.26.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 186 |
+
"model.layers.26.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 187 |
+
"model.layers.26.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 188 |
+
"model.layers.26.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 189 |
+
"model.layers.26.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 190 |
+
"model.layers.27.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 191 |
+
"model.layers.27.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 192 |
+
"model.layers.27.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 193 |
+
"model.layers.27.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 194 |
+
"model.layers.27.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 195 |
+
"model.layers.27.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 196 |
+
"model.layers.27.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 197 |
+
"model.layers.27.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 198 |
+
"model.layers.27.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 199 |
+
"model.layers.28.input_layernorm.weight": "model-00004-of-00004.safetensors",
|
| 200 |
+
"model.layers.28.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
|
| 201 |
+
"model.layers.28.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 202 |
+
"model.layers.28.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 203 |
+
"model.layers.28.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
|
| 204 |
+
"model.layers.28.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 205 |
+
"model.layers.28.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 206 |
+
"model.layers.28.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 207 |
+
"model.layers.28.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 208 |
+
"model.layers.29.input_layernorm.weight": "model-00004-of-00004.safetensors",
|
| 209 |
+
"model.layers.29.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
|
| 210 |
+
"model.layers.29.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
|
| 211 |
+
"model.layers.29.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
|
| 212 |
+
"model.layers.29.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
|
| 213 |
+
"model.layers.29.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
| 214 |
+
"model.layers.29.self_attn.o_proj.weight": "model-00004-of-00004.safetensors",
|
| 215 |
+
"model.layers.29.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
| 216 |
+
"model.layers.29.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
| 217 |
+
"model.layers.3.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 218 |
+
"model.layers.3.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 219 |
+
"model.layers.3.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 220 |
+
"model.layers.3.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 221 |
+
"model.layers.3.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 222 |
+
"model.layers.3.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 223 |
+
"model.layers.3.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
| 224 |
+
"model.layers.3.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 225 |
+
"model.layers.3.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 226 |
+
"model.layers.30.input_layernorm.weight": "model-00004-of-00004.safetensors",
|
| 227 |
+
"model.layers.30.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
|
| 228 |
+
"model.layers.30.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
|
| 229 |
+
"model.layers.30.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
|
| 230 |
+
"model.layers.30.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
|
| 231 |
+
"model.layers.30.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
| 232 |
+
"model.layers.30.self_attn.o_proj.weight": "model-00004-of-00004.safetensors",
|
| 233 |
+
"model.layers.30.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
| 234 |
+
"model.layers.30.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
| 235 |
+
"model.layers.31.input_layernorm.weight": "model-00004-of-00004.safetensors",
|
| 236 |
+
"model.layers.31.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
|
| 237 |
+
"model.layers.31.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
|
| 238 |
+
"model.layers.31.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
|
| 239 |
+
"model.layers.31.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
|
| 240 |
+
"model.layers.31.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
| 241 |
+
"model.layers.31.self_attn.o_proj.weight": "model-00004-of-00004.safetensors",
|
| 242 |
+
"model.layers.31.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
| 243 |
+
"model.layers.31.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
| 244 |
+
"model.layers.4.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 245 |
+
"model.layers.4.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 246 |
+
"model.layers.4.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 247 |
+
"model.layers.4.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 248 |
+
"model.layers.4.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 249 |
+
"model.layers.4.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 250 |
+
"model.layers.4.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
| 251 |
+
"model.layers.4.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 252 |
+
"model.layers.4.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 253 |
+
"model.layers.5.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 254 |
+
"model.layers.5.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 255 |
+
"model.layers.5.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 256 |
+
"model.layers.5.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 257 |
+
"model.layers.5.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 258 |
+
"model.layers.5.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 259 |
+
"model.layers.5.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
| 260 |
+
"model.layers.5.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 261 |
+
"model.layers.5.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 262 |
+
"model.layers.6.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 263 |
+
"model.layers.6.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 264 |
+
"model.layers.6.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 265 |
+
"model.layers.6.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 266 |
+
"model.layers.6.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 267 |
+
"model.layers.6.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 268 |
+
"model.layers.6.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
| 269 |
+
"model.layers.6.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 270 |
+
"model.layers.6.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 271 |
+
"model.layers.7.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 272 |
+
"model.layers.7.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 273 |
+
"model.layers.7.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 274 |
+
"model.layers.7.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 275 |
+
"model.layers.7.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 276 |
+
"model.layers.7.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 277 |
+
"model.layers.7.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 278 |
+
"model.layers.7.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 279 |
+
"model.layers.7.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 280 |
+
"model.layers.8.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 281 |
+
"model.layers.8.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 282 |
+
"model.layers.8.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 283 |
+
"model.layers.8.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 284 |
+
"model.layers.8.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 285 |
+
"model.layers.8.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 286 |
+
"model.layers.8.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 287 |
+
"model.layers.8.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 288 |
+
"model.layers.8.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 289 |
+
"model.layers.9.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 290 |
+
"model.layers.9.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 291 |
+
"model.layers.9.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 292 |
+
"model.layers.9.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 293 |
+
"model.layers.9.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 294 |
+
"model.layers.9.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 295 |
+
"model.layers.9.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 296 |
+
"model.layers.9.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 297 |
+
"model.layers.9.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 298 |
+
"model.modality_projection.act.fc1.weight": "model-00001-of-00004.safetensors",
|
| 299 |
+
"model.modality_projection.act.fc2.weight": "model-00001-of-00004.safetensors",
|
| 300 |
+
"model.modality_projection.fc1.weight": "model-00001-of-00004.safetensors",
|
| 301 |
+
"model.modality_projection.fc2.weight": "model-00001-of-00004.safetensors",
|
| 302 |
+
"model.norm.weight": "model-00004-of-00004.safetensors",
|
| 303 |
+
"model.perceiver_resampler.blocks.0.0.context_layer_norm.bias": "model-00001-of-00004.safetensors",
|
| 304 |
+
"model.perceiver_resampler.blocks.0.0.context_layer_norm.weight": "model-00001-of-00004.safetensors",
|
| 305 |
+
"model.perceiver_resampler.blocks.0.0.k_layer_norm.bias": "model-00001-of-00004.safetensors",
|
| 306 |
+
"model.perceiver_resampler.blocks.0.0.k_layer_norm.weight": "model-00001-of-00004.safetensors",
|
| 307 |
+
"model.perceiver_resampler.blocks.0.0.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 308 |
+
"model.perceiver_resampler.blocks.0.0.latents_layer_norm.bias": "model-00001-of-00004.safetensors",
|
| 309 |
+
"model.perceiver_resampler.blocks.0.0.latents_layer_norm.weight": "model-00001-of-00004.safetensors",
|
| 310 |
+
"model.perceiver_resampler.blocks.0.0.output_proj.weight": "model-00001-of-00004.safetensors",
|
| 311 |
+
"model.perceiver_resampler.blocks.0.0.q_layer_norm.bias": "model-00001-of-00004.safetensors",
|
| 312 |
+
"model.perceiver_resampler.blocks.0.0.q_layer_norm.weight": "model-00001-of-00004.safetensors",
|
| 313 |
+
"model.perceiver_resampler.blocks.0.0.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 314 |
+
"model.perceiver_resampler.blocks.0.0.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 315 |
+
"model.perceiver_resampler.blocks.0.1.c_proj.weight": "model-00001-of-00004.safetensors",
|
| 316 |
+
"model.perceiver_resampler.blocks.0.1.fc.weight": "model-00001-of-00004.safetensors",
|
| 317 |
+
"model.perceiver_resampler.blocks.0.1.ln.bias": "model-00001-of-00004.safetensors",
|
| 318 |
+
"model.perceiver_resampler.blocks.0.1.ln.weight": "model-00001-of-00004.safetensors",
|
| 319 |
+
"model.perceiver_resampler.blocks.1.0.context_layer_norm.bias": "model-00001-of-00004.safetensors",
|
| 320 |
+
"model.perceiver_resampler.blocks.1.0.context_layer_norm.weight": "model-00001-of-00004.safetensors",
|
| 321 |
+
"model.perceiver_resampler.blocks.1.0.k_layer_norm.bias": "model-00001-of-00004.safetensors",
|
| 322 |
+
"model.perceiver_resampler.blocks.1.0.k_layer_norm.weight": "model-00001-of-00004.safetensors",
|
| 323 |
+
"model.perceiver_resampler.blocks.1.0.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 324 |
+
"model.perceiver_resampler.blocks.1.0.latents_layer_norm.bias": "model-00001-of-00004.safetensors",
|
| 325 |
+
"model.perceiver_resampler.blocks.1.0.latents_layer_norm.weight": "model-00001-of-00004.safetensors",
|
| 326 |
+
"model.perceiver_resampler.blocks.1.0.output_proj.weight": "model-00001-of-00004.safetensors",
|
| 327 |
+
"model.perceiver_resampler.blocks.1.0.q_layer_norm.bias": "model-00001-of-00004.safetensors",
|
| 328 |
+
"model.perceiver_resampler.blocks.1.0.q_layer_norm.weight": "model-00001-of-00004.safetensors",
|
| 329 |
+
"model.perceiver_resampler.blocks.1.0.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 330 |
+
"model.perceiver_resampler.blocks.1.0.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 331 |
+
"model.perceiver_resampler.blocks.1.1.c_proj.weight": "model-00001-of-00004.safetensors",
|
| 332 |
+
"model.perceiver_resampler.blocks.1.1.fc.weight": "model-00001-of-00004.safetensors",
|
| 333 |
+
"model.perceiver_resampler.blocks.1.1.ln.bias": "model-00001-of-00004.safetensors",
|
| 334 |
+
"model.perceiver_resampler.blocks.1.1.ln.weight": "model-00001-of-00004.safetensors",
|
| 335 |
+
"model.perceiver_resampler.blocks.2.0.context_layer_norm.bias": "model-00001-of-00004.safetensors",
|
| 336 |
+
"model.perceiver_resampler.blocks.2.0.context_layer_norm.weight": "model-00001-of-00004.safetensors",
|
| 337 |
+
"model.perceiver_resampler.blocks.2.0.k_layer_norm.bias": "model-00001-of-00004.safetensors",
|
| 338 |
+
"model.perceiver_resampler.blocks.2.0.k_layer_norm.weight": "model-00001-of-00004.safetensors",
|
| 339 |
+
"model.perceiver_resampler.blocks.2.0.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 340 |
+
"model.perceiver_resampler.blocks.2.0.latents_layer_norm.bias": "model-00001-of-00004.safetensors",
|
| 341 |
+
"model.perceiver_resampler.blocks.2.0.latents_layer_norm.weight": "model-00001-of-00004.safetensors",
|
| 342 |
+
"model.perceiver_resampler.blocks.2.0.output_proj.weight": "model-00001-of-00004.safetensors",
|
| 343 |
+
"model.perceiver_resampler.blocks.2.0.q_layer_norm.bias": "model-00001-of-00004.safetensors",
|
| 344 |
+
"model.perceiver_resampler.blocks.2.0.q_layer_norm.weight": "model-00001-of-00004.safetensors",
|
| 345 |
+
"model.perceiver_resampler.blocks.2.0.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 346 |
+
"model.perceiver_resampler.blocks.2.0.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 347 |
+
"model.perceiver_resampler.blocks.2.1.c_proj.weight": "model-00001-of-00004.safetensors",
|
| 348 |
+
"model.perceiver_resampler.blocks.2.1.fc.weight": "model-00001-of-00004.safetensors",
|
| 349 |
+
"model.perceiver_resampler.blocks.2.1.ln.bias": "model-00001-of-00004.safetensors",
|
| 350 |
+
"model.perceiver_resampler.blocks.2.1.ln.weight": "model-00001-of-00004.safetensors",
|
| 351 |
+
"model.perceiver_resampler.latents": "model-00001-of-00004.safetensors",
|
| 352 |
+
"model.perceiver_resampler.layer_norm.bias": "model-00001-of-00004.safetensors",
|
| 353 |
+
"model.perceiver_resampler.layer_norm.weight": "model-00001-of-00004.safetensors",
|
| 354 |
+
"model.vision_model.vision_model.embeddings.patch_embedding.bias": "model-00001-of-00004.safetensors",
|
| 355 |
+
"model.vision_model.vision_model.embeddings.patch_embedding.weight": "model-00001-of-00004.safetensors",
|
| 356 |
+
"model.vision_model.vision_model.embeddings.position_embedding.weight": "model-00001-of-00004.safetensors",
|
| 357 |
+
"model.vision_model.vision_model.encoder.layers.0.layer_norm1.bias": "model-00001-of-00004.safetensors",
|
| 358 |
+
"model.vision_model.vision_model.encoder.layers.0.layer_norm1.weight": "model-00001-of-00004.safetensors",
|
| 359 |
+
"model.vision_model.vision_model.encoder.layers.0.layer_norm2.bias": "model-00001-of-00004.safetensors",
|
| 360 |
+
"model.vision_model.vision_model.encoder.layers.0.layer_norm2.weight": "model-00001-of-00004.safetensors",
|
| 361 |
+
"model.vision_model.vision_model.encoder.layers.0.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
| 362 |
+
"model.vision_model.vision_model.encoder.layers.0.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
| 363 |
+
"model.vision_model.vision_model.encoder.layers.0.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
| 364 |
+
"model.vision_model.vision_model.encoder.layers.0.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
| 365 |
+
"model.vision_model.vision_model.encoder.layers.0.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
| 366 |
+
"model.vision_model.vision_model.encoder.layers.0.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 367 |
+
"model.vision_model.vision_model.encoder.layers.0.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
|
| 368 |
+
"model.vision_model.vision_model.encoder.layers.0.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
|
| 369 |
+
"model.vision_model.vision_model.encoder.layers.0.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
| 370 |
+
"model.vision_model.vision_model.encoder.layers.0.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 371 |
+
"model.vision_model.vision_model.encoder.layers.0.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
| 372 |
+
"model.vision_model.vision_model.encoder.layers.0.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 373 |
+
"model.vision_model.vision_model.encoder.layers.1.layer_norm1.bias": "model-00001-of-00004.safetensors",
|
| 374 |
+
"model.vision_model.vision_model.encoder.layers.1.layer_norm1.weight": "model-00001-of-00004.safetensors",
|
| 375 |
+
"model.vision_model.vision_model.encoder.layers.1.layer_norm2.bias": "model-00001-of-00004.safetensors",
|
| 376 |
+
"model.vision_model.vision_model.encoder.layers.1.layer_norm2.weight": "model-00001-of-00004.safetensors",
|
| 377 |
+
"model.vision_model.vision_model.encoder.layers.1.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
| 378 |
+
"model.vision_model.vision_model.encoder.layers.1.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
| 379 |
+
"model.vision_model.vision_model.encoder.layers.1.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
| 380 |
+
"model.vision_model.vision_model.encoder.layers.1.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
| 381 |
+
"model.vision_model.vision_model.encoder.layers.1.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
| 382 |
+
"model.vision_model.vision_model.encoder.layers.1.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 383 |
+
"model.vision_model.vision_model.encoder.layers.1.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
|
| 384 |
+
"model.vision_model.vision_model.encoder.layers.1.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
|
| 385 |
+
"model.vision_model.vision_model.encoder.layers.1.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
| 386 |
+
"model.vision_model.vision_model.encoder.layers.1.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 387 |
+
"model.vision_model.vision_model.encoder.layers.1.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
| 388 |
+
"model.vision_model.vision_model.encoder.layers.1.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 389 |
+
"model.vision_model.vision_model.encoder.layers.10.layer_norm1.bias": "model-00001-of-00004.safetensors",
|
| 390 |
+
"model.vision_model.vision_model.encoder.layers.10.layer_norm1.weight": "model-00001-of-00004.safetensors",
|
| 391 |
+
"model.vision_model.vision_model.encoder.layers.10.layer_norm2.bias": "model-00001-of-00004.safetensors",
|
| 392 |
+
"model.vision_model.vision_model.encoder.layers.10.layer_norm2.weight": "model-00001-of-00004.safetensors",
|
| 393 |
+
"model.vision_model.vision_model.encoder.layers.10.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
| 394 |
+
"model.vision_model.vision_model.encoder.layers.10.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
| 395 |
+
"model.vision_model.vision_model.encoder.layers.10.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
| 396 |
+
"model.vision_model.vision_model.encoder.layers.10.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
| 397 |
+
"model.vision_model.vision_model.encoder.layers.10.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
| 398 |
+
"model.vision_model.vision_model.encoder.layers.10.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 399 |
+
"model.vision_model.vision_model.encoder.layers.10.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
|
| 400 |
+
"model.vision_model.vision_model.encoder.layers.10.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
|
| 401 |
+
"model.vision_model.vision_model.encoder.layers.10.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
| 402 |
+
"model.vision_model.vision_model.encoder.layers.10.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 403 |
+
"model.vision_model.vision_model.encoder.layers.10.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
| 404 |
+
"model.vision_model.vision_model.encoder.layers.10.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 405 |
+
"model.vision_model.vision_model.encoder.layers.11.layer_norm1.bias": "model-00001-of-00004.safetensors",
|
| 406 |
+
"model.vision_model.vision_model.encoder.layers.11.layer_norm1.weight": "model-00001-of-00004.safetensors",
|
| 407 |
+
"model.vision_model.vision_model.encoder.layers.11.layer_norm2.bias": "model-00001-of-00004.safetensors",
|
| 408 |
+
"model.vision_model.vision_model.encoder.layers.11.layer_norm2.weight": "model-00001-of-00004.safetensors",
|
| 409 |
+
"model.vision_model.vision_model.encoder.layers.11.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
| 410 |
+
"model.vision_model.vision_model.encoder.layers.11.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
| 411 |
+
"model.vision_model.vision_model.encoder.layers.11.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
| 412 |
+
"model.vision_model.vision_model.encoder.layers.11.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
| 413 |
+
"model.vision_model.vision_model.encoder.layers.11.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
| 414 |
+
"model.vision_model.vision_model.encoder.layers.11.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 415 |
+
"model.vision_model.vision_model.encoder.layers.11.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
|
| 416 |
+
"model.vision_model.vision_model.encoder.layers.11.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
|
| 417 |
+
"model.vision_model.vision_model.encoder.layers.11.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
| 418 |
+
"model.vision_model.vision_model.encoder.layers.11.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 419 |
+
"model.vision_model.vision_model.encoder.layers.11.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
| 420 |
+
"model.vision_model.vision_model.encoder.layers.11.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 421 |
+
"model.vision_model.vision_model.encoder.layers.12.layer_norm1.bias": "model-00001-of-00004.safetensors",
|
| 422 |
+
"model.vision_model.vision_model.encoder.layers.12.layer_norm1.weight": "model-00001-of-00004.safetensors",
|
| 423 |
+
"model.vision_model.vision_model.encoder.layers.12.layer_norm2.bias": "model-00001-of-00004.safetensors",
|
| 424 |
+
"model.vision_model.vision_model.encoder.layers.12.layer_norm2.weight": "model-00001-of-00004.safetensors",
|
| 425 |
+
"model.vision_model.vision_model.encoder.layers.12.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
| 426 |
+
"model.vision_model.vision_model.encoder.layers.12.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
| 427 |
+
"model.vision_model.vision_model.encoder.layers.12.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
| 428 |
+
"model.vision_model.vision_model.encoder.layers.12.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
| 429 |
+
"model.vision_model.vision_model.encoder.layers.12.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
| 430 |
+
"model.vision_model.vision_model.encoder.layers.12.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 431 |
+
"model.vision_model.vision_model.encoder.layers.12.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
|
| 432 |
+
"model.vision_model.vision_model.encoder.layers.12.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
|
| 433 |
+
"model.vision_model.vision_model.encoder.layers.12.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
| 434 |
+
"model.vision_model.vision_model.encoder.layers.12.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 435 |
+
"model.vision_model.vision_model.encoder.layers.12.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
| 436 |
+
"model.vision_model.vision_model.encoder.layers.12.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 437 |
+
"model.vision_model.vision_model.encoder.layers.13.layer_norm1.bias": "model-00001-of-00004.safetensors",
|
| 438 |
+
"model.vision_model.vision_model.encoder.layers.13.layer_norm1.weight": "model-00001-of-00004.safetensors",
|
| 439 |
+
"model.vision_model.vision_model.encoder.layers.13.layer_norm2.bias": "model-00001-of-00004.safetensors",
|
| 440 |
+
"model.vision_model.vision_model.encoder.layers.13.layer_norm2.weight": "model-00001-of-00004.safetensors",
|
| 441 |
+
"model.vision_model.vision_model.encoder.layers.13.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
| 442 |
+
"model.vision_model.vision_model.encoder.layers.13.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
| 443 |
+
"model.vision_model.vision_model.encoder.layers.13.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
| 444 |
+
"model.vision_model.vision_model.encoder.layers.13.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
| 445 |
+
"model.vision_model.vision_model.encoder.layers.13.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
| 446 |
+
"model.vision_model.vision_model.encoder.layers.13.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 447 |
+
"model.vision_model.vision_model.encoder.layers.13.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
|
| 448 |
+
"model.vision_model.vision_model.encoder.layers.13.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
|
| 449 |
+
"model.vision_model.vision_model.encoder.layers.13.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
| 450 |
+
"model.vision_model.vision_model.encoder.layers.13.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 451 |
+
"model.vision_model.vision_model.encoder.layers.13.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
| 452 |
+
"model.vision_model.vision_model.encoder.layers.13.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 453 |
+
"model.vision_model.vision_model.encoder.layers.14.layer_norm1.bias": "model-00001-of-00004.safetensors",
|
| 454 |
+
"model.vision_model.vision_model.encoder.layers.14.layer_norm1.weight": "model-00001-of-00004.safetensors",
|
| 455 |
+
"model.vision_model.vision_model.encoder.layers.14.layer_norm2.bias": "model-00001-of-00004.safetensors",
|
| 456 |
+
"model.vision_model.vision_model.encoder.layers.14.layer_norm2.weight": "model-00001-of-00004.safetensors",
|
| 457 |
+
"model.vision_model.vision_model.encoder.layers.14.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
| 458 |
+
"model.vision_model.vision_model.encoder.layers.14.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
| 459 |
+
"model.vision_model.vision_model.encoder.layers.14.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
| 460 |
+
"model.vision_model.vision_model.encoder.layers.14.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
| 461 |
+
"model.vision_model.vision_model.encoder.layers.14.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
| 462 |
+
"model.vision_model.vision_model.encoder.layers.14.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 463 |
+
"model.vision_model.vision_model.encoder.layers.14.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
|
| 464 |
+
"model.vision_model.vision_model.encoder.layers.14.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
|
| 465 |
+
"model.vision_model.vision_model.encoder.layers.14.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
| 466 |
+
"model.vision_model.vision_model.encoder.layers.14.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 467 |
+
"model.vision_model.vision_model.encoder.layers.14.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
| 468 |
+
"model.vision_model.vision_model.encoder.layers.14.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 469 |
+
"model.vision_model.vision_model.encoder.layers.15.layer_norm1.bias": "model-00001-of-00004.safetensors",
|
| 470 |
+
"model.vision_model.vision_model.encoder.layers.15.layer_norm1.weight": "model-00001-of-00004.safetensors",
|
| 471 |
+
"model.vision_model.vision_model.encoder.layers.15.layer_norm2.bias": "model-00001-of-00004.safetensors",
|
| 472 |
+
"model.vision_model.vision_model.encoder.layers.15.layer_norm2.weight": "model-00001-of-00004.safetensors",
|
| 473 |
+
"model.vision_model.vision_model.encoder.layers.15.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
| 474 |
+
"model.vision_model.vision_model.encoder.layers.15.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
| 475 |
+
"model.vision_model.vision_model.encoder.layers.15.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
| 476 |
+
"model.vision_model.vision_model.encoder.layers.15.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
| 477 |
+
"model.vision_model.vision_model.encoder.layers.15.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
| 478 |
+
"model.vision_model.vision_model.encoder.layers.15.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 479 |
+
"model.vision_model.vision_model.encoder.layers.15.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
|
| 480 |
+
"model.vision_model.vision_model.encoder.layers.15.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
|
| 481 |
+
"model.vision_model.vision_model.encoder.layers.15.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
| 482 |
+
"model.vision_model.vision_model.encoder.layers.15.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 483 |
+
"model.vision_model.vision_model.encoder.layers.15.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
| 484 |
+
"model.vision_model.vision_model.encoder.layers.15.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 485 |
+
"model.vision_model.vision_model.encoder.layers.16.layer_norm1.bias": "model-00001-of-00004.safetensors",
|
| 486 |
+
"model.vision_model.vision_model.encoder.layers.16.layer_norm1.weight": "model-00001-of-00004.safetensors",
|
| 487 |
+
"model.vision_model.vision_model.encoder.layers.16.layer_norm2.bias": "model-00001-of-00004.safetensors",
|
| 488 |
+
"model.vision_model.vision_model.encoder.layers.16.layer_norm2.weight": "model-00001-of-00004.safetensors",
|
| 489 |
+
"model.vision_model.vision_model.encoder.layers.16.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
| 490 |
+
"model.vision_model.vision_model.encoder.layers.16.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
| 491 |
+
"model.vision_model.vision_model.encoder.layers.16.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
| 492 |
+
"model.vision_model.vision_model.encoder.layers.16.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
| 493 |
+
"model.vision_model.vision_model.encoder.layers.16.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
| 494 |
+
"model.vision_model.vision_model.encoder.layers.16.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 495 |
+
"model.vision_model.vision_model.encoder.layers.16.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
|
| 496 |
+
"model.vision_model.vision_model.encoder.layers.16.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
|
| 497 |
+
"model.vision_model.vision_model.encoder.layers.16.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
| 498 |
+
"model.vision_model.vision_model.encoder.layers.16.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 499 |
+
"model.vision_model.vision_model.encoder.layers.16.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
| 500 |
+
"model.vision_model.vision_model.encoder.layers.16.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 501 |
+
"model.vision_model.vision_model.encoder.layers.17.layer_norm1.bias": "model-00001-of-00004.safetensors",
|
| 502 |
+
"model.vision_model.vision_model.encoder.layers.17.layer_norm1.weight": "model-00001-of-00004.safetensors",
|
| 503 |
+
"model.vision_model.vision_model.encoder.layers.17.layer_norm2.bias": "model-00001-of-00004.safetensors",
|
| 504 |
+
"model.vision_model.vision_model.encoder.layers.17.layer_norm2.weight": "model-00001-of-00004.safetensors",
|
| 505 |
+
"model.vision_model.vision_model.encoder.layers.17.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
| 506 |
+
"model.vision_model.vision_model.encoder.layers.17.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
| 507 |
+
"model.vision_model.vision_model.encoder.layers.17.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
| 508 |
+
"model.vision_model.vision_model.encoder.layers.17.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
| 509 |
+
"model.vision_model.vision_model.encoder.layers.17.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
| 510 |
+
"model.vision_model.vision_model.encoder.layers.17.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 511 |
+
"model.vision_model.vision_model.encoder.layers.17.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
|
| 512 |
+
"model.vision_model.vision_model.encoder.layers.17.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
|
| 513 |
+
"model.vision_model.vision_model.encoder.layers.17.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
| 514 |
+
"model.vision_model.vision_model.encoder.layers.17.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 515 |
+
"model.vision_model.vision_model.encoder.layers.17.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
| 516 |
+
"model.vision_model.vision_model.encoder.layers.17.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 517 |
+
"model.vision_model.vision_model.encoder.layers.18.layer_norm1.bias": "model-00001-of-00004.safetensors",
|
| 518 |
+
"model.vision_model.vision_model.encoder.layers.18.layer_norm1.weight": "model-00001-of-00004.safetensors",
|
| 519 |
+
"model.vision_model.vision_model.encoder.layers.18.layer_norm2.bias": "model-00001-of-00004.safetensors",
|
| 520 |
+
"model.vision_model.vision_model.encoder.layers.18.layer_norm2.weight": "model-00001-of-00004.safetensors",
|
| 521 |
+
"model.vision_model.vision_model.encoder.layers.18.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
| 522 |
+
"model.vision_model.vision_model.encoder.layers.18.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
| 523 |
+
"model.vision_model.vision_model.encoder.layers.18.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
| 524 |
+
"model.vision_model.vision_model.encoder.layers.18.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
| 525 |
+
"model.vision_model.vision_model.encoder.layers.18.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
| 526 |
+
"model.vision_model.vision_model.encoder.layers.18.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 527 |
+
"model.vision_model.vision_model.encoder.layers.18.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
|
| 528 |
+
"model.vision_model.vision_model.encoder.layers.18.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
|
| 529 |
+
"model.vision_model.vision_model.encoder.layers.18.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
| 530 |
+
"model.vision_model.vision_model.encoder.layers.18.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 531 |
+
"model.vision_model.vision_model.encoder.layers.18.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
| 532 |
+
"model.vision_model.vision_model.encoder.layers.18.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 533 |
+
"model.vision_model.vision_model.encoder.layers.19.layer_norm1.bias": "model-00001-of-00004.safetensors",
|
| 534 |
+
"model.vision_model.vision_model.encoder.layers.19.layer_norm1.weight": "model-00001-of-00004.safetensors",
|
| 535 |
+
"model.vision_model.vision_model.encoder.layers.19.layer_norm2.bias": "model-00001-of-00004.safetensors",
|
| 536 |
+
"model.vision_model.vision_model.encoder.layers.19.layer_norm2.weight": "model-00001-of-00004.safetensors",
|
| 537 |
+
"model.vision_model.vision_model.encoder.layers.19.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
| 538 |
+
"model.vision_model.vision_model.encoder.layers.19.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
| 539 |
+
"model.vision_model.vision_model.encoder.layers.19.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
| 540 |
+
"model.vision_model.vision_model.encoder.layers.19.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
| 541 |
+
"model.vision_model.vision_model.encoder.layers.19.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
| 542 |
+
"model.vision_model.vision_model.encoder.layers.19.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 543 |
+
"model.vision_model.vision_model.encoder.layers.19.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
|
| 544 |
+
"model.vision_model.vision_model.encoder.layers.19.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
|
| 545 |
+
"model.vision_model.vision_model.encoder.layers.19.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
| 546 |
+
"model.vision_model.vision_model.encoder.layers.19.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 547 |
+
"model.vision_model.vision_model.encoder.layers.19.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
| 548 |
+
"model.vision_model.vision_model.encoder.layers.19.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 549 |
+
"model.vision_model.vision_model.encoder.layers.2.layer_norm1.bias": "model-00001-of-00004.safetensors",
|
| 550 |
+
"model.vision_model.vision_model.encoder.layers.2.layer_norm1.weight": "model-00001-of-00004.safetensors",
|
| 551 |
+
"model.vision_model.vision_model.encoder.layers.2.layer_norm2.bias": "model-00001-of-00004.safetensors",
|
| 552 |
+
"model.vision_model.vision_model.encoder.layers.2.layer_norm2.weight": "model-00001-of-00004.safetensors",
|
| 553 |
+
"model.vision_model.vision_model.encoder.layers.2.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
| 554 |
+
"model.vision_model.vision_model.encoder.layers.2.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
| 555 |
+
"model.vision_model.vision_model.encoder.layers.2.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
| 556 |
+
"model.vision_model.vision_model.encoder.layers.2.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
| 557 |
+
"model.vision_model.vision_model.encoder.layers.2.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
| 558 |
+
"model.vision_model.vision_model.encoder.layers.2.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 559 |
+
"model.vision_model.vision_model.encoder.layers.2.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
|
| 560 |
+
"model.vision_model.vision_model.encoder.layers.2.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
|
| 561 |
+
"model.vision_model.vision_model.encoder.layers.2.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
| 562 |
+
"model.vision_model.vision_model.encoder.layers.2.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 563 |
+
"model.vision_model.vision_model.encoder.layers.2.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
| 564 |
+
"model.vision_model.vision_model.encoder.layers.2.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 565 |
+
"model.vision_model.vision_model.encoder.layers.20.layer_norm1.bias": "model-00001-of-00004.safetensors",
|
| 566 |
+
"model.vision_model.vision_model.encoder.layers.20.layer_norm1.weight": "model-00001-of-00004.safetensors",
|
| 567 |
+
"model.vision_model.vision_model.encoder.layers.20.layer_norm2.bias": "model-00001-of-00004.safetensors",
|
| 568 |
+
"model.vision_model.vision_model.encoder.layers.20.layer_norm2.weight": "model-00001-of-00004.safetensors",
|
| 569 |
+
"model.vision_model.vision_model.encoder.layers.20.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
| 570 |
+
"model.vision_model.vision_model.encoder.layers.20.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
| 571 |
+
"model.vision_model.vision_model.encoder.layers.20.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
| 572 |
+
"model.vision_model.vision_model.encoder.layers.20.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
| 573 |
+
"model.vision_model.vision_model.encoder.layers.20.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
| 574 |
+
"model.vision_model.vision_model.encoder.layers.20.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 575 |
+
"model.vision_model.vision_model.encoder.layers.20.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
|
| 576 |
+
"model.vision_model.vision_model.encoder.layers.20.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
|
| 577 |
+
"model.vision_model.vision_model.encoder.layers.20.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
| 578 |
+
"model.vision_model.vision_model.encoder.layers.20.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 579 |
+
"model.vision_model.vision_model.encoder.layers.20.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
| 580 |
+
"model.vision_model.vision_model.encoder.layers.20.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 581 |
+
"model.vision_model.vision_model.encoder.layers.21.layer_norm1.bias": "model-00001-of-00004.safetensors",
|
| 582 |
+
"model.vision_model.vision_model.encoder.layers.21.layer_norm1.weight": "model-00001-of-00004.safetensors",
|
| 583 |
+
"model.vision_model.vision_model.encoder.layers.21.layer_norm2.bias": "model-00001-of-00004.safetensors",
|
| 584 |
+
"model.vision_model.vision_model.encoder.layers.21.layer_norm2.weight": "model-00001-of-00004.safetensors",
|
| 585 |
+
"model.vision_model.vision_model.encoder.layers.21.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
| 586 |
+
"model.vision_model.vision_model.encoder.layers.21.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
| 587 |
+
"model.vision_model.vision_model.encoder.layers.21.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
| 588 |
+
"model.vision_model.vision_model.encoder.layers.21.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
| 589 |
+
"model.vision_model.vision_model.encoder.layers.21.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
| 590 |
+
"model.vision_model.vision_model.encoder.layers.21.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 591 |
+
"model.vision_model.vision_model.encoder.layers.21.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
|
| 592 |
+
"model.vision_model.vision_model.encoder.layers.21.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
|
| 593 |
+
"model.vision_model.vision_model.encoder.layers.21.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
| 594 |
+
"model.vision_model.vision_model.encoder.layers.21.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 595 |
+
"model.vision_model.vision_model.encoder.layers.21.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
| 596 |
+
"model.vision_model.vision_model.encoder.layers.21.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 597 |
+
"model.vision_model.vision_model.encoder.layers.22.layer_norm1.bias": "model-00001-of-00004.safetensors",
|
| 598 |
+
"model.vision_model.vision_model.encoder.layers.22.layer_norm1.weight": "model-00001-of-00004.safetensors",
|
| 599 |
+
"model.vision_model.vision_model.encoder.layers.22.layer_norm2.bias": "model-00001-of-00004.safetensors",
|
| 600 |
+
"model.vision_model.vision_model.encoder.layers.22.layer_norm2.weight": "model-00001-of-00004.safetensors",
|
| 601 |
+
"model.vision_model.vision_model.encoder.layers.22.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
| 602 |
+
"model.vision_model.vision_model.encoder.layers.22.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
| 603 |
+
"model.vision_model.vision_model.encoder.layers.22.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
| 604 |
+
"model.vision_model.vision_model.encoder.layers.22.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
| 605 |
+
"model.vision_model.vision_model.encoder.layers.22.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
| 606 |
+
"model.vision_model.vision_model.encoder.layers.22.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 607 |
+
"model.vision_model.vision_model.encoder.layers.22.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
|
| 608 |
+
"model.vision_model.vision_model.encoder.layers.22.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
|
| 609 |
+
"model.vision_model.vision_model.encoder.layers.22.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
| 610 |
+
"model.vision_model.vision_model.encoder.layers.22.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 611 |
+
"model.vision_model.vision_model.encoder.layers.22.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
| 612 |
+
"model.vision_model.vision_model.encoder.layers.22.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 613 |
+
"model.vision_model.vision_model.encoder.layers.23.layer_norm1.bias": "model-00001-of-00004.safetensors",
|
| 614 |
+
"model.vision_model.vision_model.encoder.layers.23.layer_norm1.weight": "model-00001-of-00004.safetensors",
|
| 615 |
+
"model.vision_model.vision_model.encoder.layers.23.layer_norm2.bias": "model-00001-of-00004.safetensors",
|
| 616 |
+
"model.vision_model.vision_model.encoder.layers.23.layer_norm2.weight": "model-00001-of-00004.safetensors",
|
| 617 |
+
"model.vision_model.vision_model.encoder.layers.23.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
| 618 |
+
"model.vision_model.vision_model.encoder.layers.23.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
| 619 |
+
"model.vision_model.vision_model.encoder.layers.23.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
| 620 |
+
"model.vision_model.vision_model.encoder.layers.23.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
| 621 |
+
"model.vision_model.vision_model.encoder.layers.23.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
| 622 |
+
"model.vision_model.vision_model.encoder.layers.23.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 623 |
+
"model.vision_model.vision_model.encoder.layers.23.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
|
| 624 |
+
"model.vision_model.vision_model.encoder.layers.23.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
|
| 625 |
+
"model.vision_model.vision_model.encoder.layers.23.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
| 626 |
+
"model.vision_model.vision_model.encoder.layers.23.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 627 |
+
"model.vision_model.vision_model.encoder.layers.23.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
| 628 |
+
"model.vision_model.vision_model.encoder.layers.23.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 629 |
+
"model.vision_model.vision_model.encoder.layers.24.layer_norm1.bias": "model-00001-of-00004.safetensors",
|
| 630 |
+
"model.vision_model.vision_model.encoder.layers.24.layer_norm1.weight": "model-00001-of-00004.safetensors",
|
| 631 |
+
"model.vision_model.vision_model.encoder.layers.24.layer_norm2.bias": "model-00001-of-00004.safetensors",
|
| 632 |
+
"model.vision_model.vision_model.encoder.layers.24.layer_norm2.weight": "model-00001-of-00004.safetensors",
|
| 633 |
+
"model.vision_model.vision_model.encoder.layers.24.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
| 634 |
+
"model.vision_model.vision_model.encoder.layers.24.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
| 635 |
+
"model.vision_model.vision_model.encoder.layers.24.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
| 636 |
+
"model.vision_model.vision_model.encoder.layers.24.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
| 637 |
+
"model.vision_model.vision_model.encoder.layers.24.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
| 638 |
+
"model.vision_model.vision_model.encoder.layers.24.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 639 |
+
"model.vision_model.vision_model.encoder.layers.24.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
|
| 640 |
+
"model.vision_model.vision_model.encoder.layers.24.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
|
| 641 |
+
"model.vision_model.vision_model.encoder.layers.24.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
| 642 |
+
"model.vision_model.vision_model.encoder.layers.24.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 643 |
+
"model.vision_model.vision_model.encoder.layers.24.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
| 644 |
+
"model.vision_model.vision_model.encoder.layers.24.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 645 |
+
"model.vision_model.vision_model.encoder.layers.25.layer_norm1.bias": "model-00001-of-00004.safetensors",
|
| 646 |
+
"model.vision_model.vision_model.encoder.layers.25.layer_norm1.weight": "model-00001-of-00004.safetensors",
|
| 647 |
+
"model.vision_model.vision_model.encoder.layers.25.layer_norm2.bias": "model-00001-of-00004.safetensors",
|
| 648 |
+
"model.vision_model.vision_model.encoder.layers.25.layer_norm2.weight": "model-00001-of-00004.safetensors",
|
| 649 |
+
"model.vision_model.vision_model.encoder.layers.25.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
| 650 |
+
"model.vision_model.vision_model.encoder.layers.25.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
| 651 |
+
"model.vision_model.vision_model.encoder.layers.25.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
| 652 |
+
"model.vision_model.vision_model.encoder.layers.25.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
| 653 |
+
"model.vision_model.vision_model.encoder.layers.25.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
| 654 |
+
"model.vision_model.vision_model.encoder.layers.25.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 655 |
+
"model.vision_model.vision_model.encoder.layers.25.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
|
| 656 |
+
"model.vision_model.vision_model.encoder.layers.25.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
|
| 657 |
+
"model.vision_model.vision_model.encoder.layers.25.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
| 658 |
+
"model.vision_model.vision_model.encoder.layers.25.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 659 |
+
"model.vision_model.vision_model.encoder.layers.25.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
| 660 |
+
"model.vision_model.vision_model.encoder.layers.25.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 661 |
+
"model.vision_model.vision_model.encoder.layers.26.layer_norm1.bias": "model-00001-of-00004.safetensors",
|
| 662 |
+
"model.vision_model.vision_model.encoder.layers.26.layer_norm1.weight": "model-00001-of-00004.safetensors",
|
| 663 |
+
"model.vision_model.vision_model.encoder.layers.26.layer_norm2.bias": "model-00001-of-00004.safetensors",
|
| 664 |
+
"model.vision_model.vision_model.encoder.layers.26.layer_norm2.weight": "model-00001-of-00004.safetensors",
|
| 665 |
+
"model.vision_model.vision_model.encoder.layers.26.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
| 666 |
+
"model.vision_model.vision_model.encoder.layers.26.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
| 667 |
+
"model.vision_model.vision_model.encoder.layers.26.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
| 668 |
+
"model.vision_model.vision_model.encoder.layers.26.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
| 669 |
+
"model.vision_model.vision_model.encoder.layers.26.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
| 670 |
+
"model.vision_model.vision_model.encoder.layers.26.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 671 |
+
"model.vision_model.vision_model.encoder.layers.26.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
|
| 672 |
+
"model.vision_model.vision_model.encoder.layers.26.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
|
| 673 |
+
"model.vision_model.vision_model.encoder.layers.26.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
| 674 |
+
"model.vision_model.vision_model.encoder.layers.26.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 675 |
+
"model.vision_model.vision_model.encoder.layers.26.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
| 676 |
+
"model.vision_model.vision_model.encoder.layers.26.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 677 |
+
"model.vision_model.vision_model.encoder.layers.3.layer_norm1.bias": "model-00001-of-00004.safetensors",
|
| 678 |
+
"model.vision_model.vision_model.encoder.layers.3.layer_norm1.weight": "model-00001-of-00004.safetensors",
|
| 679 |
+
"model.vision_model.vision_model.encoder.layers.3.layer_norm2.bias": "model-00001-of-00004.safetensors",
|
| 680 |
+
"model.vision_model.vision_model.encoder.layers.3.layer_norm2.weight": "model-00001-of-00004.safetensors",
|
| 681 |
+
"model.vision_model.vision_model.encoder.layers.3.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
| 682 |
+
"model.vision_model.vision_model.encoder.layers.3.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
| 683 |
+
"model.vision_model.vision_model.encoder.layers.3.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
| 684 |
+
"model.vision_model.vision_model.encoder.layers.3.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
| 685 |
+
"model.vision_model.vision_model.encoder.layers.3.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
| 686 |
+
"model.vision_model.vision_model.encoder.layers.3.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 687 |
+
"model.vision_model.vision_model.encoder.layers.3.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
|
| 688 |
+
"model.vision_model.vision_model.encoder.layers.3.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
|
| 689 |
+
"model.vision_model.vision_model.encoder.layers.3.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
| 690 |
+
"model.vision_model.vision_model.encoder.layers.3.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 691 |
+
"model.vision_model.vision_model.encoder.layers.3.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
| 692 |
+
"model.vision_model.vision_model.encoder.layers.3.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 693 |
+
"model.vision_model.vision_model.encoder.layers.4.layer_norm1.bias": "model-00001-of-00004.safetensors",
|
| 694 |
+
"model.vision_model.vision_model.encoder.layers.4.layer_norm1.weight": "model-00001-of-00004.safetensors",
|
| 695 |
+
"model.vision_model.vision_model.encoder.layers.4.layer_norm2.bias": "model-00001-of-00004.safetensors",
|
| 696 |
+
"model.vision_model.vision_model.encoder.layers.4.layer_norm2.weight": "model-00001-of-00004.safetensors",
|
| 697 |
+
"model.vision_model.vision_model.encoder.layers.4.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
| 698 |
+
"model.vision_model.vision_model.encoder.layers.4.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
| 699 |
+
"model.vision_model.vision_model.encoder.layers.4.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
| 700 |
+
"model.vision_model.vision_model.encoder.layers.4.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
| 701 |
+
"model.vision_model.vision_model.encoder.layers.4.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
| 702 |
+
"model.vision_model.vision_model.encoder.layers.4.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 703 |
+
"model.vision_model.vision_model.encoder.layers.4.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
|
| 704 |
+
"model.vision_model.vision_model.encoder.layers.4.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
|
| 705 |
+
"model.vision_model.vision_model.encoder.layers.4.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
| 706 |
+
"model.vision_model.vision_model.encoder.layers.4.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 707 |
+
"model.vision_model.vision_model.encoder.layers.4.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
| 708 |
+
"model.vision_model.vision_model.encoder.layers.4.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 709 |
+
"model.vision_model.vision_model.encoder.layers.5.layer_norm1.bias": "model-00001-of-00004.safetensors",
|
| 710 |
+
"model.vision_model.vision_model.encoder.layers.5.layer_norm1.weight": "model-00001-of-00004.safetensors",
|
| 711 |
+
"model.vision_model.vision_model.encoder.layers.5.layer_norm2.bias": "model-00001-of-00004.safetensors",
|
| 712 |
+
"model.vision_model.vision_model.encoder.layers.5.layer_norm2.weight": "model-00001-of-00004.safetensors",
|
| 713 |
+
"model.vision_model.vision_model.encoder.layers.5.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
| 714 |
+
"model.vision_model.vision_model.encoder.layers.5.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
| 715 |
+
"model.vision_model.vision_model.encoder.layers.5.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
| 716 |
+
"model.vision_model.vision_model.encoder.layers.5.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
| 717 |
+
"model.vision_model.vision_model.encoder.layers.5.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
| 718 |
+
"model.vision_model.vision_model.encoder.layers.5.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 719 |
+
"model.vision_model.vision_model.encoder.layers.5.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
|
| 720 |
+
"model.vision_model.vision_model.encoder.layers.5.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
|
| 721 |
+
"model.vision_model.vision_model.encoder.layers.5.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
| 722 |
+
"model.vision_model.vision_model.encoder.layers.5.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 723 |
+
"model.vision_model.vision_model.encoder.layers.5.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
| 724 |
+
"model.vision_model.vision_model.encoder.layers.5.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 725 |
+
"model.vision_model.vision_model.encoder.layers.6.layer_norm1.bias": "model-00001-of-00004.safetensors",
|
| 726 |
+
"model.vision_model.vision_model.encoder.layers.6.layer_norm1.weight": "model-00001-of-00004.safetensors",
|
| 727 |
+
"model.vision_model.vision_model.encoder.layers.6.layer_norm2.bias": "model-00001-of-00004.safetensors",
|
| 728 |
+
"model.vision_model.vision_model.encoder.layers.6.layer_norm2.weight": "model-00001-of-00004.safetensors",
|
| 729 |
+
"model.vision_model.vision_model.encoder.layers.6.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
| 730 |
+
"model.vision_model.vision_model.encoder.layers.6.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
| 731 |
+
"model.vision_model.vision_model.encoder.layers.6.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
| 732 |
+
"model.vision_model.vision_model.encoder.layers.6.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
| 733 |
+
"model.vision_model.vision_model.encoder.layers.6.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
| 734 |
+
"model.vision_model.vision_model.encoder.layers.6.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 735 |
+
"model.vision_model.vision_model.encoder.layers.6.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
|
| 736 |
+
"model.vision_model.vision_model.encoder.layers.6.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
|
| 737 |
+
"model.vision_model.vision_model.encoder.layers.6.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
| 738 |
+
"model.vision_model.vision_model.encoder.layers.6.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 739 |
+
"model.vision_model.vision_model.encoder.layers.6.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
| 740 |
+
"model.vision_model.vision_model.encoder.layers.6.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 741 |
+
"model.vision_model.vision_model.encoder.layers.7.layer_norm1.bias": "model-00001-of-00004.safetensors",
|
| 742 |
+
"model.vision_model.vision_model.encoder.layers.7.layer_norm1.weight": "model-00001-of-00004.safetensors",
|
| 743 |
+
"model.vision_model.vision_model.encoder.layers.7.layer_norm2.bias": "model-00001-of-00004.safetensors",
|
| 744 |
+
"model.vision_model.vision_model.encoder.layers.7.layer_norm2.weight": "model-00001-of-00004.safetensors",
|
| 745 |
+
"model.vision_model.vision_model.encoder.layers.7.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
| 746 |
+
"model.vision_model.vision_model.encoder.layers.7.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
| 747 |
+
"model.vision_model.vision_model.encoder.layers.7.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
| 748 |
+
"model.vision_model.vision_model.encoder.layers.7.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
| 749 |
+
"model.vision_model.vision_model.encoder.layers.7.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
| 750 |
+
"model.vision_model.vision_model.encoder.layers.7.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 751 |
+
"model.vision_model.vision_model.encoder.layers.7.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
|
| 752 |
+
"model.vision_model.vision_model.encoder.layers.7.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
|
| 753 |
+
"model.vision_model.vision_model.encoder.layers.7.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
| 754 |
+
"model.vision_model.vision_model.encoder.layers.7.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 755 |
+
"model.vision_model.vision_model.encoder.layers.7.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
| 756 |
+
"model.vision_model.vision_model.encoder.layers.7.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 757 |
+
"model.vision_model.vision_model.encoder.layers.8.layer_norm1.bias": "model-00001-of-00004.safetensors",
|
| 758 |
+
"model.vision_model.vision_model.encoder.layers.8.layer_norm1.weight": "model-00001-of-00004.safetensors",
|
| 759 |
+
"model.vision_model.vision_model.encoder.layers.8.layer_norm2.bias": "model-00001-of-00004.safetensors",
|
| 760 |
+
"model.vision_model.vision_model.encoder.layers.8.layer_norm2.weight": "model-00001-of-00004.safetensors",
|
| 761 |
+
"model.vision_model.vision_model.encoder.layers.8.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
| 762 |
+
"model.vision_model.vision_model.encoder.layers.8.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
| 763 |
+
"model.vision_model.vision_model.encoder.layers.8.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
| 764 |
+
"model.vision_model.vision_model.encoder.layers.8.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
| 765 |
+
"model.vision_model.vision_model.encoder.layers.8.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
| 766 |
+
"model.vision_model.vision_model.encoder.layers.8.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 767 |
+
"model.vision_model.vision_model.encoder.layers.8.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
|
| 768 |
+
"model.vision_model.vision_model.encoder.layers.8.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
|
| 769 |
+
"model.vision_model.vision_model.encoder.layers.8.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
| 770 |
+
"model.vision_model.vision_model.encoder.layers.8.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 771 |
+
"model.vision_model.vision_model.encoder.layers.8.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
| 772 |
+
"model.vision_model.vision_model.encoder.layers.8.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 773 |
+
"model.vision_model.vision_model.encoder.layers.9.layer_norm1.bias": "model-00001-of-00004.safetensors",
|
| 774 |
+
"model.vision_model.vision_model.encoder.layers.9.layer_norm1.weight": "model-00001-of-00004.safetensors",
|
| 775 |
+
"model.vision_model.vision_model.encoder.layers.9.layer_norm2.bias": "model-00001-of-00004.safetensors",
|
| 776 |
+
"model.vision_model.vision_model.encoder.layers.9.layer_norm2.weight": "model-00001-of-00004.safetensors",
|
| 777 |
+
"model.vision_model.vision_model.encoder.layers.9.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
| 778 |
+
"model.vision_model.vision_model.encoder.layers.9.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
| 779 |
+
"model.vision_model.vision_model.encoder.layers.9.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
| 780 |
+
"model.vision_model.vision_model.encoder.layers.9.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
| 781 |
+
"model.vision_model.vision_model.encoder.layers.9.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
| 782 |
+
"model.vision_model.vision_model.encoder.layers.9.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 783 |
+
"model.vision_model.vision_model.encoder.layers.9.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
|
| 784 |
+
"model.vision_model.vision_model.encoder.layers.9.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
|
| 785 |
+
"model.vision_model.vision_model.encoder.layers.9.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
| 786 |
+
"model.vision_model.vision_model.encoder.layers.9.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 787 |
+
"model.vision_model.vision_model.encoder.layers.9.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
| 788 |
+
"model.vision_model.vision_model.encoder.layers.9.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 789 |
+
"model.vision_model.vision_model.head.attention.in_proj_bias": "model-00001-of-00004.safetensors",
|
| 790 |
+
"model.vision_model.vision_model.head.attention.in_proj_weight": "model-00001-of-00004.safetensors",
|
| 791 |
+
"model.vision_model.vision_model.head.attention.out_proj.bias": "model-00001-of-00004.safetensors",
|
| 792 |
+
"model.vision_model.vision_model.head.attention.out_proj.weight": "model-00001-of-00004.safetensors",
|
| 793 |
+
"model.vision_model.vision_model.head.layernorm.bias": "model-00001-of-00004.safetensors",
|
| 794 |
+
"model.vision_model.vision_model.head.layernorm.weight": "model-00001-of-00004.safetensors",
|
| 795 |
+
"model.vision_model.vision_model.head.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
| 796 |
+
"model.vision_model.vision_model.head.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
| 797 |
+
"model.vision_model.vision_model.head.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
| 798 |
+
"model.vision_model.vision_model.head.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
| 799 |
+
"model.vision_model.vision_model.head.probe": "model-00001-of-00004.safetensors",
|
| 800 |
+
"model.vision_model.vision_model.post_layernorm.bias": "model-00001-of-00004.safetensors",
|
| 801 |
+
"model.vision_model.vision_model.post_layernorm.weight": "model-00001-of-00004.safetensors"
|
| 802 |
+
}
|
| 803 |
+
}
|
modeling_vmistral.py
ADDED
|
@@ -0,0 +1,1766 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# coding=utf-8
|
| 2 |
+
# Copyright 2023 Mistral AI and the HuggingFace Inc. team. All rights reserved.
|
| 3 |
+
#
|
| 4 |
+
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
| 5 |
+
# and OPT implementations in this library. It has been modified from its
|
| 6 |
+
# original forms to accommodate minor architectural differences compared
|
| 7 |
+
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
| 8 |
+
#
|
| 9 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 10 |
+
# you may not use this file except in compliance with the License.
|
| 11 |
+
# You may obtain a copy of the License at
|
| 12 |
+
#
|
| 13 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 14 |
+
#
|
| 15 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 16 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 17 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 18 |
+
# See the License for the specific language governing permissions and
|
| 19 |
+
# limitations under the License.
|
| 20 |
+
""" PyTorch VMistral model."""
|
| 21 |
+
from dataclasses import dataclass
|
| 22 |
+
import inspect
|
| 23 |
+
import math
|
| 24 |
+
import warnings
|
| 25 |
+
from typing import List, Optional, Tuple, Union
|
| 26 |
+
|
| 27 |
+
import torch
|
| 28 |
+
import torch.nn.functional as F
|
| 29 |
+
import torch.utils.checkpoint
|
| 30 |
+
from torch import nn
|
| 31 |
+
from torch.nn import CrossEntropyLoss
|
| 32 |
+
from transformers.activations import ACT2FN
|
| 33 |
+
from transformers.modeling_attn_mask_utils import _prepare_4d_causal_attention_mask
|
| 34 |
+
from transformers.utils import (
|
| 35 |
+
add_start_docstrings,
|
| 36 |
+
add_start_docstrings_to_model_forward,
|
| 37 |
+
is_flash_attn_2_available,
|
| 38 |
+
replace_return_docstrings,
|
| 39 |
+
)
|
| 40 |
+
|
| 41 |
+
from einops import rearrange, repeat
|
| 42 |
+
from transformers import PreTrainedModel
|
| 43 |
+
from transformers.utils import logging
|
| 44 |
+
from transformers.modeling_outputs import ModelOutput
|
| 45 |
+
|
| 46 |
+
from .configuration_vmistral import VMistralConfig
|
| 47 |
+
from .vision import SiglipVisionModel
|
| 48 |
+
|
| 49 |
+
|
| 50 |
+
if is_flash_attn_2_available():
|
| 51 |
+
from flash_attn import flash_attn_func, flash_attn_varlen_func
|
| 52 |
+
from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
|
| 53 |
+
|
| 54 |
+
_flash_supports_window_size = "window_size" in list(inspect.signature(flash_attn_func).parameters)
|
| 55 |
+
|
| 56 |
+
logger = logging.get_logger(__name__)
|
| 57 |
+
|
| 58 |
+
_CONFIG_FOR_DOC = "VMistralConfig"
|
| 59 |
+
|
| 60 |
+
VMistral_PRETRAINED_MODEL_ARCHIVE_LIST = [
|
| 61 |
+
"HuggingFaceM4/VLM_WebSight_finetuned"
|
| 62 |
+
]
|
| 63 |
+
|
| 64 |
+
@dataclass
|
| 65 |
+
class VMistralBaseModelOutputWithPast(ModelOutput):
|
| 66 |
+
"""
|
| 67 |
+
Base class for VMistral model's outputs that may also contain a past key/values (to speed up sequential decoding).
|
| 68 |
+
|
| 69 |
+
Args:
|
| 70 |
+
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
| 71 |
+
Sequence of hidden-states at the output of the last layer of the model.
|
| 72 |
+
|
| 73 |
+
If `past_key_values` is used only the last hidden-state of the sequences of shape `(batch_size, 1,
|
| 74 |
+
hidden_size)` is output.
|
| 75 |
+
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
|
| 76 |
+
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
|
| 77 |
+
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and optionally if
|
| 78 |
+
`config.is_encoder_decoder=True` 2 additional tensors of shape `(batch_size, num_heads,
|
| 79 |
+
encoder_sequence_length, embed_size_per_head)`.
|
| 80 |
+
|
| 81 |
+
Contains pre-computed hidden-states (key and values in the self-attention blocks and optionally if
|
| 82 |
+
`config.is_encoder_decoder=True` in the cross-attention blocks) that can be used (see `past_key_values`
|
| 83 |
+
input) to speed up sequential decoding.
|
| 84 |
+
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
| 85 |
+
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
|
| 86 |
+
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
|
| 87 |
+
|
| 88 |
+
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
|
| 89 |
+
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
| 90 |
+
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
| 91 |
+
sequence_length)`.
|
| 92 |
+
|
| 93 |
+
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
| 94 |
+
heads.
|
| 95 |
+
image_hidden_states (`tuple(torch.FloatTensor)`, *optional*):
|
| 96 |
+
Tuple of `torch.FloatTensor` (one for the output of the image embeddings, `(batch_size, num_images,
|
| 97 |
+
sequence_length, hidden_size)`.
|
| 98 |
+
|
| 99 |
+
image_hidden_states of the model produced by the vision encoder, and optionally by the perceiver
|
| 100 |
+
"""
|
| 101 |
+
|
| 102 |
+
last_hidden_state: torch.FloatTensor = None
|
| 103 |
+
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
|
| 104 |
+
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
| 105 |
+
attentions: Optional[Tuple[torch.FloatTensor]] = None
|
| 106 |
+
image_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
| 107 |
+
|
| 108 |
+
|
| 109 |
+
@dataclass
|
| 110 |
+
class VMistralCausalLMOutputWithPast(ModelOutput):
|
| 111 |
+
"""
|
| 112 |
+
Base class for VMistral causal language model (or autoregressive) outputs.
|
| 113 |
+
|
| 114 |
+
Args:
|
| 115 |
+
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
|
| 116 |
+
Language modeling loss (for next-token prediction).
|
| 117 |
+
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
|
| 118 |
+
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
|
| 119 |
+
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
|
| 120 |
+
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
|
| 121 |
+
`(batch_size, num_heads, sequence_length, embed_size_per_head)`)
|
| 122 |
+
|
| 123 |
+
Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see
|
| 124 |
+
`past_key_values` input) to speed up sequential decoding.
|
| 125 |
+
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
| 126 |
+
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
|
| 127 |
+
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
|
| 128 |
+
|
| 129 |
+
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
|
| 130 |
+
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
| 131 |
+
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
| 132 |
+
sequence_length)`.
|
| 133 |
+
|
| 134 |
+
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
| 135 |
+
heads.
|
| 136 |
+
image_hidden_states (`tuple(torch.FloatTensor)`, *optional*):
|
| 137 |
+
Tuple of `torch.FloatTensor` (one for the output of the image embeddings, `(batch_size, num_images,
|
| 138 |
+
sequence_length, hidden_size)`.
|
| 139 |
+
|
| 140 |
+
image_hidden_states of the model produced by the vision encoder, and optionally by the perceiver
|
| 141 |
+
"""
|
| 142 |
+
|
| 143 |
+
loss: Optional[torch.FloatTensor] = None
|
| 144 |
+
logits: torch.FloatTensor = None
|
| 145 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None
|
| 146 |
+
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
| 147 |
+
attentions: Optional[Tuple[torch.FloatTensor]] = None
|
| 148 |
+
image_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
| 149 |
+
|
| 150 |
+
|
| 151 |
+
def expand_inputs_for_generation(
|
| 152 |
+
input_ids,
|
| 153 |
+
expand_size=1,
|
| 154 |
+
is_encoder_decoder=False,
|
| 155 |
+
attention_mask=None,
|
| 156 |
+
encoder_outputs=None,
|
| 157 |
+
**model_kwargs,
|
| 158 |
+
):
|
| 159 |
+
expanded_return_idx = (
|
| 160 |
+
torch.arange(input_ids.shape[0]).view(-1, 1).repeat(1, expand_size).view(-1).to(input_ids.device)
|
| 161 |
+
)
|
| 162 |
+
input_ids = input_ids.index_select(0, expanded_return_idx)
|
| 163 |
+
model_kwargs["pixel_values"] = model_kwargs.get("pixel_values", None)
|
| 164 |
+
model_kwargs["image_hidden_states"] = model_kwargs.get("image_hidden_states", None)
|
| 165 |
+
|
| 166 |
+
if "token_type_ids" in model_kwargs:
|
| 167 |
+
token_type_ids = model_kwargs["token_type_ids"]
|
| 168 |
+
model_kwargs["token_type_ids"] = token_type_ids.index_select(0, expanded_return_idx)
|
| 169 |
+
|
| 170 |
+
if attention_mask is not None:
|
| 171 |
+
model_kwargs["attention_mask"] = attention_mask.index_select(0, expanded_return_idx)
|
| 172 |
+
|
| 173 |
+
if model_kwargs["pixel_values"] is not None:
|
| 174 |
+
model_kwargs["pixel_values"] = model_kwargs["pixel_values"].index_select(0, expanded_return_idx)
|
| 175 |
+
|
| 176 |
+
elif model_kwargs["image_hidden_states"] is not None:
|
| 177 |
+
model_kwargs["image_hidden_states"] = model_kwargs["image_hidden_states"].index_select(0, expanded_return_idx)
|
| 178 |
+
|
| 179 |
+
return input_ids, model_kwargs
|
| 180 |
+
|
| 181 |
+
|
| 182 |
+
def update_model_kwargs_for_generation(outputs, model_kwargs):
|
| 183 |
+
# must have this key set to at least None
|
| 184 |
+
if "past_key_values" in outputs:
|
| 185 |
+
model_kwargs["past_key_values"] = outputs.past_key_values
|
| 186 |
+
else:
|
| 187 |
+
model_kwargs["past_key_values"] = None
|
| 188 |
+
|
| 189 |
+
# update token_type_ids with last value
|
| 190 |
+
if "token_type_ids" in model_kwargs:
|
| 191 |
+
token_type_ids = model_kwargs["token_type_ids"]
|
| 192 |
+
model_kwargs["token_type_ids"] = torch.cat([token_type_ids, token_type_ids[:, -1].unsqueeze(-1)], dim=-1)
|
| 193 |
+
|
| 194 |
+
# update attention masks
|
| 195 |
+
if "attention_mask" in model_kwargs:
|
| 196 |
+
attention_mask = model_kwargs["attention_mask"]
|
| 197 |
+
model_kwargs["attention_mask"] = torch.cat(
|
| 198 |
+
[attention_mask, attention_mask.new_ones((attention_mask.shape[0], 1))], dim=-1
|
| 199 |
+
)
|
| 200 |
+
|
| 201 |
+
# Get the precomputed image_hidden_states
|
| 202 |
+
model_kwargs["image_hidden_states"] = outputs.image_hidden_states
|
| 203 |
+
|
| 204 |
+
return model_kwargs
|
| 205 |
+
|
| 206 |
+
|
| 207 |
+
def prepare_inputs_for_generation(input_ids, past_key_values=None, **kwargs):
|
| 208 |
+
token_type_ids = kwargs.get("token_type_ids", None)
|
| 209 |
+
# only last token for inputs_ids if past is defined in kwargs
|
| 210 |
+
if past_key_values:
|
| 211 |
+
input_ids = input_ids[:, -1].unsqueeze(-1)
|
| 212 |
+
if token_type_ids is not None:
|
| 213 |
+
token_type_ids = token_type_ids[:, -1].unsqueeze(-1)
|
| 214 |
+
|
| 215 |
+
attention_mask = kwargs.get("attention_mask", None)
|
| 216 |
+
position_ids = kwargs.get("position_ids", None)
|
| 217 |
+
|
| 218 |
+
if attention_mask is not None and position_ids is None:
|
| 219 |
+
# create position_ids on the fly for batch generation
|
| 220 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
| 221 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
| 222 |
+
if past_key_values:
|
| 223 |
+
position_ids = position_ids[:, -1].unsqueeze(-1)
|
| 224 |
+
|
| 225 |
+
pixel_values = kwargs.get("pixel_values", None)
|
| 226 |
+
image_hidden_states = kwargs.get("image_hidden_states", None)
|
| 227 |
+
|
| 228 |
+
return {
|
| 229 |
+
"input_ids": input_ids,
|
| 230 |
+
"past_key_values": past_key_values,
|
| 231 |
+
"use_cache": kwargs.get("use_cache"),
|
| 232 |
+
"position_ids": position_ids,
|
| 233 |
+
"attention_mask": attention_mask,
|
| 234 |
+
"token_type_ids": token_type_ids,
|
| 235 |
+
"pixel_values": pixel_values,
|
| 236 |
+
"image_hidden_states": image_hidden_states,
|
| 237 |
+
}
|
| 238 |
+
|
| 239 |
+
|
| 240 |
+
def freeze_model(model, module_exceptions=[]):
|
| 241 |
+
mapping = {
|
| 242 |
+
"LayerNorm": nn.LayerNorm,
|
| 243 |
+
"Linear": nn.Linear,
|
| 244 |
+
"Embedding": nn.Embedding,
|
| 245 |
+
}
|
| 246 |
+
module_exceptions_mapped = [mapping[m] for m in module_exceptions]
|
| 247 |
+
for module in model.modules():
|
| 248 |
+
if module_exceptions and any([isinstance(module, t) for t in module_exceptions_mapped]):
|
| 249 |
+
module.requires_grad_(True) # Explicitly setting it to true to avoid any mistakes
|
| 250 |
+
else:
|
| 251 |
+
module.requires_grad_(False)
|
| 252 |
+
return model
|
| 253 |
+
|
| 254 |
+
|
| 255 |
+
class DecoupledEmbedding(nn.Embedding):
|
| 256 |
+
# Derived from https://pytorch.org/docs/stable/_modules/torch/nn/modules/sparse.html#Embedding
|
| 257 |
+
"""
|
| 258 |
+
Implements a decoupling of parameters to allow freezing (or not) a subset of the embeddings.
|
| 259 |
+
In practise, the regular `weight` can be trained or frozen (i.e. `partially_freeze=True`), and if `num_additional_embeddings` > 0, then it will create `num_additional_embeddings` additional parameters that are always trained.
|
| 260 |
+
If `num_additional_embeddings=0`, then the module defaults back to the regular behavior of `nn.Embedding`.
|
| 261 |
+
"""
|
| 262 |
+
|
| 263 |
+
def __init__(
|
| 264 |
+
self,
|
| 265 |
+
num_embeddings,
|
| 266 |
+
num_additional_embeddings,
|
| 267 |
+
embedding_dim,
|
| 268 |
+
partially_freeze=False,
|
| 269 |
+
device=None,
|
| 270 |
+
dtype=None,
|
| 271 |
+
padding_idx=None,
|
| 272 |
+
**kwargs,
|
| 273 |
+
) -> None:
|
| 274 |
+
"""
|
| 275 |
+
num_additional_embeddings: int. Number of additional embeddings. Only useful when you `partially_freeze=True`.
|
| 276 |
+
partially_freeze: bool. If True, the regular `weight` will be frozen. `additional_weight` is never frozen.
|
| 277 |
+
|
| 278 |
+
Note: there are a lot of other parameters to initialize a standard `nn.Embedding` such as `padding_idx`, `max_norm` or `norm_type`. We are not supporting these.
|
| 279 |
+
"""
|
| 280 |
+
if padding_idx is not None and padding_idx > num_embeddings:
|
| 281 |
+
raise ValueError(f"padding_idx must be within num_embeddings. Got {padding_idx} and {num_embeddings}")
|
| 282 |
+
super().__init__(
|
| 283 |
+
num_embeddings=num_embeddings,
|
| 284 |
+
embedding_dim=embedding_dim,
|
| 285 |
+
device=device,
|
| 286 |
+
dtype=dtype,
|
| 287 |
+
padding_idx=padding_idx,
|
| 288 |
+
**kwargs,
|
| 289 |
+
)
|
| 290 |
+
self.num_embeddings = num_embeddings
|
| 291 |
+
self.padding_idx = padding_idx
|
| 292 |
+
self.num_additional_embeddings = num_additional_embeddings
|
| 293 |
+
self.partially_freeze = partially_freeze
|
| 294 |
+
|
| 295 |
+
if partially_freeze:
|
| 296 |
+
self.weight.requires_grad_(False)
|
| 297 |
+
|
| 298 |
+
if self.num_additional_embeddings > 0:
|
| 299 |
+
self.additional_embedding = nn.Embedding(
|
| 300 |
+
num_embeddings=self.num_additional_embeddings,
|
| 301 |
+
embedding_dim=embedding_dim,
|
| 302 |
+
device=device,
|
| 303 |
+
dtype=dtype,
|
| 304 |
+
)
|
| 305 |
+
|
| 306 |
+
def forward(self, input_ids):
|
| 307 |
+
"""
|
| 308 |
+
we have 2 embeddings, with different indices - one pretrained self.weight and another
|
| 309 |
+
self.additional_embedding.weight that is being trained.
|
| 310 |
+
|
| 311 |
+
in order to make a lookup of the input ids, we:
|
| 312 |
+
1. find out the indices of the entries belonging to the 2nd embedding
|
| 313 |
+
2. extract those values while subtracting the size of the first embedding (num_embeddings),
|
| 314 |
+
since the 2nd embedding starts from 0 and not num_embeddings
|
| 315 |
+
3. perform the 2nd embedding lookup
|
| 316 |
+
4. now we handle the 1st embedding, we overwrite indices belonging to the 2nd embedding with a padding index
|
| 317 |
+
5. perform the 1st embedding lookup
|
| 318 |
+
6. now we overwrite the values in the 1st embedding lookup with the values of the 2nd embedding lookup
|
| 319 |
+
|
| 320 |
+
note: for the 1st embedding lookup we could have looked up only the low indices and not do
|
| 321 |
+
the padding, but then we have to create a new tensor and populate it with 2 tensors that are
|
| 322 |
+
spread out across various indices - i.e. not a simple concat - I haven't benchmarked the
|
| 323 |
+
complex case if it's any faster, given that seqlens are usually relatively short it's
|
| 324 |
+
probably not faster or if faster not by much - but might be a good idea to measure.
|
| 325 |
+
|
| 326 |
+
"""
|
| 327 |
+
if self.num_additional_embeddings == 0:
|
| 328 |
+
return self.additional_embedding(input_ids)
|
| 329 |
+
|
| 330 |
+
# Clone so that we don't modify the original input_ids later on
|
| 331 |
+
input_ids = input_ids.clone()
|
| 332 |
+
additional_vocab_indices = torch.where(input_ids >= self.num_embeddings)
|
| 333 |
+
input_ids_additional_vocab = input_ids[additional_vocab_indices]
|
| 334 |
+
additional_embeddings = self.additional_embedding(input_ids_additional_vocab - self.num_embeddings)
|
| 335 |
+
|
| 336 |
+
# for successful lookup replace input_ids with 0, the results of these will be discarded anyway
|
| 337 |
+
input_ids[additional_vocab_indices] = 0
|
| 338 |
+
full_vector = F.embedding(input_ids, self.weight)
|
| 339 |
+
|
| 340 |
+
# overwrite the records with high indices
|
| 341 |
+
full_vector[additional_vocab_indices] = additional_embeddings
|
| 342 |
+
|
| 343 |
+
return full_vector
|
| 344 |
+
|
| 345 |
+
def extra_repr(self) -> str:
|
| 346 |
+
return "num_embeddings={}, num_additional_embeddings={}, embedding_dim={}, partially_freeze={}".format(
|
| 347 |
+
self.num_embeddings,
|
| 348 |
+
self.num_additional_embeddings,
|
| 349 |
+
self.embedding_dim,
|
| 350 |
+
self.partially_freeze,
|
| 351 |
+
)
|
| 352 |
+
|
| 353 |
+
|
| 354 |
+
class DecoupledLinear(nn.Linear):
|
| 355 |
+
# Derived from https://pytorch.org/docs/stable/_modules/torch/nn/modules/linear.html#Linear
|
| 356 |
+
"""
|
| 357 |
+
Implements a decoupling of parameters to allow freezing (or not) a subset of the parameters.
|
| 358 |
+
In practise, the regular `weight` can be trained or frozen (i.e. `partially_freeze=True`), and if `out_additional_features` > 0, then it will create `out_additional_features * in_features` additional parameters that are always trained.
|
| 359 |
+
If `out_additional_features=0`, then the module defaults back to the regular behavior of `nn.Linear`.
|
| 360 |
+
"""
|
| 361 |
+
|
| 362 |
+
def __init__(
|
| 363 |
+
self,
|
| 364 |
+
in_features: int,
|
| 365 |
+
out_features: int,
|
| 366 |
+
out_additional_features: int = 0,
|
| 367 |
+
bias: bool = True,
|
| 368 |
+
partially_freeze: bool = True,
|
| 369 |
+
device=None,
|
| 370 |
+
dtype=None,
|
| 371 |
+
) -> None:
|
| 372 |
+
"""
|
| 373 |
+
out_additional_features: int. Number of additional trainable dimensions. Only makes sense when `partially_freeze=True`.
|
| 374 |
+
partially_freeze: bool. If True, the regular `weight` will be frozen and extra parameters (if any) will be trainable. If False, default to the regular behavior of nn.Linear.
|
| 375 |
+
"""
|
| 376 |
+
super().__init__(in_features, out_features, bias, device, dtype)
|
| 377 |
+
self.out_additional_features = out_additional_features
|
| 378 |
+
self.partially_freeze = partially_freeze
|
| 379 |
+
|
| 380 |
+
self.in_features = in_features
|
| 381 |
+
self.out_features = out_features
|
| 382 |
+
|
| 383 |
+
if partially_freeze:
|
| 384 |
+
self.weight.requires_grad_(False)
|
| 385 |
+
if bias:
|
| 386 |
+
self.bias.requires_grad_(False)
|
| 387 |
+
|
| 388 |
+
if out_additional_features > 0:
|
| 389 |
+
self.additional_fc = nn.Linear(
|
| 390 |
+
in_features=in_features,
|
| 391 |
+
out_features=out_additional_features,
|
| 392 |
+
bias=bias,
|
| 393 |
+
device=device,
|
| 394 |
+
dtype=dtype,
|
| 395 |
+
)
|
| 396 |
+
|
| 397 |
+
def forward(self, input: torch.Tensor) -> torch.Tensor:
|
| 398 |
+
output = F.linear(input, self.weight, self.bias)
|
| 399 |
+
|
| 400 |
+
if self.out_additional_features > 0:
|
| 401 |
+
additional_features = self.additional_fc(input)
|
| 402 |
+
output = torch.cat((output, additional_features), -1)
|
| 403 |
+
|
| 404 |
+
return output
|
| 405 |
+
|
| 406 |
+
def extra_repr(self) -> str:
|
| 407 |
+
"""Overwriting `nn.Linear.extra_repr` to include new parameters."""
|
| 408 |
+
return "in_features={}, out_features={}, out_additional_features={}, bias={}, partially_freeze={}".format(
|
| 409 |
+
self.in_features,
|
| 410 |
+
self.out_features,
|
| 411 |
+
self.out_additional_features,
|
| 412 |
+
self.bias is not None,
|
| 413 |
+
self.partially_freeze,
|
| 414 |
+
)
|
| 415 |
+
|
| 416 |
+
|
| 417 |
+
class SwiGLU(nn.Module):
|
| 418 |
+
def __init__(self, embed_dim) -> None:
|
| 419 |
+
super().__init__()
|
| 420 |
+
self.fc1 = nn.Linear(embed_dim, embed_dim, bias=False)
|
| 421 |
+
self.fc2 = nn.Linear(embed_dim, embed_dim, bias=False)
|
| 422 |
+
|
| 423 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 424 |
+
x_1 = self.fc1(x)
|
| 425 |
+
x_1 = torch.mul(x_1, torch.sigmoid(x_1))
|
| 426 |
+
x_2 = self.fc2(x)
|
| 427 |
+
x = torch.mul(x_1, x_2)
|
| 428 |
+
return x
|
| 429 |
+
|
| 430 |
+
|
| 431 |
+
class ModalityProjection(nn.Module):
|
| 432 |
+
def __init__(self, embed_dim_in, embed_dim_out) -> None:
|
| 433 |
+
super().__init__()
|
| 434 |
+
self.fc1 = nn.Linear(embed_dim_in, embed_dim_out, bias=False)
|
| 435 |
+
self.act = SwiGLU(embed_dim_out)
|
| 436 |
+
self.fc2 = nn.Linear(embed_dim_out, embed_dim_out, bias=False)
|
| 437 |
+
|
| 438 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 439 |
+
x = self.fc1(x)
|
| 440 |
+
x = self.act(x)
|
| 441 |
+
x = self.fc2(x)
|
| 442 |
+
return x
|
| 443 |
+
|
| 444 |
+
|
| 445 |
+
class PerceiverResampler(nn.Module):
|
| 446 |
+
def __init__(
|
| 447 |
+
self, embed_dim: int, depth: int, n_heads: int, head_dim: int, n_latents: int, qk_layer_norms: bool
|
| 448 |
+
) -> None:
|
| 449 |
+
"""
|
| 450 |
+
Instantiates a Perceiver Resampler that operates over a sequence of embeddings (say from a ResNet or ViT or
|
| 451 |
+
MAE) of a given dimension, performs `depth` blocks of cross-attention with a fixed `n_latents` inputs, then
|
| 452 |
+
returns a Tensor of shape [bsz, n_latents, embed_dim].
|
| 453 |
+
:param embed_dim: Dimensionality of embeddings being fed to the Perceiver Resampler (also dimensionality of
|
| 454 |
+
latent embeddings *returned* by the Perceiver Resampler. Could be e.g., VIT embed_dim, ResNet
|
| 455 |
+
pool dim, and so on.
|
| 456 |
+
:param depth: Depth of the Perceiver Resampler (Transformer w/ cross attention). Should be shallow (< 3).
|
| 457 |
+
:param n_heads: Number of heads in each Transformer block (for multi-headed self-attention).
|
| 458 |
+
:param head_dim: Dimensionality of each head projection in the Transformer block.
|
| 459 |
+
:param n_latents: Number of latent embeddings to resample ("compress") the input sequence to (usually < 128).
|
| 460 |
+
"""
|
| 461 |
+
super().__init__()
|
| 462 |
+
self.embed_dim, self.n_heads, self.head_dim, self.n_latents = embed_dim, n_heads, head_dim, n_latents
|
| 463 |
+
self.qk_layer_norms = qk_layer_norms
|
| 464 |
+
|
| 465 |
+
# Create Latents for Perceiver
|
| 466 |
+
self.latents = nn.Parameter(torch.ones(self.n_latents, self.embed_dim))
|
| 467 |
+
|
| 468 |
+
self.intermediate_dim = self.embed_dim * 4
|
| 469 |
+
# Create Transformer Blocks
|
| 470 |
+
self.blocks = nn.ModuleList(
|
| 471 |
+
[
|
| 472 |
+
nn.ModuleList(
|
| 473 |
+
[
|
| 474 |
+
PerceiverAttention(self.embed_dim, self.n_heads, self.head_dim, self.qk_layer_norms),
|
| 475 |
+
MLP(self.embed_dim, self.intermediate_dim),
|
| 476 |
+
]
|
| 477 |
+
)
|
| 478 |
+
for _ in range(depth)
|
| 479 |
+
]
|
| 480 |
+
)
|
| 481 |
+
self.layer_norm = nn.LayerNorm(self.embed_dim)
|
| 482 |
+
|
| 483 |
+
def forward(self, context: torch.Tensor) -> torch.Tensor:
|
| 484 |
+
"""Resample arbitrary length context & *compress* down to self.n_latents latent embeddings"""
|
| 485 |
+
latents = repeat(self.latents, "seq embed -> bsz seq embed", bsz=context.shape[0])
|
| 486 |
+
|
| 487 |
+
# Feed through Perceiver Attention blocks...
|
| 488 |
+
for attn, ff in self.blocks:
|
| 489 |
+
latents = attn(context, latents) + latents
|
| 490 |
+
latents = ff(latents) + latents
|
| 491 |
+
|
| 492 |
+
return self.layer_norm(latents)
|
| 493 |
+
|
| 494 |
+
|
| 495 |
+
class PerceiverAttention(nn.Module):
|
| 496 |
+
def __init__(self, embed_dim: int, n_heads: int, head_dim: int, qk_layer_norms: bool) -> None:
|
| 497 |
+
"""Perceiver Cross-Attention Module --> let long-form inputs be `context`, resampled embeddings be `latents`"""
|
| 498 |
+
super().__init__()
|
| 499 |
+
self.embed_dim, self.n_heads, self.head_dim = embed_dim, n_heads, head_dim
|
| 500 |
+
self.qk_layer_norms = qk_layer_norms
|
| 501 |
+
# Normalization & Scaling
|
| 502 |
+
self.context_layer_norm = nn.LayerNorm(self.embed_dim)
|
| 503 |
+
self.latents_layer_norm = nn.LayerNorm(self.embed_dim)
|
| 504 |
+
if self.qk_layer_norms:
|
| 505 |
+
self.q_layer_norm = nn.LayerNorm(self.head_dim)
|
| 506 |
+
self.k_layer_norm = nn.LayerNorm(self.head_dim)
|
| 507 |
+
|
| 508 |
+
self.qk_scale = self.head_dim**-0.5
|
| 509 |
+
|
| 510 |
+
# Q, K, V Projection (no bias -- detail from Perceiver/Flamingo Papers).
|
| 511 |
+
self.q_proj = nn.Linear(self.embed_dim, self.n_heads * self.head_dim, bias=False)
|
| 512 |
+
self.k_proj = nn.Linear(self.embed_dim, self.n_heads * self.head_dim, bias=False)
|
| 513 |
+
self.v_proj = nn.Linear(self.embed_dim, self.n_heads * self.head_dim, bias=False)
|
| 514 |
+
|
| 515 |
+
self.output_proj = nn.Linear(self.n_heads * self.head_dim, self.embed_dim, bias=False)
|
| 516 |
+
|
| 517 |
+
def forward(self, context: torch.Tensor, latents: torch.Tensor) -> torch.Tensor:
|
| 518 |
+
"""
|
| 519 |
+
Runs Perceiver Self-Attention, with special (context, latents) appended along the `seq` dimension!
|
| 520 |
+
:param context: Tensor of shape [bsz, seq, embed_dim] representing long-form context to resample.
|
| 521 |
+
:param latents: Tensor of shape [bsz, n_latents, embed_dim] representing fixed length latents to compress to.
|
| 522 |
+
:return: Tensor of shape [bsz, n_latents, embed_dim] representing attention over latents w/ cross from context.
|
| 523 |
+
"""
|
| 524 |
+
context = self.context_layer_norm(context)
|
| 525 |
+
latents = self.latents_layer_norm(latents)
|
| 526 |
+
|
| 527 |
+
# Query, Key, Value Projections --> Note that in Flamingo, latents are *concatenated* with context prior to attn!
|
| 528 |
+
# Note: This results in queries w/ `seq = n_latents`, and keys, values with `seq = len(context) + n_latents`
|
| 529 |
+
q = self.q_proj(latents)
|
| 530 |
+
k = self.k_proj(torch.cat([context, latents], dim=-2))
|
| 531 |
+
v = self.v_proj(torch.cat([context, latents], dim=-2))
|
| 532 |
+
|
| 533 |
+
# Multiheaded Self-Attention w/ stable softmax (subtract per-row max -- `amax` -- before softmax call)
|
| 534 |
+
# =>> `attn` should be a 2D matrix of shape [n_latents x (context + n_latents)]
|
| 535 |
+
q, k, v = [rearrange(x, "bsz seq (heads embed) -> bsz heads seq embed", heads=self.n_heads) for x in (q, k, v)]
|
| 536 |
+
if self.qk_layer_norms:
|
| 537 |
+
q = self.q_layer_norm(q)
|
| 538 |
+
k = self.k_layer_norm(k)
|
| 539 |
+
|
| 540 |
+
scores = torch.einsum("... i d, ... j d -> ... i j", q * self.qk_scale, k)
|
| 541 |
+
stabilized_scores = scores - (scores.amax(dim=-1, keepdim=True).detach())
|
| 542 |
+
attn = stabilized_scores.softmax(dim=-1)
|
| 543 |
+
|
| 544 |
+
# Attend & project back to output...
|
| 545 |
+
resampled = torch.einsum("... i j, ... j d -> ... i d", attn, v)
|
| 546 |
+
return self.output_proj(
|
| 547 |
+
rearrange(resampled, "bsz heads seq embed -> bsz seq (heads embed)", heads=self.n_heads)
|
| 548 |
+
)
|
| 549 |
+
|
| 550 |
+
|
| 551 |
+
class MLP(nn.Module):
|
| 552 |
+
def __init__(self, embed_dim, intermediate_size):
|
| 553 |
+
"""Simple MLP block with intermediate_size and embedding size"""
|
| 554 |
+
super().__init__()
|
| 555 |
+
self.embed_dim = embed_dim
|
| 556 |
+
self.ln = nn.LayerNorm(self.embed_dim)
|
| 557 |
+
self.fc = nn.Linear(self.embed_dim, intermediate_size, bias=False)
|
| 558 |
+
self.act = nn.ReLU()
|
| 559 |
+
self.c_proj = nn.Linear(intermediate_size, self.embed_dim, bias=False)
|
| 560 |
+
|
| 561 |
+
def forward(self, hidden_states: Optional[Tuple[torch.FloatTensor]]) -> torch.FloatTensor:
|
| 562 |
+
hidden_states = self.ln(hidden_states)
|
| 563 |
+
hidden_states = self.fc(hidden_states)
|
| 564 |
+
hidden_states = self.act(hidden_states)
|
| 565 |
+
hidden_states = self.c_proj(hidden_states)
|
| 566 |
+
|
| 567 |
+
return hidden_states
|
| 568 |
+
|
| 569 |
+
|
| 570 |
+
# Copied from transformers.models.llama.modeling_llama._get_unpad_data
|
| 571 |
+
def _get_unpad_data(attention_mask):
|
| 572 |
+
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
|
| 573 |
+
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
|
| 574 |
+
max_seqlen_in_batch = seqlens_in_batch.max().item()
|
| 575 |
+
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0))
|
| 576 |
+
return (
|
| 577 |
+
indices,
|
| 578 |
+
cu_seqlens,
|
| 579 |
+
max_seqlen_in_batch,
|
| 580 |
+
)
|
| 581 |
+
|
| 582 |
+
|
| 583 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaRMSNorm with Llama->Mistral
|
| 584 |
+
class MistralRMSNorm(nn.Module):
|
| 585 |
+
def __init__(self, hidden_size, eps=1e-6):
|
| 586 |
+
"""
|
| 587 |
+
MistralRMSNorm is equivalent to T5LayerNorm
|
| 588 |
+
"""
|
| 589 |
+
super().__init__()
|
| 590 |
+
self.weight = nn.Parameter(torch.ones(hidden_size))
|
| 591 |
+
self.variance_epsilon = eps
|
| 592 |
+
|
| 593 |
+
def forward(self, hidden_states):
|
| 594 |
+
input_dtype = hidden_states.dtype
|
| 595 |
+
hidden_states = hidden_states.to(torch.float32)
|
| 596 |
+
variance = hidden_states.pow(2).mean(-1, keepdim=True)
|
| 597 |
+
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
| 598 |
+
return self.weight * hidden_states.to(input_dtype)
|
| 599 |
+
|
| 600 |
+
|
| 601 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaRotaryEmbedding with Llama->Mistral
|
| 602 |
+
class MistralRotaryEmbedding(nn.Module):
|
| 603 |
+
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
|
| 604 |
+
super().__init__()
|
| 605 |
+
|
| 606 |
+
self.dim = dim
|
| 607 |
+
self.max_position_embeddings = max_position_embeddings
|
| 608 |
+
self.base = base
|
| 609 |
+
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
|
| 610 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
| 611 |
+
|
| 612 |
+
# Build here to make `torch.jit.trace` work.
|
| 613 |
+
self._set_cos_sin_cache(
|
| 614 |
+
seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype()
|
| 615 |
+
)
|
| 616 |
+
|
| 617 |
+
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
| 618 |
+
self.max_seq_len_cached = seq_len
|
| 619 |
+
t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
|
| 620 |
+
|
| 621 |
+
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
| 622 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
| 623 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
| 624 |
+
self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
|
| 625 |
+
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
|
| 626 |
+
|
| 627 |
+
def forward(self, x, seq_len=None):
|
| 628 |
+
# x: [bs, num_attention_heads, seq_len, head_size]
|
| 629 |
+
if seq_len > self.max_seq_len_cached:
|
| 630 |
+
self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype)
|
| 631 |
+
|
| 632 |
+
return (
|
| 633 |
+
self.cos_cached[:seq_len].to(dtype=x.dtype),
|
| 634 |
+
self.sin_cached[:seq_len].to(dtype=x.dtype),
|
| 635 |
+
)
|
| 636 |
+
|
| 637 |
+
|
| 638 |
+
# Copied from transformers.models.llama.modeling_llama.rotate_half
|
| 639 |
+
def rotate_half(x):
|
| 640 |
+
"""Rotates half the hidden dims of the input."""
|
| 641 |
+
x1 = x[..., : x.shape[-1] // 2]
|
| 642 |
+
x2 = x[..., x.shape[-1] // 2 :]
|
| 643 |
+
return torch.cat((-x2, x1), dim=-1)
|
| 644 |
+
|
| 645 |
+
|
| 646 |
+
# Copied from transformers.models.llama.modeling_llama.apply_rotary_pos_emb
|
| 647 |
+
def apply_rotary_pos_emb(q, k, cos, sin, position_ids):
|
| 648 |
+
cos = cos[position_ids].unsqueeze(1) # [seq_len, dim] -> [batch_size, 1, seq_len, head_dim]
|
| 649 |
+
sin = sin[position_ids].unsqueeze(1)
|
| 650 |
+
q_embed = (q * cos) + (rotate_half(q) * sin)
|
| 651 |
+
k_embed = (k * cos) + (rotate_half(k) * sin)
|
| 652 |
+
return q_embed, k_embed
|
| 653 |
+
|
| 654 |
+
|
| 655 |
+
class MistralMLP(nn.Module):
|
| 656 |
+
def __init__(self, config):
|
| 657 |
+
super().__init__()
|
| 658 |
+
self.config = config
|
| 659 |
+
self.hidden_size = config.hidden_size
|
| 660 |
+
self.intermediate_size = config.intermediate_size
|
| 661 |
+
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
| 662 |
+
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
| 663 |
+
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
|
| 664 |
+
self.act_fn = ACT2FN[config.hidden_act]
|
| 665 |
+
|
| 666 |
+
def forward(self, x):
|
| 667 |
+
return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
|
| 668 |
+
|
| 669 |
+
|
| 670 |
+
# Copied from transformers.models.llama.modeling_llama.repeat_kv
|
| 671 |
+
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
| 672 |
+
"""
|
| 673 |
+
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
|
| 674 |
+
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
|
| 675 |
+
"""
|
| 676 |
+
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
|
| 677 |
+
if n_rep == 1:
|
| 678 |
+
return hidden_states
|
| 679 |
+
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
|
| 680 |
+
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
|
| 681 |
+
|
| 682 |
+
|
| 683 |
+
class MistralAttention(nn.Module):
|
| 684 |
+
"""
|
| 685 |
+
Multi-headed attention from 'Attention Is All You Need' paper. Modified to use sliding window attention: Longformer
|
| 686 |
+
and "Generating Long Sequences with Sparse Transformers".
|
| 687 |
+
"""
|
| 688 |
+
|
| 689 |
+
def __init__(self, config: VMistralConfig, qk_layer_norms: bool = False):
|
| 690 |
+
super().__init__()
|
| 691 |
+
self.config = config
|
| 692 |
+
self.hidden_size = config.hidden_size
|
| 693 |
+
self.num_heads = config.num_attention_heads
|
| 694 |
+
self.head_dim = self.hidden_size // self.num_heads
|
| 695 |
+
self.num_key_value_heads = config.num_key_value_heads
|
| 696 |
+
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
|
| 697 |
+
self.max_position_embeddings = config.max_position_embeddings
|
| 698 |
+
self.rope_theta = config.rope_theta
|
| 699 |
+
self.is_causal = True
|
| 700 |
+
|
| 701 |
+
if (self.head_dim * self.num_heads) != self.hidden_size:
|
| 702 |
+
raise ValueError(
|
| 703 |
+
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
|
| 704 |
+
f" and `num_heads`: {self.num_heads})."
|
| 705 |
+
)
|
| 706 |
+
|
| 707 |
+
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
|
| 708 |
+
self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
|
| 709 |
+
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
|
| 710 |
+
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
|
| 711 |
+
|
| 712 |
+
self.qk_layer_norms = qk_layer_norms
|
| 713 |
+
if self.qk_layer_norms:
|
| 714 |
+
self.q_layer_norm = MistralRMSNorm(self.head_dim, eps=config.rms_norm_eps)
|
| 715 |
+
self.k_layer_norm = MistralRMSNorm(self.head_dim, eps=config.rms_norm_eps)
|
| 716 |
+
|
| 717 |
+
self.rotary_emb = MistralRotaryEmbedding(
|
| 718 |
+
self.head_dim,
|
| 719 |
+
max_position_embeddings=self.max_position_embeddings,
|
| 720 |
+
base=self.rope_theta,
|
| 721 |
+
)
|
| 722 |
+
self.attention_dropout = config.attention_dropout
|
| 723 |
+
|
| 724 |
+
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
|
| 725 |
+
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
|
| 726 |
+
|
| 727 |
+
def forward(
|
| 728 |
+
self,
|
| 729 |
+
hidden_states: torch.Tensor,
|
| 730 |
+
key_value_states: Optional[torch.Tensor] = None,
|
| 731 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 732 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 733 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
| 734 |
+
output_attentions: bool = False,
|
| 735 |
+
use_cache: bool = False,
|
| 736 |
+
**kwargs,
|
| 737 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
| 738 |
+
if "padding_mask" in kwargs:
|
| 739 |
+
warnings.warn(
|
| 740 |
+
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use"
|
| 741 |
+
" `attention_mask` instead.`"
|
| 742 |
+
)
|
| 743 |
+
|
| 744 |
+
bsz, q_len, _ = hidden_states.size()
|
| 745 |
+
|
| 746 |
+
query_states = self.q_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
| 747 |
+
key_states = (
|
| 748 |
+
self.k_proj(hidden_states).view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
| 749 |
+
)
|
| 750 |
+
value_states = (
|
| 751 |
+
self.v_proj(hidden_states).view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
| 752 |
+
)
|
| 753 |
+
|
| 754 |
+
kv_seq_len = key_states.shape[-2]
|
| 755 |
+
if past_key_value is not None:
|
| 756 |
+
kv_seq_len += past_key_value[0].shape[-2]
|
| 757 |
+
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
| 758 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
|
| 759 |
+
|
| 760 |
+
if past_key_value is not None:
|
| 761 |
+
# reuse k, v, self_attention
|
| 762 |
+
key_states = torch.cat([past_key_value[0], key_states], dim=2)
|
| 763 |
+
value_states = torch.cat([past_key_value[1], value_states], dim=2)
|
| 764 |
+
|
| 765 |
+
past_key_value = (key_states, value_states) if use_cache else None
|
| 766 |
+
|
| 767 |
+
if self.qk_layer_norms:
|
| 768 |
+
query_states = self.q_layer_norm(query_states)
|
| 769 |
+
key_states = self.k_layer_norm(key_states)
|
| 770 |
+
|
| 771 |
+
# repeat k/v heads if n_kv_heads < n_heads
|
| 772 |
+
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
| 773 |
+
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
| 774 |
+
|
| 775 |
+
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
|
| 776 |
+
|
| 777 |
+
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
|
| 778 |
+
raise ValueError(
|
| 779 |
+
f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
|
| 780 |
+
f" {attn_weights.size()}"
|
| 781 |
+
)
|
| 782 |
+
|
| 783 |
+
if attention_mask is not None:
|
| 784 |
+
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
|
| 785 |
+
raise ValueError(
|
| 786 |
+
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
|
| 787 |
+
)
|
| 788 |
+
|
| 789 |
+
attn_weights = attn_weights + attention_mask
|
| 790 |
+
|
| 791 |
+
# upcast attention to fp32
|
| 792 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
|
| 793 |
+
attn_output = torch.matmul(attn_weights, value_states)
|
| 794 |
+
|
| 795 |
+
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
|
| 796 |
+
raise ValueError(
|
| 797 |
+
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
|
| 798 |
+
f" {attn_output.size()}"
|
| 799 |
+
)
|
| 800 |
+
|
| 801 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
| 802 |
+
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
| 803 |
+
|
| 804 |
+
attn_output = self.o_proj(attn_output)
|
| 805 |
+
|
| 806 |
+
if not output_attentions:
|
| 807 |
+
attn_weights = None
|
| 808 |
+
|
| 809 |
+
return attn_output, attn_weights, past_key_value
|
| 810 |
+
|
| 811 |
+
|
| 812 |
+
class MistralFlashAttention2(MistralAttention):
|
| 813 |
+
"""
|
| 814 |
+
Mistral flash attention module. This module inherits from `MistralAttention` as the weights of the module stays
|
| 815 |
+
untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
|
| 816 |
+
flash attention and deal with padding tokens in case the input contains any of them.
|
| 817 |
+
"""
|
| 818 |
+
|
| 819 |
+
def forward(
|
| 820 |
+
self,
|
| 821 |
+
hidden_states: torch.Tensor,
|
| 822 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 823 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 824 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
| 825 |
+
output_attentions: bool = False,
|
| 826 |
+
use_cache: bool = False,
|
| 827 |
+
**kwargs,
|
| 828 |
+
):
|
| 829 |
+
if "padding_mask" in kwargs:
|
| 830 |
+
warnings.warn(
|
| 831 |
+
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use"
|
| 832 |
+
" `attention_mask` instead.`"
|
| 833 |
+
)
|
| 834 |
+
|
| 835 |
+
# overwrite attention_mask with padding_mask
|
| 836 |
+
attention_mask = kwargs.pop("padding_mask")
|
| 837 |
+
bsz, q_len, _ = hidden_states.size()
|
| 838 |
+
|
| 839 |
+
query_states = self.q_proj(hidden_states)
|
| 840 |
+
key_states = self.k_proj(hidden_states)
|
| 841 |
+
value_states = self.v_proj(hidden_states)
|
| 842 |
+
|
| 843 |
+
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
| 844 |
+
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
| 845 |
+
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
| 846 |
+
|
| 847 |
+
kv_seq_len = key_states.shape[-2]
|
| 848 |
+
if past_key_value is not None:
|
| 849 |
+
kv_seq_len += past_key_value[0].shape[-2]
|
| 850 |
+
|
| 851 |
+
# Because the input can be padded, the absolute sequence length depends on the max position id.
|
| 852 |
+
rotary_seq_len = max(kv_seq_len, position_ids[:, -1].max().item()) + 1
|
| 853 |
+
cos, sin = self.rotary_emb(value_states, seq_len=rotary_seq_len)
|
| 854 |
+
|
| 855 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
|
| 856 |
+
|
| 857 |
+
use_sliding_windows = False
|
| 858 |
+
# use_sliding_windows = (
|
| 859 |
+
# _flash_supports_window_size
|
| 860 |
+
# and hasattr(self.config, "sliding_window") is not None
|
| 861 |
+
# and kv_seq_len > self.config.sliding_window
|
| 862 |
+
# )
|
| 863 |
+
_flash_supports_window_size = None
|
| 864 |
+
|
| 865 |
+
if not _flash_supports_window_size:
|
| 866 |
+
logger.warning_once(
|
| 867 |
+
"The current flash attention version does not support sliding window attention, for a more memory"
|
| 868 |
+
" efficient implementation make sure to upgrade flash-attn library."
|
| 869 |
+
)
|
| 870 |
+
|
| 871 |
+
if past_key_value is not None:
|
| 872 |
+
# Activate slicing cache only if the config has a value `sliding_windows` attribute
|
| 873 |
+
if hasattr(self.config, "sliding_window") and kv_seq_len > self.config.sliding_window:
|
| 874 |
+
slicing_tokens = kv_seq_len - self.config.sliding_window
|
| 875 |
+
|
| 876 |
+
past_key = past_key_value[0]
|
| 877 |
+
past_value = past_key_value[1]
|
| 878 |
+
|
| 879 |
+
past_key = past_key[:, :, slicing_tokens:, :].contiguous()
|
| 880 |
+
past_value = past_value[:, :, slicing_tokens:, :].contiguous()
|
| 881 |
+
|
| 882 |
+
if past_key.shape[-2] != self.config.sliding_window - 1:
|
| 883 |
+
raise ValueError(
|
| 884 |
+
"past key must have a shape of (`batch_size, num_heads, self.config.sliding_window-1,"
|
| 885 |
+
f" head_dim`), got {past_key.shape}"
|
| 886 |
+
)
|
| 887 |
+
|
| 888 |
+
past_key_value = (past_key, past_value)
|
| 889 |
+
|
| 890 |
+
if attention_mask is not None:
|
| 891 |
+
attention_mask = attention_mask[:, slicing_tokens:]
|
| 892 |
+
attention_mask = torch.cat([attention_mask, torch.ones_like(attention_mask[:, -1:])], dim=-1)
|
| 893 |
+
|
| 894 |
+
key_states = torch.cat([past_key_value[0], key_states], dim=2)
|
| 895 |
+
value_states = torch.cat([past_key_value[1], value_states], dim=2)
|
| 896 |
+
|
| 897 |
+
past_key_value = (key_states, value_states) if use_cache else None
|
| 898 |
+
|
| 899 |
+
# repeat k/v heads if n_kv_heads < n_heads
|
| 900 |
+
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
| 901 |
+
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
| 902 |
+
dropout_rate = 0.0 if not self.training else self.attention_dropout
|
| 903 |
+
|
| 904 |
+
# In PEFT, usually we cast the layer norms in float32 for training stability reasons
|
| 905 |
+
# therefore the input hidden states gets silently casted in float32. Hence, we need
|
| 906 |
+
# cast them back in float16 just to be sure everything works as expected.
|
| 907 |
+
input_dtype = query_states.dtype
|
| 908 |
+
if input_dtype == torch.float32:
|
| 909 |
+
# Handle the case where the model is quantized
|
| 910 |
+
if hasattr(self.config, "_pre_quantization_dtype"):
|
| 911 |
+
target_dtype = self.config._pre_quantization_dtype
|
| 912 |
+
else:
|
| 913 |
+
target_dtype = self.q_proj.weight.dtype
|
| 914 |
+
|
| 915 |
+
logger.warning_once(
|
| 916 |
+
"The input hidden states seems to be silently casted in float32, this might be related to the fact"
|
| 917 |
+
" you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
|
| 918 |
+
f" {target_dtype}."
|
| 919 |
+
)
|
| 920 |
+
|
| 921 |
+
query_states = query_states.to(target_dtype)
|
| 922 |
+
key_states = key_states.to(target_dtype)
|
| 923 |
+
value_states = value_states.to(target_dtype)
|
| 924 |
+
|
| 925 |
+
# Reashape to the expected shape for Flash Attention
|
| 926 |
+
query_states = query_states.transpose(1, 2)
|
| 927 |
+
key_states = key_states.transpose(1, 2)
|
| 928 |
+
value_states = value_states.transpose(1, 2)
|
| 929 |
+
|
| 930 |
+
attn_output = self._flash_attention_forward(
|
| 931 |
+
query_states,
|
| 932 |
+
key_states,
|
| 933 |
+
value_states,
|
| 934 |
+
attention_mask,
|
| 935 |
+
q_len,
|
| 936 |
+
dropout=dropout_rate,
|
| 937 |
+
use_sliding_windows=use_sliding_windows,
|
| 938 |
+
)
|
| 939 |
+
|
| 940 |
+
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
|
| 941 |
+
attn_output = self.o_proj(attn_output)
|
| 942 |
+
|
| 943 |
+
if not output_attentions:
|
| 944 |
+
attn_weights = None
|
| 945 |
+
|
| 946 |
+
return attn_output, attn_weights, past_key_value
|
| 947 |
+
|
| 948 |
+
def _flash_attention_forward(
|
| 949 |
+
self,
|
| 950 |
+
query_states,
|
| 951 |
+
key_states,
|
| 952 |
+
value_states,
|
| 953 |
+
attention_mask,
|
| 954 |
+
query_length,
|
| 955 |
+
dropout=0.0,
|
| 956 |
+
softmax_scale=None,
|
| 957 |
+
use_sliding_windows=False,
|
| 958 |
+
):
|
| 959 |
+
"""
|
| 960 |
+
Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
|
| 961 |
+
first unpad the input, then computes the attention scores and pad the final attention scores.
|
| 962 |
+
|
| 963 |
+
Args:
|
| 964 |
+
query_states (`torch.Tensor`):
|
| 965 |
+
Input query states to be passed to Flash Attention API
|
| 966 |
+
key_states (`torch.Tensor`):
|
| 967 |
+
Input key states to be passed to Flash Attention API
|
| 968 |
+
value_states (`torch.Tensor`):
|
| 969 |
+
Input value states to be passed to Flash Attention API
|
| 970 |
+
attention_mask (`torch.Tensor`):
|
| 971 |
+
The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
|
| 972 |
+
position of padding tokens and 1 for the position of non-padding tokens.
|
| 973 |
+
dropout (`int`, *optional*):
|
| 974 |
+
Attention dropout
|
| 975 |
+
softmax_scale (`float`, *optional*):
|
| 976 |
+
The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
|
| 977 |
+
use_sliding_windows (`bool`, *optional*):
|
| 978 |
+
Whether to activate sliding window attention.
|
| 979 |
+
"""
|
| 980 |
+
# Contains at least one padding token in the sequence
|
| 981 |
+
if attention_mask is not None:
|
| 982 |
+
batch_size = query_states.shape[0]
|
| 983 |
+
query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
|
| 984 |
+
query_states, key_states, value_states, attention_mask, query_length
|
| 985 |
+
)
|
| 986 |
+
|
| 987 |
+
cu_seqlens_q, cu_seqlens_k = cu_seq_lens
|
| 988 |
+
max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
|
| 989 |
+
|
| 990 |
+
if not use_sliding_windows:
|
| 991 |
+
attn_output_unpad = flash_attn_varlen_func(
|
| 992 |
+
query_states,
|
| 993 |
+
key_states,
|
| 994 |
+
value_states,
|
| 995 |
+
cu_seqlens_q=cu_seqlens_q,
|
| 996 |
+
cu_seqlens_k=cu_seqlens_k,
|
| 997 |
+
max_seqlen_q=max_seqlen_in_batch_q,
|
| 998 |
+
max_seqlen_k=max_seqlen_in_batch_k,
|
| 999 |
+
dropout_p=dropout,
|
| 1000 |
+
softmax_scale=softmax_scale,
|
| 1001 |
+
causal=self.is_causal,
|
| 1002 |
+
)
|
| 1003 |
+
else:
|
| 1004 |
+
attn_output_unpad = flash_attn_varlen_func(
|
| 1005 |
+
query_states,
|
| 1006 |
+
key_states,
|
| 1007 |
+
value_states,
|
| 1008 |
+
cu_seqlens_q=cu_seqlens_q,
|
| 1009 |
+
cu_seqlens_k=cu_seqlens_k,
|
| 1010 |
+
max_seqlen_q=max_seqlen_in_batch_q,
|
| 1011 |
+
max_seqlen_k=max_seqlen_in_batch_k,
|
| 1012 |
+
dropout_p=dropout,
|
| 1013 |
+
softmax_scale=softmax_scale,
|
| 1014 |
+
causal=self.is_causal,
|
| 1015 |
+
window_size=(self.config.sliding_window, self.config.sliding_window),
|
| 1016 |
+
)
|
| 1017 |
+
|
| 1018 |
+
attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
|
| 1019 |
+
else:
|
| 1020 |
+
if not use_sliding_windows:
|
| 1021 |
+
attn_output = flash_attn_func(
|
| 1022 |
+
query_states,
|
| 1023 |
+
key_states,
|
| 1024 |
+
value_states,
|
| 1025 |
+
dropout,
|
| 1026 |
+
softmax_scale=softmax_scale,
|
| 1027 |
+
causal=self.is_causal,
|
| 1028 |
+
)
|
| 1029 |
+
else:
|
| 1030 |
+
attn_output = flash_attn_func(
|
| 1031 |
+
query_states,
|
| 1032 |
+
key_states,
|
| 1033 |
+
value_states,
|
| 1034 |
+
dropout,
|
| 1035 |
+
softmax_scale=softmax_scale,
|
| 1036 |
+
causal=self.is_causal,
|
| 1037 |
+
window_size=(self.config.sliding_window, self.config.sliding_window),
|
| 1038 |
+
)
|
| 1039 |
+
|
| 1040 |
+
return attn_output
|
| 1041 |
+
|
| 1042 |
+
def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
|
| 1043 |
+
batch_size, kv_seq_len, num_heads, head_dim = key_layer.shape
|
| 1044 |
+
|
| 1045 |
+
# On the first iteration we need to properly re-create the padding mask
|
| 1046 |
+
# by slicing it on the proper place
|
| 1047 |
+
if kv_seq_len != attention_mask.shape[-1]:
|
| 1048 |
+
attention_mask_num_tokens = attention_mask.shape[-1]
|
| 1049 |
+
attention_mask = attention_mask[:, attention_mask_num_tokens - kv_seq_len :]
|
| 1050 |
+
|
| 1051 |
+
indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
|
| 1052 |
+
|
| 1053 |
+
key_layer = index_first_axis(key_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k)
|
| 1054 |
+
value_layer = index_first_axis(value_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k)
|
| 1055 |
+
|
| 1056 |
+
if query_length == kv_seq_len:
|
| 1057 |
+
query_layer = index_first_axis(
|
| 1058 |
+
query_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k
|
| 1059 |
+
)
|
| 1060 |
+
cu_seqlens_q = cu_seqlens_k
|
| 1061 |
+
max_seqlen_in_batch_q = max_seqlen_in_batch_k
|
| 1062 |
+
indices_q = indices_k
|
| 1063 |
+
elif query_length == 1:
|
| 1064 |
+
max_seqlen_in_batch_q = 1
|
| 1065 |
+
cu_seqlens_q = torch.arange(
|
| 1066 |
+
batch_size + 1, dtype=torch.int32, device=query_layer.device
|
| 1067 |
+
) # There is a memcpy here, that is very bad.
|
| 1068 |
+
indices_q = cu_seqlens_q[:-1]
|
| 1069 |
+
query_layer = query_layer.squeeze(1)
|
| 1070 |
+
else:
|
| 1071 |
+
# The -q_len: slice assumes left padding.
|
| 1072 |
+
attention_mask = attention_mask[:, -query_length:]
|
| 1073 |
+
query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
|
| 1074 |
+
|
| 1075 |
+
return (
|
| 1076 |
+
query_layer,
|
| 1077 |
+
key_layer,
|
| 1078 |
+
value_layer,
|
| 1079 |
+
indices_q,
|
| 1080 |
+
(cu_seqlens_q, cu_seqlens_k),
|
| 1081 |
+
(max_seqlen_in_batch_q, max_seqlen_in_batch_k),
|
| 1082 |
+
)
|
| 1083 |
+
|
| 1084 |
+
|
| 1085 |
+
class MistralDecoderLayer(nn.Module):
|
| 1086 |
+
def __init__(self, config: VMistralConfig):
|
| 1087 |
+
super().__init__()
|
| 1088 |
+
self.hidden_size = config.hidden_size
|
| 1089 |
+
self.self_attn = (
|
| 1090 |
+
MistralAttention(config=config)
|
| 1091 |
+
)
|
| 1092 |
+
self.mlp = MistralMLP(config)
|
| 1093 |
+
self.input_layernorm = MistralRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
| 1094 |
+
self.post_attention_layernorm = MistralRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
| 1095 |
+
|
| 1096 |
+
def forward(
|
| 1097 |
+
self,
|
| 1098 |
+
hidden_states: torch.Tensor,
|
| 1099 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 1100 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 1101 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
| 1102 |
+
output_attentions: Optional[bool] = False,
|
| 1103 |
+
use_cache: Optional[bool] = False,
|
| 1104 |
+
**kwargs,
|
| 1105 |
+
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
| 1106 |
+
if "padding_mask" in kwargs:
|
| 1107 |
+
warnings.warn(
|
| 1108 |
+
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use"
|
| 1109 |
+
" `attention_mask` instead.`"
|
| 1110 |
+
)
|
| 1111 |
+
"""
|
| 1112 |
+
Args:
|
| 1113 |
+
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
| 1114 |
+
attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
|
| 1115 |
+
`(batch, sequence_length)` where padding elements are indicated by 0.
|
| 1116 |
+
output_attentions (`bool`, *optional*):
|
| 1117 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
| 1118 |
+
returned tensors for more detail.
|
| 1119 |
+
use_cache (`bool`, *optional*):
|
| 1120 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
|
| 1121 |
+
(see `past_key_values`).
|
| 1122 |
+
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
|
| 1123 |
+
"""
|
| 1124 |
+
|
| 1125 |
+
residual = hidden_states
|
| 1126 |
+
|
| 1127 |
+
hidden_states = self.input_layernorm(hidden_states)
|
| 1128 |
+
|
| 1129 |
+
# Self Attention
|
| 1130 |
+
hidden_states, self_attn_weights, present_key_value = self.self_attn(
|
| 1131 |
+
hidden_states=hidden_states,
|
| 1132 |
+
attention_mask=attention_mask,
|
| 1133 |
+
position_ids=position_ids,
|
| 1134 |
+
past_key_value=past_key_value,
|
| 1135 |
+
output_attentions=output_attentions,
|
| 1136 |
+
use_cache=use_cache,
|
| 1137 |
+
)
|
| 1138 |
+
hidden_states = residual + hidden_states
|
| 1139 |
+
|
| 1140 |
+
# Fully Connected
|
| 1141 |
+
residual = hidden_states
|
| 1142 |
+
hidden_states = self.post_attention_layernorm(hidden_states)
|
| 1143 |
+
hidden_states = self.mlp(hidden_states)
|
| 1144 |
+
hidden_states = residual + hidden_states
|
| 1145 |
+
|
| 1146 |
+
outputs = (hidden_states,)
|
| 1147 |
+
|
| 1148 |
+
if output_attentions:
|
| 1149 |
+
outputs += (self_attn_weights,)
|
| 1150 |
+
|
| 1151 |
+
if use_cache:
|
| 1152 |
+
outputs += (present_key_value,)
|
| 1153 |
+
|
| 1154 |
+
return outputs
|
| 1155 |
+
|
| 1156 |
+
|
| 1157 |
+
MISTRAL_START_DOCSTRING = r"""
|
| 1158 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
| 1159 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
| 1160 |
+
etc.)
|
| 1161 |
+
|
| 1162 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
| 1163 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
| 1164 |
+
and behavior.
|
| 1165 |
+
|
| 1166 |
+
Parameters:
|
| 1167 |
+
config ([`VMistralConfig`]):
|
| 1168 |
+
Model configuration class with all the parameters of the model. Initializing with a config file does not
|
| 1169 |
+
load the weights associated with the model, only the configuration. Check out the
|
| 1170 |
+
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
| 1171 |
+
"""
|
| 1172 |
+
|
| 1173 |
+
|
| 1174 |
+
@add_start_docstrings(
|
| 1175 |
+
"The bare Mistral Model outputting raw hidden-states without any specific head on top.",
|
| 1176 |
+
MISTRAL_START_DOCSTRING,
|
| 1177 |
+
)
|
| 1178 |
+
class VMistralPreTrainedModel(PreTrainedModel):
|
| 1179 |
+
config_class = VMistralConfig
|
| 1180 |
+
base_model_prefix = "model"
|
| 1181 |
+
supports_gradient_checkpointing = True
|
| 1182 |
+
_no_split_modules = ["MistralDecoderLayer"]
|
| 1183 |
+
_skip_keys_device_placement = "past_key_values"
|
| 1184 |
+
_supports_sdpa = False
|
| 1185 |
+
|
| 1186 |
+
def _init_weights(self, module):
|
| 1187 |
+
# important: this ported version of the model isn't meant for training from scratch - only
|
| 1188 |
+
# inference and fine-tuning - so the proper init weights code has been removed - the m4 code
|
| 1189 |
+
# base should be used for training from scratch and it contains the correct code.
|
| 1190 |
+
std = self.config.initializer_range
|
| 1191 |
+
if isinstance(module, nn.Linear):
|
| 1192 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
| 1193 |
+
if module.bias is not None:
|
| 1194 |
+
module.bias.data.zero_()
|
| 1195 |
+
elif isinstance(module, nn.Embedding):
|
| 1196 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
| 1197 |
+
if module.padding_idx is not None:
|
| 1198 |
+
module.weight.data[module.padding_idx].zero_()
|
| 1199 |
+
|
| 1200 |
+
# @classmethod
|
| 1201 |
+
# def override_vision_model_wrapper(cls, model, config, vision_model_name, vision_model_params, torch_dtype):
|
| 1202 |
+
# # this can be called via from_pretrained from a class w/ head or w/o head so we extract the beheaded model version
|
| 1203 |
+
# beheaded_model = model.model if hasattr(model, "model") else model
|
| 1204 |
+
# cls.override_vision_model(beheaded_model, vision_model_name, vision_model_params, torch_dtype)
|
| 1205 |
+
# beheaded_model.freeze_relevant_params(config)
|
| 1206 |
+
|
| 1207 |
+
|
| 1208 |
+
MISTRAL_INPUTS_DOCSTRING = r"""
|
| 1209 |
+
Args:
|
| 1210 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
| 1211 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
| 1212 |
+
it.
|
| 1213 |
+
|
| 1214 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
| 1215 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
| 1216 |
+
|
| 1217 |
+
[What are input IDs?](../glossary#input-ids)
|
| 1218 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 1219 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
| 1220 |
+
|
| 1221 |
+
- 1 for tokens that are **not masked**,
|
| 1222 |
+
- 0 for tokens that are **masked**.
|
| 1223 |
+
|
| 1224 |
+
[What are attention masks?](../glossary#attention-mask)
|
| 1225 |
+
|
| 1226 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
| 1227 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
| 1228 |
+
|
| 1229 |
+
If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
|
| 1230 |
+
`past_key_values`).
|
| 1231 |
+
|
| 1232 |
+
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
|
| 1233 |
+
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
|
| 1234 |
+
information on the default strategy.
|
| 1235 |
+
|
| 1236 |
+
- 1 indicates the head is **not masked**,
|
| 1237 |
+
- 0 indicates the head is **masked**.
|
| 1238 |
+
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 1239 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
| 1240 |
+
config.n_positions - 1]`.
|
| 1241 |
+
|
| 1242 |
+
[What are position IDs?](../glossary#position-ids)
|
| 1243 |
+
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
|
| 1244 |
+
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
|
| 1245 |
+
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
|
| 1246 |
+
`(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
|
| 1247 |
+
|
| 1248 |
+
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
|
| 1249 |
+
blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
|
| 1250 |
+
|
| 1251 |
+
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
|
| 1252 |
+
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
|
| 1253 |
+
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
|
| 1254 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
| 1255 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
| 1256 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
| 1257 |
+
model's internal embedding lookup matrix.
|
| 1258 |
+
use_cache (`bool`, *optional*):
|
| 1259 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
| 1260 |
+
`past_key_values`).
|
| 1261 |
+
output_attentions (`bool`, *optional*):
|
| 1262 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
| 1263 |
+
tensors for more detail.
|
| 1264 |
+
output_hidden_states (`bool`, *optional*):
|
| 1265 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
| 1266 |
+
more detail.
|
| 1267 |
+
return_dict (`bool`, *optional*):
|
| 1268 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
| 1269 |
+
"""
|
| 1270 |
+
|
| 1271 |
+
|
| 1272 |
+
@add_start_docstrings(
|
| 1273 |
+
"The bare Mistral Model outputting raw hidden-states without any specific head on top.",
|
| 1274 |
+
MISTRAL_START_DOCSTRING,
|
| 1275 |
+
)
|
| 1276 |
+
class VMistralModel(VMistralPreTrainedModel):
|
| 1277 |
+
"""
|
| 1278 |
+
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`MistralDecoderLayer`]
|
| 1279 |
+
|
| 1280 |
+
Args:
|
| 1281 |
+
config: VMistralConfig
|
| 1282 |
+
"""
|
| 1283 |
+
|
| 1284 |
+
def __init__(self, config: VMistralConfig, vision_model=None):
|
| 1285 |
+
super().__init__(config)
|
| 1286 |
+
self.config = config
|
| 1287 |
+
self.padding_idx = config.pad_token_id
|
| 1288 |
+
self.vocab_size = config.vocab_size
|
| 1289 |
+
|
| 1290 |
+
self.sliding_window = config.sliding_window
|
| 1291 |
+
|
| 1292 |
+
self.embed_tokens = DecoupledEmbedding(
|
| 1293 |
+
num_embeddings=config.vocab_size,
|
| 1294 |
+
num_additional_embeddings=config.additional_vocab_size,
|
| 1295 |
+
embedding_dim=config.hidden_size,
|
| 1296 |
+
partially_freeze=config.freeze_text_layers,
|
| 1297 |
+
padding_idx=self.padding_idx,
|
| 1298 |
+
)
|
| 1299 |
+
|
| 1300 |
+
# Load an uninitialized model and later in from_pretrained will load the pre-trained model -
|
| 1301 |
+
# this solves the losing of weights in `from_pretrained` on the main model
|
| 1302 |
+
self.vision_model = SiglipVisionModel(config.vision_config)
|
| 1303 |
+
|
| 1304 |
+
# Dim projection - projecting from the vision dim to the text dim
|
| 1305 |
+
self.modality_projection = ModalityProjection(
|
| 1306 |
+
embed_dim_in=self.config.vision_config.hidden_size, embed_dim_out=self.config.hidden_size
|
| 1307 |
+
)
|
| 1308 |
+
|
| 1309 |
+
# Perceiver Resampler
|
| 1310 |
+
if config.use_resampler:
|
| 1311 |
+
self.perceiver_resampler = PerceiverResampler(
|
| 1312 |
+
config.hidden_size,
|
| 1313 |
+
config.perceiver_config.resampler_depth,
|
| 1314 |
+
config.perceiver_config.resampler_n_heads,
|
| 1315 |
+
config.perceiver_config.resampler_head_dim,
|
| 1316 |
+
config.perceiver_config.resampler_n_latents,
|
| 1317 |
+
config.perceiver_config.qk_layer_norms_perceiver,
|
| 1318 |
+
)
|
| 1319 |
+
|
| 1320 |
+
if config.use_resampler:
|
| 1321 |
+
self.image_seq_len = config.perceiver_config.resampler_n_latents
|
| 1322 |
+
else:
|
| 1323 |
+
self.image_seq_len = (
|
| 1324 |
+
config.vision_config.image_size // config.vision_config.patch_size
|
| 1325 |
+
) ** 2 # TODO: pretty sure that does not work for CLIP models since there is the CLS token
|
| 1326 |
+
self.image_token_id = self.config.image_token_id
|
| 1327 |
+
|
| 1328 |
+
self.layers = nn.ModuleList([MistralDecoderLayer(config) for _ in range(config.num_hidden_layers)])
|
| 1329 |
+
|
| 1330 |
+
self.gradient_checkpointing = False
|
| 1331 |
+
|
| 1332 |
+
self.norm = MistralRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
| 1333 |
+
|
| 1334 |
+
# Initialize weights and apply final processing
|
| 1335 |
+
self.post_init()
|
| 1336 |
+
|
| 1337 |
+
self.freeze_relevant_params(config)
|
| 1338 |
+
|
| 1339 |
+
def freeze_relevant_params(self, config=None):
|
| 1340 |
+
if config is None:
|
| 1341 |
+
config = self.config
|
| 1342 |
+
|
| 1343 |
+
if config.freeze_text_layers:
|
| 1344 |
+
self.freeze_text_layers(config.freeze_text_module_exceptions)
|
| 1345 |
+
|
| 1346 |
+
if config.freeze_vision_layers:
|
| 1347 |
+
freeze_model(self.vision_model, module_exceptions=config.freeze_vision_module_exceptions)
|
| 1348 |
+
|
| 1349 |
+
def freeze_text_layers(self, module_exceptions):
|
| 1350 |
+
for module in [self.layers, self.norm]:
|
| 1351 |
+
freeze_model(module, module_exceptions=module_exceptions)
|
| 1352 |
+
|
| 1353 |
+
def get_input_embeddings(self):
|
| 1354 |
+
return self.embed_tokens
|
| 1355 |
+
|
| 1356 |
+
def set_input_embeddings(self, value):
|
| 1357 |
+
self.embed_tokens = value
|
| 1358 |
+
|
| 1359 |
+
def inputs_merger(
|
| 1360 |
+
self,
|
| 1361 |
+
input_ids: torch.LongTensor = None,
|
| 1362 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
| 1363 |
+
image_hidden_states: Optional[torch.Tensor] = None,
|
| 1364 |
+
):
|
| 1365 |
+
"""
|
| 1366 |
+
This method aims at merging the token embeddings with the image hidden states into one single sequence of vectors that are fed to the transformer LM.
|
| 1367 |
+
The merging happens as follows:
|
| 1368 |
+
- The text token sequence is: `tok_1 tok_2 tok_3 <fake_token_around_image> <image> <image> ... <image> <fake_token_around_image> tok_4`.
|
| 1369 |
+
- We get the image hidden states for the image through the vision encoder (and potentially the perceiver), and that hidden state is then projected into the text embedding space.
|
| 1370 |
+
We thus have a sequence of image hidden states of size (1, image_seq_len, hidden_dim), where 1 is for batch_size of 1 image and hidden_dim is the hidden_dim of the LM transformer.
|
| 1371 |
+
- The merging happens so that we obtain the following sequence: `vector_tok_1 vector_tok_2 vector_tok_3 vector_fake_tok_around_image {sequence of image_seq_len image hidden states} vector_fake_toke_around_image vector_tok_4`. That sequence is fed to the LM.
|
| 1372 |
+
- To fit the format of that sequence, `input_ids`, `input_embeds`, `attention_mask` are all 3 adapted to insert the image hidden states.
|
| 1373 |
+
"""
|
| 1374 |
+
batch_size = input_ids.size(0)
|
| 1375 |
+
|
| 1376 |
+
if inputs_embeds is not None:
|
| 1377 |
+
new_inputs_embeds = inputs_embeds.clone()
|
| 1378 |
+
|
| 1379 |
+
if image_hidden_states is not None:
|
| 1380 |
+
vision_pipeline_output_seq_len = image_hidden_states.shape[1]
|
| 1381 |
+
vision_hidden_size = image_hidden_states.shape[2]
|
| 1382 |
+
# Get the number of images for each example
|
| 1383 |
+
num_images = (input_ids == self.image_token_id).sum(dim=-1) // self.image_seq_len
|
| 1384 |
+
cum_num_images = num_images.cumsum(dim=-1)
|
| 1385 |
+
for batch_idx in range(batch_size):
|
| 1386 |
+
# Get the number of images for this particular example
|
| 1387 |
+
example_num_images = num_images[batch_idx]
|
| 1388 |
+
# Get the image_hidden_states corresponding to True images for the example, so get rid of the padding images.
|
| 1389 |
+
start = 0 if batch_idx == 0 else cum_num_images[batch_idx - 1]
|
| 1390 |
+
end = cum_num_images[batch_idx]
|
| 1391 |
+
example_true_image_hidden_states = image_hidden_states[start:end]
|
| 1392 |
+
if (
|
| 1393 |
+
new_inputs_embeds[batch_idx][input_ids[batch_idx] == self.image_token_id].shape[0]
|
| 1394 |
+
!= example_num_images * vision_pipeline_output_seq_len
|
| 1395 |
+
):
|
| 1396 |
+
raise ValueError(
|
| 1397 |
+
"new_inputs_embeds to replace has shape[0]:"
|
| 1398 |
+
f" {new_inputs_embeds[batch_idx][input_ids[batch_idx] == self.image_token_id].shape[0]} but"
|
| 1399 |
+
" should have shape[0]:"
|
| 1400 |
+
f" {example_num_images}*{vision_pipeline_output_seq_len}={example_num_images * vision_pipeline_output_seq_len} "
|
| 1401 |
+
)
|
| 1402 |
+
# Insert the image_hidden_states
|
| 1403 |
+
new_inputs_embeds[batch_idx][input_ids[batch_idx] == self.image_token_id] = (
|
| 1404 |
+
example_true_image_hidden_states.view(
|
| 1405 |
+
example_num_images * vision_pipeline_output_seq_len,
|
| 1406 |
+
vision_hidden_size,
|
| 1407 |
+
)
|
| 1408 |
+
)
|
| 1409 |
+
|
| 1410 |
+
return_dict = {}
|
| 1411 |
+
if inputs_embeds is not None:
|
| 1412 |
+
return_dict["inputs_embeds"] = new_inputs_embeds
|
| 1413 |
+
|
| 1414 |
+
return return_dict
|
| 1415 |
+
|
| 1416 |
+
@add_start_docstrings_to_model_forward(MISTRAL_INPUTS_DOCSTRING)
|
| 1417 |
+
def forward(
|
| 1418 |
+
self,
|
| 1419 |
+
input_ids: torch.LongTensor = None,
|
| 1420 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 1421 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 1422 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
| 1423 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 1424 |
+
pixel_values: Optional[torch.FloatTensor] = None,
|
| 1425 |
+
image_hidden_states: Optional[torch.FloatTensor] = None,
|
| 1426 |
+
use_cache: Optional[bool] = None,
|
| 1427 |
+
output_attentions: Optional[bool] = None,
|
| 1428 |
+
output_hidden_states: Optional[bool] = None,
|
| 1429 |
+
return_dict: Optional[bool] = None,
|
| 1430 |
+
) -> Union[Tuple, VMistralBaseModelOutputWithPast]:
|
| 1431 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
| 1432 |
+
|
| 1433 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 1434 |
+
output_hidden_states = (
|
| 1435 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 1436 |
+
)
|
| 1437 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
| 1438 |
+
|
| 1439 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 1440 |
+
|
| 1441 |
+
# retrieve input_ids and inputs_embeds
|
| 1442 |
+
if input_ids is not None and inputs_embeds is not None:
|
| 1443 |
+
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
|
| 1444 |
+
elif input_ids is not None:
|
| 1445 |
+
batch_size, seq_length = input_ids.shape
|
| 1446 |
+
elif inputs_embeds is not None:
|
| 1447 |
+
batch_size, seq_length, _ = inputs_embeds.shape
|
| 1448 |
+
else:
|
| 1449 |
+
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
|
| 1450 |
+
|
| 1451 |
+
seq_length_with_past = seq_length
|
| 1452 |
+
past_key_values_length = 0
|
| 1453 |
+
|
| 1454 |
+
if past_key_values is not None:
|
| 1455 |
+
past_key_values_length = past_key_values[0][0].shape[2]
|
| 1456 |
+
seq_length_with_past = seq_length_with_past + past_key_values_length
|
| 1457 |
+
|
| 1458 |
+
if position_ids is None:
|
| 1459 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
| 1460 |
+
position_ids = torch.arange(
|
| 1461 |
+
past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
|
| 1462 |
+
)
|
| 1463 |
+
position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
|
| 1464 |
+
else:
|
| 1465 |
+
position_ids = position_ids.view(-1, seq_length).long()
|
| 1466 |
+
|
| 1467 |
+
if inputs_embeds is None:
|
| 1468 |
+
inputs_embeds = self.embed_tokens(input_ids)
|
| 1469 |
+
|
| 1470 |
+
# START VISUAL INPUTS INTEGRATION
|
| 1471 |
+
if pixel_values is not None and image_hidden_states is not None:
|
| 1472 |
+
raise ValueError("You cannot specify both pixel_values and image_hidden_states at the same time")
|
| 1473 |
+
elif pixel_values is not None:
|
| 1474 |
+
pixel_values = pixel_values.to(dtype=self.dtype, device=input_ids.device) # fp16 compatibility
|
| 1475 |
+
batch_size, num_images = pixel_values.size(0), pixel_values.size(1)
|
| 1476 |
+
pixel_values = pixel_values.contiguous().view(batch_size * num_images, *pixel_values.shape[2:])
|
| 1477 |
+
# Remove padding images - padding images are full 0.
|
| 1478 |
+
real_images_inds = pixel_values.sum(dim=(-1, -2, -3)) != 0.0
|
| 1479 |
+
pixel_values = pixel_values[real_images_inds]
|
| 1480 |
+
# Get sequence from the vision encoder
|
| 1481 |
+
image_hidden_states = self.vision_model(pixel_values=pixel_values).last_hidden_state
|
| 1482 |
+
|
| 1483 |
+
# Modality projection
|
| 1484 |
+
image_hidden_states = self.modality_projection(image_hidden_states)
|
| 1485 |
+
|
| 1486 |
+
if self.config.use_resampler:
|
| 1487 |
+
image_hidden_states = self.perceiver_resampler(image_hidden_states)
|
| 1488 |
+
elif image_hidden_states is not None:
|
| 1489 |
+
image_hidden_states = image_hidden_states.to(dtype=self.dtype, device=input_ids.device)
|
| 1490 |
+
|
| 1491 |
+
if past_key_values is None:
|
| 1492 |
+
# When we generate, we don't want to replace the potential image_token_id that we generated by images
|
| 1493 |
+
# that simply don't exist
|
| 1494 |
+
new_inp = self.inputs_merger(
|
| 1495 |
+
input_ids=input_ids,
|
| 1496 |
+
inputs_embeds=inputs_embeds,
|
| 1497 |
+
image_hidden_states=image_hidden_states,
|
| 1498 |
+
)
|
| 1499 |
+
inputs_embeds = new_inp["inputs_embeds"]
|
| 1500 |
+
|
| 1501 |
+
# Can do add some token types embeddings here (image token vs text token)
|
| 1502 |
+
# something like inputs_embeds += self.token_types(token_types)
|
| 1503 |
+
|
| 1504 |
+
# embed positions
|
| 1505 |
+
if (
|
| 1506 |
+
attention_mask is not None
|
| 1507 |
+
and hasattr(self.config, "_flash_attn_2_enabled")
|
| 1508 |
+
and self.config._flash_attn_2_enabled
|
| 1509 |
+
and past_key_values is not None
|
| 1510 |
+
):
|
| 1511 |
+
is_padding_right = attention_mask[:, -1].sum().item() != batch_size
|
| 1512 |
+
if is_padding_right:
|
| 1513 |
+
raise ValueError(
|
| 1514 |
+
"You are attempting to perform batched generation with padding_side='right'"
|
| 1515 |
+
" this may lead to unexpected behaviour for Flash Attention version of Mistral. Make sure to "
|
| 1516 |
+
" call `tokenizer.padding_side = 'left'` before tokenizing the input. "
|
| 1517 |
+
)
|
| 1518 |
+
|
| 1519 |
+
if getattr(self.config, "_flash_attn_2_enabled", False):
|
| 1520 |
+
# 2d mask is passed through the layers
|
| 1521 |
+
attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
|
| 1522 |
+
else:
|
| 1523 |
+
# 4d mask is passed through the layers
|
| 1524 |
+
attention_mask = _prepare_4d_causal_attention_mask(
|
| 1525 |
+
attention_mask,
|
| 1526 |
+
(batch_size, seq_length),
|
| 1527 |
+
inputs_embeds,
|
| 1528 |
+
past_key_values_length,
|
| 1529 |
+
sliding_window=self.config.sliding_window,
|
| 1530 |
+
)
|
| 1531 |
+
attention_mask[attention_mask == -float("inf")] = torch.finfo(self.dtype).min
|
| 1532 |
+
|
| 1533 |
+
hidden_states = inputs_embeds
|
| 1534 |
+
|
| 1535 |
+
if self.gradient_checkpointing and self.training:
|
| 1536 |
+
if use_cache:
|
| 1537 |
+
logger.warning_once(
|
| 1538 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
| 1539 |
+
)
|
| 1540 |
+
use_cache = False
|
| 1541 |
+
|
| 1542 |
+
# decoder layers
|
| 1543 |
+
all_hidden_states = () if output_hidden_states else None
|
| 1544 |
+
all_self_attns = () if output_attentions else None
|
| 1545 |
+
next_decoder_cache = () if use_cache else None
|
| 1546 |
+
|
| 1547 |
+
for idx, decoder_layer in enumerate(self.layers):
|
| 1548 |
+
if output_hidden_states:
|
| 1549 |
+
all_hidden_states += (hidden_states,)
|
| 1550 |
+
|
| 1551 |
+
past_key_value = past_key_values[idx] if past_key_values is not None else None
|
| 1552 |
+
|
| 1553 |
+
if self.gradient_checkpointing and self.training:
|
| 1554 |
+
layer_outputs = self._gradient_checkpointing_func(
|
| 1555 |
+
decoder_layer.__call__,
|
| 1556 |
+
hidden_states,
|
| 1557 |
+
attention_mask,
|
| 1558 |
+
position_ids,
|
| 1559 |
+
past_key_value,
|
| 1560 |
+
output_attentions,
|
| 1561 |
+
use_cache,
|
| 1562 |
+
)
|
| 1563 |
+
else:
|
| 1564 |
+
layer_outputs = decoder_layer(
|
| 1565 |
+
hidden_states,
|
| 1566 |
+
attention_mask=attention_mask,
|
| 1567 |
+
position_ids=position_ids,
|
| 1568 |
+
past_key_value=past_key_value,
|
| 1569 |
+
output_attentions=output_attentions,
|
| 1570 |
+
use_cache=use_cache,
|
| 1571 |
+
)
|
| 1572 |
+
|
| 1573 |
+
hidden_states = layer_outputs[0]
|
| 1574 |
+
|
| 1575 |
+
if use_cache:
|
| 1576 |
+
next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
|
| 1577 |
+
|
| 1578 |
+
if output_attentions:
|
| 1579 |
+
all_self_attns += (layer_outputs[1],)
|
| 1580 |
+
|
| 1581 |
+
hidden_states = self.norm(hidden_states)
|
| 1582 |
+
|
| 1583 |
+
# add hidden states from the last decoder layer
|
| 1584 |
+
if output_hidden_states:
|
| 1585 |
+
all_hidden_states += (hidden_states,)
|
| 1586 |
+
|
| 1587 |
+
next_cache = next_decoder_cache if use_cache else None
|
| 1588 |
+
if not return_dict:
|
| 1589 |
+
return tuple(
|
| 1590 |
+
v
|
| 1591 |
+
for v in [hidden_states, next_cache, all_hidden_states, all_self_attns, image_hidden_states]
|
| 1592 |
+
if v is not None
|
| 1593 |
+
)
|
| 1594 |
+
return VMistralBaseModelOutputWithPast(
|
| 1595 |
+
last_hidden_state=hidden_states,
|
| 1596 |
+
past_key_values=next_cache,
|
| 1597 |
+
hidden_states=all_hidden_states,
|
| 1598 |
+
attentions=all_self_attns,
|
| 1599 |
+
image_hidden_states=image_hidden_states,
|
| 1600 |
+
)
|
| 1601 |
+
|
| 1602 |
+
|
| 1603 |
+
class VMistralForVisionText2Text(VMistralPreTrainedModel):
|
| 1604 |
+
_tied_weights_keys = ["lm_head.weight"]
|
| 1605 |
+
|
| 1606 |
+
def __init__(self, config, vision_model=None):
|
| 1607 |
+
super().__init__(config)
|
| 1608 |
+
self.model = VMistralModel(config, vision_model=vision_model)
|
| 1609 |
+
self.image_token_id = self.config.image_token_id
|
| 1610 |
+
self.lm_head = DecoupledLinear(
|
| 1611 |
+
in_features=config.hidden_size,
|
| 1612 |
+
out_features=config.vocab_size,
|
| 1613 |
+
out_additional_features=config.additional_vocab_size,
|
| 1614 |
+
bias=False,
|
| 1615 |
+
partially_freeze=config.freeze_lm_head,
|
| 1616 |
+
)
|
| 1617 |
+
|
| 1618 |
+
# Initialize weights and apply final processing
|
| 1619 |
+
self.post_init()
|
| 1620 |
+
|
| 1621 |
+
def get_input_embeddings(self):
|
| 1622 |
+
return self.model.embed_tokens
|
| 1623 |
+
|
| 1624 |
+
def set_input_embeddings(self, value):
|
| 1625 |
+
self.model.embed_tokens = value
|
| 1626 |
+
|
| 1627 |
+
def get_output_embeddings(self):
|
| 1628 |
+
return self.lm_head
|
| 1629 |
+
|
| 1630 |
+
def set_output_embeddings(self, new_embeddings):
|
| 1631 |
+
self.lm_head = new_embeddings
|
| 1632 |
+
|
| 1633 |
+
def set_decoder(self, decoder):
|
| 1634 |
+
self.model = decoder
|
| 1635 |
+
|
| 1636 |
+
def get_decoder(self):
|
| 1637 |
+
return self.model
|
| 1638 |
+
|
| 1639 |
+
def tie_weights(self):
|
| 1640 |
+
"""
|
| 1641 |
+
Overwrite `transformers.modeling_utils.PreTrainedModel.tie_weights` to handle the case of DecoupledLinear and DecoupledEmbedding.
|
| 1642 |
+
"""
|
| 1643 |
+
output_embeddings = self.get_output_embeddings()
|
| 1644 |
+
input_embeddings = self.get_input_embeddings()
|
| 1645 |
+
|
| 1646 |
+
if getattr(self.config, "tie_word_embeddings", True):
|
| 1647 |
+
output_embeddings.weight = input_embeddings.weight
|
| 1648 |
+
if input_embeddings.num_additional_embeddings > 0:
|
| 1649 |
+
assert output_embeddings.out_additional_features == input_embeddings.num_additional_embeddings
|
| 1650 |
+
output_embeddings.additional_fc.weight = input_embeddings.additional_embedding.weight
|
| 1651 |
+
|
| 1652 |
+
if hasattr(output_embeddings, "out_features") and hasattr(input_embeddings, "num_embeddings"):
|
| 1653 |
+
output_embeddings.out_features = input_embeddings.num_embeddings
|
| 1654 |
+
if hasattr(output_embeddings, "out_additional_features") and hasattr(
|
| 1655 |
+
input_embeddings, "num_additional_embeddings"
|
| 1656 |
+
):
|
| 1657 |
+
output_embeddings.out_additional_features = input_embeddings.num_additional_embeddings
|
| 1658 |
+
|
| 1659 |
+
@add_start_docstrings_to_model_forward(MISTRAL_INPUTS_DOCSTRING)
|
| 1660 |
+
@replace_return_docstrings(output_type=VMistralCausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
|
| 1661 |
+
def forward(
|
| 1662 |
+
self,
|
| 1663 |
+
input_ids: torch.LongTensor = None,
|
| 1664 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 1665 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 1666 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
| 1667 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 1668 |
+
pixel_values: Optional[torch.FloatTensor] = None,
|
| 1669 |
+
image_hidden_states: Optional[torch.FloatTensor] = None,
|
| 1670 |
+
labels: Optional[torch.LongTensor] = None,
|
| 1671 |
+
use_cache: Optional[bool] = None,
|
| 1672 |
+
output_attentions: Optional[bool] = None,
|
| 1673 |
+
output_hidden_states: Optional[bool] = None,
|
| 1674 |
+
return_dict: Optional[bool] = None,
|
| 1675 |
+
) -> Union[Tuple, VMistralCausalLMOutputWithPast]:
|
| 1676 |
+
r"""
|
| 1677 |
+
Args:
|
| 1678 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 1679 |
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
| 1680 |
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
| 1681 |
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
| 1682 |
+
|
| 1683 |
+
Returns:
|
| 1684 |
+
|
| 1685 |
+
"""
|
| 1686 |
+
|
| 1687 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 1688 |
+
output_hidden_states = (
|
| 1689 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 1690 |
+
)
|
| 1691 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 1692 |
+
|
| 1693 |
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
| 1694 |
+
outputs = self.model(
|
| 1695 |
+
input_ids=input_ids,
|
| 1696 |
+
attention_mask=attention_mask,
|
| 1697 |
+
position_ids=position_ids,
|
| 1698 |
+
past_key_values=past_key_values,
|
| 1699 |
+
inputs_embeds=inputs_embeds,
|
| 1700 |
+
pixel_values=pixel_values,
|
| 1701 |
+
image_hidden_states=image_hidden_states,
|
| 1702 |
+
use_cache=use_cache,
|
| 1703 |
+
output_attentions=output_attentions,
|
| 1704 |
+
output_hidden_states=output_hidden_states,
|
| 1705 |
+
return_dict=return_dict,
|
| 1706 |
+
)
|
| 1707 |
+
|
| 1708 |
+
hidden_states = outputs[0]
|
| 1709 |
+
logits = self.lm_head(hidden_states)
|
| 1710 |
+
logits = logits.float()
|
| 1711 |
+
|
| 1712 |
+
loss = None
|
| 1713 |
+
if labels is not None:
|
| 1714 |
+
labels = labels.to(logits.device)
|
| 1715 |
+
# Shift so that tokens < n predict n
|
| 1716 |
+
if attention_mask is not None:
|
| 1717 |
+
shift_attention_mask = attention_mask[..., 1:].to(logits.device)
|
| 1718 |
+
shift_logits = logits[..., :-1, :][shift_attention_mask != 0].contiguous()
|
| 1719 |
+
shift_labels = labels[..., 1:][shift_attention_mask != 0].contiguous()
|
| 1720 |
+
else:
|
| 1721 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
| 1722 |
+
shift_labels = labels[..., 1:].contiguous()
|
| 1723 |
+
# Flatten the tokens
|
| 1724 |
+
loss_fct = CrossEntropyLoss(ignore_index=self.image_token_id)
|
| 1725 |
+
loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
|
| 1726 |
+
|
| 1727 |
+
if not return_dict:
|
| 1728 |
+
output = (logits,) + outputs[1:]
|
| 1729 |
+
return (loss,) + output if loss is not None else output
|
| 1730 |
+
|
| 1731 |
+
return VMistralCausalLMOutputWithPast(
|
| 1732 |
+
loss=loss,
|
| 1733 |
+
logits=logits,
|
| 1734 |
+
past_key_values=outputs.past_key_values,
|
| 1735 |
+
hidden_states=outputs.hidden_states,
|
| 1736 |
+
attentions=outputs.attentions,
|
| 1737 |
+
image_hidden_states=outputs.image_hidden_states,
|
| 1738 |
+
)
|
| 1739 |
+
|
| 1740 |
+
def prepare_inputs_for_generation(self, input_ids, past=None, **kwargs):
|
| 1741 |
+
image_hidden_states = kwargs.pop("image_hidden_states", None)
|
| 1742 |
+
if image_hidden_states is not None:
|
| 1743 |
+
kwargs["pixel_values"] = None
|
| 1744 |
+
inputs = prepare_inputs_for_generation(input_ids, past=past, **kwargs)
|
| 1745 |
+
unwanted_kwargs = ["token_type_ids"]
|
| 1746 |
+
for kwarg in unwanted_kwargs:
|
| 1747 |
+
inputs.pop(kwarg, None)
|
| 1748 |
+
return inputs
|
| 1749 |
+
|
| 1750 |
+
@staticmethod
|
| 1751 |
+
def _expand_inputs_for_generation(
|
| 1752 |
+
*args,
|
| 1753 |
+
**model_kwargs,
|
| 1754 |
+
):
|
| 1755 |
+
return expand_inputs_for_generation(*args, **model_kwargs)
|
| 1756 |
+
|
| 1757 |
+
@staticmethod
|
| 1758 |
+
def _update_model_kwargs_for_generation(outputs, model_kwargs, is_encoder_decoder):
|
| 1759 |
+
return update_model_kwargs_for_generation(outputs, model_kwargs)
|
| 1760 |
+
|
| 1761 |
+
@staticmethod
|
| 1762 |
+
def _reorder_cache(past, beam_idx):
|
| 1763 |
+
reordered_past = ()
|
| 1764 |
+
for layer_past in past:
|
| 1765 |
+
reordered_past += (tuple(past_state.index_select(0, beam_idx) for past_state in layer_past),)
|
| 1766 |
+
return reordered_past
|
modeling_web.py
ADDED
|
@@ -0,0 +1,681 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from dataclasses import dataclass
|
| 2 |
+
import inspect
|
| 3 |
+
import warnings
|
| 4 |
+
from typing import List, Optional, Tuple, Union
|
| 5 |
+
import sys
|
| 6 |
+
import os
|
| 7 |
+
sys.path.append(os.path.dirname(os.path.abspath(__file__)))
|
| 8 |
+
import torch
|
| 9 |
+
import torch.nn.functional as F
|
| 10 |
+
import torch.utils.checkpoint
|
| 11 |
+
from torch import nn
|
| 12 |
+
from torch.nn import CrossEntropyLoss
|
| 13 |
+
from transformers.modeling_attn_mask_utils import _prepare_4d_causal_attention_mask
|
| 14 |
+
from transformers.utils import (
|
| 15 |
+
is_flash_attn_2_available
|
| 16 |
+
)
|
| 17 |
+
from transformers import PreTrainedModel
|
| 18 |
+
from transformers.modeling_outputs import ModelOutput
|
| 19 |
+
|
| 20 |
+
from .configuration_vmistral import VMistralConfig
|
| 21 |
+
from .vision import SiglipVisionModel
|
| 22 |
+
from .modeling_vmistral import *
|
| 23 |
+
from .generation_utils import TreeBuilder, WebGenerationMixin
|
| 24 |
+
import time
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
if is_flash_attn_2_available():
|
| 28 |
+
from flash_attn import flash_attn_func, flash_attn_varlen_func
|
| 29 |
+
from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
|
| 30 |
+
|
| 31 |
+
_flash_supports_window_size = "window_size" in list(inspect.signature(flash_attn_func).parameters)
|
| 32 |
+
|
| 33 |
+
@dataclass
|
| 34 |
+
class WebLMOutputWithPast(ModelOutput):
|
| 35 |
+
loss: Optional[torch.FloatTensor] = None
|
| 36 |
+
logits: torch.FloatTensor = None
|
| 37 |
+
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
|
| 38 |
+
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
|
| 39 |
+
attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
|
| 40 |
+
image_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
|
| 41 |
+
html_tree: TreeBuilder = None
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
class WebAttention(nn.Module):
|
| 45 |
+
"""
|
| 46 |
+
Multi-headed attention from 'Attention Is All You Need' paper. Modified to use sliding window attention: Longformer
|
| 47 |
+
and "Generating Long Sequences with Sparse Transformers".
|
| 48 |
+
"""
|
| 49 |
+
|
| 50 |
+
def __init__(self, config: VMistralConfig, qk_layer_norms: bool = False):
|
| 51 |
+
super().__init__()
|
| 52 |
+
self.config = config
|
| 53 |
+
self.hidden_size = config.hidden_size
|
| 54 |
+
self.num_heads = config.num_attention_heads
|
| 55 |
+
self.head_dim = self.hidden_size // self.num_heads
|
| 56 |
+
self.num_key_value_heads = config.num_key_value_heads
|
| 57 |
+
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
|
| 58 |
+
self.max_position_embeddings = config.max_position_embeddings
|
| 59 |
+
self.rope_theta = config.rope_theta
|
| 60 |
+
self.is_causal = True
|
| 61 |
+
|
| 62 |
+
if (self.head_dim * self.num_heads) != self.hidden_size:
|
| 63 |
+
raise ValueError(
|
| 64 |
+
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
|
| 65 |
+
f" and `num_heads`: {self.num_heads})."
|
| 66 |
+
)
|
| 67 |
+
|
| 68 |
+
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
|
| 69 |
+
self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
|
| 70 |
+
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
|
| 71 |
+
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
|
| 72 |
+
|
| 73 |
+
self.qk_layer_norms = qk_layer_norms
|
| 74 |
+
if self.qk_layer_norms:
|
| 75 |
+
self.q_layer_norm = MistralRMSNorm(self.head_dim, eps=config.rms_norm_eps)
|
| 76 |
+
self.k_layer_norm = MistralRMSNorm(self.head_dim, eps=config.rms_norm_eps)
|
| 77 |
+
|
| 78 |
+
self.rotary_emb = MistralRotaryEmbedding(
|
| 79 |
+
self.head_dim,
|
| 80 |
+
max_position_embeddings=self.max_position_embeddings,
|
| 81 |
+
base=self.rope_theta,
|
| 82 |
+
)
|
| 83 |
+
self.attention_dropout = config.attention_dropout
|
| 84 |
+
|
| 85 |
+
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
|
| 86 |
+
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
|
| 87 |
+
|
| 88 |
+
def forward(
|
| 89 |
+
self,
|
| 90 |
+
hidden_states: torch.Tensor,
|
| 91 |
+
key_value_states: Optional[torch.Tensor] = None,
|
| 92 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 93 |
+
web_attention_mask: Optional[torch.Tensor] = None,
|
| 94 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 95 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
| 96 |
+
output_attentions: bool = False,
|
| 97 |
+
use_cache: bool = False,
|
| 98 |
+
**kwargs,
|
| 99 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
| 100 |
+
if "padding_mask" in kwargs:
|
| 101 |
+
warnings.warn(
|
| 102 |
+
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use"
|
| 103 |
+
" `attention_mask` instead.`"
|
| 104 |
+
)
|
| 105 |
+
|
| 106 |
+
bsz, q_len, _ = hidden_states.size()
|
| 107 |
+
|
| 108 |
+
query_states = self.q_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
| 109 |
+
key_states = (
|
| 110 |
+
self.k_proj(hidden_states).view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
| 111 |
+
)
|
| 112 |
+
value_states = (
|
| 113 |
+
self.v_proj(hidden_states).view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
| 114 |
+
)
|
| 115 |
+
|
| 116 |
+
kv_seq_len = key_states.shape[-2]
|
| 117 |
+
if past_key_value is not None:
|
| 118 |
+
kv_seq_len += past_key_value[0].shape[-2]
|
| 119 |
+
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
| 120 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
|
| 121 |
+
|
| 122 |
+
if past_key_value is not None:
|
| 123 |
+
# reuse k, v, self_attention
|
| 124 |
+
key_states = torch.cat([past_key_value[0], key_states], dim=2)
|
| 125 |
+
value_states = torch.cat([past_key_value[1], value_states], dim=2)
|
| 126 |
+
|
| 127 |
+
past_key_value = (key_states, value_states) if use_cache else None
|
| 128 |
+
|
| 129 |
+
if self.qk_layer_norms:
|
| 130 |
+
query_states = self.q_layer_norm(query_states)
|
| 131 |
+
key_states = self.k_layer_norm(key_states)
|
| 132 |
+
|
| 133 |
+
# repeat k/v heads if n_kv_heads < n_heads
|
| 134 |
+
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
| 135 |
+
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
| 136 |
+
web_attention_range = self.config.web_attention_range
|
| 137 |
+
|
| 138 |
+
def split_tensor(tensor):
|
| 139 |
+
if int(web_attention_range) == 8:
|
| 140 |
+
return
|
| 141 |
+
fraction = float(web_attention_range) / 8
|
| 142 |
+
split_size_2 = int(self.num_heads * fraction)
|
| 143 |
+
split_size_1 = self.num_heads - split_size_2
|
| 144 |
+
return torch.split(tensor, [split_size_1, split_size_2], dim=1)
|
| 145 |
+
|
| 146 |
+
if int(web_attention_range) != 8:
|
| 147 |
+
query_states_1, query_states_2 = split_tensor(query_states)
|
| 148 |
+
key_states_1, key_states_2 = split_tensor(key_states)
|
| 149 |
+
value_states_1, value_states_2 = split_tensor(value_states)
|
| 150 |
+
|
| 151 |
+
with torch.backends.cuda.sdp_kernel(
|
| 152 |
+
enable_flash=False, enable_math=True, enable_mem_efficient=False
|
| 153 |
+
):
|
| 154 |
+
attn_output_1 = F.scaled_dot_product_attention(query_states_1, key_states_1, value_states_1, attn_mask=attention_mask)
|
| 155 |
+
|
| 156 |
+
attn_output_2 = F.scaled_dot_product_attention(query_states_2, key_states_2, value_states_2, attn_mask=web_attention_mask)
|
| 157 |
+
attn_output = torch.cat([attn_output_1, attn_output_2], dim=1)
|
| 158 |
+
else:
|
| 159 |
+
with torch.backends.cuda.sdp_kernel(
|
| 160 |
+
enable_flash=False, enable_math=True, enable_mem_efficient=False
|
| 161 |
+
):
|
| 162 |
+
attn_output = F.scaled_dot_product_attention(query_states, key_states, value_states, attention_mask=web_attention_mask)
|
| 163 |
+
|
| 164 |
+
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
|
| 165 |
+
raise ValueError(
|
| 166 |
+
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
|
| 167 |
+
f" {attn_output.size()}"
|
| 168 |
+
)
|
| 169 |
+
|
| 170 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
| 171 |
+
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
| 172 |
+
|
| 173 |
+
attn_output = self.o_proj(attn_output)
|
| 174 |
+
|
| 175 |
+
if not output_attentions:
|
| 176 |
+
attn_weights = None
|
| 177 |
+
|
| 178 |
+
return attn_output, attn_weights, past_key_value
|
| 179 |
+
|
| 180 |
+
|
| 181 |
+
class WebFlashAttention2(WebAttention):
|
| 182 |
+
"""
|
| 183 |
+
Mistral flash attention module. This module inherits from `MistralAttention` as the weights of the module stays
|
| 184 |
+
untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
|
| 185 |
+
flash attention and deal with padding tokens in case the input contains any of them.
|
| 186 |
+
"""
|
| 187 |
+
|
| 188 |
+
class WebDecoderLayer(nn.Module):
|
| 189 |
+
def __init__(self, config: VMistralConfig):
|
| 190 |
+
super().__init__()
|
| 191 |
+
self.hidden_size = config.hidden_size
|
| 192 |
+
self.self_attn = (
|
| 193 |
+
WebAttention(config=config)
|
| 194 |
+
if not getattr(config, "_flash_attn_2_enabled", False)
|
| 195 |
+
else WebFlashAttention2(config)
|
| 196 |
+
)
|
| 197 |
+
self.mlp = MistralMLP(config)
|
| 198 |
+
self.input_layernorm = MistralRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
| 199 |
+
self.post_attention_layernorm = MistralRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
| 200 |
+
|
| 201 |
+
def forward(
|
| 202 |
+
self,
|
| 203 |
+
hidden_states: torch.Tensor,
|
| 204 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 205 |
+
web_attention_mask: Optional[torch.Tensor] = None,
|
| 206 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 207 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
| 208 |
+
output_attentions: Optional[bool] = False,
|
| 209 |
+
use_cache: Optional[bool] = False,
|
| 210 |
+
**kwargs,
|
| 211 |
+
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
| 212 |
+
if "padding_mask" in kwargs:
|
| 213 |
+
warnings.warn(
|
| 214 |
+
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use"
|
| 215 |
+
" `attention_mask` instead.`"
|
| 216 |
+
)
|
| 217 |
+
"""
|
| 218 |
+
Args:
|
| 219 |
+
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
| 220 |
+
attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
|
| 221 |
+
`(batch, sequence_length)` where padding elements are indicated by 0.
|
| 222 |
+
output_attentions (`bool`, *optional*):
|
| 223 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
| 224 |
+
returned tensors for more detail.
|
| 225 |
+
use_cache (`bool`, *optional*):
|
| 226 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
|
| 227 |
+
(see `past_key_values`).
|
| 228 |
+
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
|
| 229 |
+
"""
|
| 230 |
+
|
| 231 |
+
residual = hidden_states
|
| 232 |
+
|
| 233 |
+
hidden_states = self.input_layernorm(hidden_states)
|
| 234 |
+
# Self Attention
|
| 235 |
+
hidden_states, self_attn_weights, present_key_value = self.self_attn(
|
| 236 |
+
hidden_states=hidden_states,
|
| 237 |
+
attention_mask=attention_mask,
|
| 238 |
+
web_attention_mask=web_attention_mask,
|
| 239 |
+
position_ids=position_ids,
|
| 240 |
+
past_key_value=past_key_value,
|
| 241 |
+
output_attentions=output_attentions,
|
| 242 |
+
use_cache=use_cache,
|
| 243 |
+
)
|
| 244 |
+
hidden_states = residual + hidden_states
|
| 245 |
+
|
| 246 |
+
# Fully Connected
|
| 247 |
+
residual = hidden_states
|
| 248 |
+
hidden_states = self.post_attention_layernorm(hidden_states)
|
| 249 |
+
hidden_states = self.mlp(hidden_states)
|
| 250 |
+
hidden_states = residual + hidden_states
|
| 251 |
+
|
| 252 |
+
outputs = (hidden_states,)
|
| 253 |
+
|
| 254 |
+
if output_attentions:
|
| 255 |
+
outputs += (self_attn_weights,)
|
| 256 |
+
|
| 257 |
+
if use_cache:
|
| 258 |
+
outputs += (present_key_value,)
|
| 259 |
+
|
| 260 |
+
return outputs
|
| 261 |
+
|
| 262 |
+
class WebPreTrainedModel(PreTrainedModel):
|
| 263 |
+
config_class = VMistralConfig
|
| 264 |
+
base_model_prefix = "model"
|
| 265 |
+
supports_gradient_checkpointing = True
|
| 266 |
+
_no_split_modules = ["WebDecoderLayer"]
|
| 267 |
+
_skip_keys_device_placement = "past_key_values"
|
| 268 |
+
_supports_sdpa = False
|
| 269 |
+
|
| 270 |
+
|
| 271 |
+
class WebModel(WebPreTrainedModel, VMistralModel):
|
| 272 |
+
"""
|
| 273 |
+
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`MistralDecoderLayer`]
|
| 274 |
+
|
| 275 |
+
Args:
|
| 276 |
+
config: VMistralConfig
|
| 277 |
+
"""
|
| 278 |
+
|
| 279 |
+
def __init__(self, config: VMistralConfig, vision_model=None):
|
| 280 |
+
super().__init__(config)
|
| 281 |
+
self.config = config
|
| 282 |
+
self.padding_idx = config.pad_token_id
|
| 283 |
+
self.vocab_size = config.vocab_size
|
| 284 |
+
|
| 285 |
+
self.sliding_window = config.sliding_window
|
| 286 |
+
|
| 287 |
+
self.embed_tokens = DecoupledEmbedding(
|
| 288 |
+
num_embeddings=config.vocab_size,
|
| 289 |
+
num_additional_embeddings=config.additional_vocab_size,
|
| 290 |
+
embedding_dim=config.hidden_size,
|
| 291 |
+
partially_freeze=config.freeze_text_layers,
|
| 292 |
+
padding_idx=self.padding_idx,
|
| 293 |
+
)
|
| 294 |
+
|
| 295 |
+
# Load an uninitialized model and later in from_pretrained will load the pre-trained model -
|
| 296 |
+
# this solves the losing of weights in `from_pretrained` on the main model
|
| 297 |
+
self.vision_model = SiglipVisionModel(config.vision_config)
|
| 298 |
+
|
| 299 |
+
# Dim projection - projecting from the vision dim to the text dim
|
| 300 |
+
self.modality_projection = ModalityProjection(
|
| 301 |
+
embed_dim_in=self.config.vision_config.hidden_size, embed_dim_out=self.config.hidden_size
|
| 302 |
+
)
|
| 303 |
+
|
| 304 |
+
# Perceiver Resampler
|
| 305 |
+
if config.use_resampler:
|
| 306 |
+
self.perceiver_resampler = PerceiverResampler(
|
| 307 |
+
config.hidden_size,
|
| 308 |
+
config.perceiver_config.resampler_depth,
|
| 309 |
+
config.perceiver_config.resampler_n_heads,
|
| 310 |
+
config.perceiver_config.resampler_head_dim,
|
| 311 |
+
config.perceiver_config.resampler_n_latents,
|
| 312 |
+
config.perceiver_config.qk_layer_norms_perceiver,
|
| 313 |
+
)
|
| 314 |
+
|
| 315 |
+
if config.use_resampler:
|
| 316 |
+
self.image_seq_len = config.perceiver_config.resampler_n_latents
|
| 317 |
+
else:
|
| 318 |
+
self.image_seq_len = (
|
| 319 |
+
config.vision_config.image_size // config.vision_config.patch_size
|
| 320 |
+
) ** 2 # TODO: pretty sure that does not work for CLIP models since there is the CLS token
|
| 321 |
+
self.image_token_id = self.config.image_token_id
|
| 322 |
+
|
| 323 |
+
self.layers = nn.ModuleList([WebDecoderLayer(config) for _ in range(config.num_hidden_layers)])
|
| 324 |
+
|
| 325 |
+
self.gradient_checkpointing = False
|
| 326 |
+
|
| 327 |
+
self.norm = MistralRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
| 328 |
+
|
| 329 |
+
# Initialize weights and apply final processing
|
| 330 |
+
self.post_init()
|
| 331 |
+
|
| 332 |
+
self.freeze_relevant_params(config)
|
| 333 |
+
|
| 334 |
+
def forward(
|
| 335 |
+
self,
|
| 336 |
+
input_ids: torch.LongTensor = None,
|
| 337 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 338 |
+
web_attention_mask: Optional[torch.Tensor] = None,
|
| 339 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 340 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
| 341 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 342 |
+
pixel_values: Optional[torch.FloatTensor] = None,
|
| 343 |
+
image_hidden_states: Optional[torch.FloatTensor] = None,
|
| 344 |
+
use_cache: Optional[bool] = None,
|
| 345 |
+
output_attentions: Optional[bool] = None,
|
| 346 |
+
output_hidden_states: Optional[bool] = None,
|
| 347 |
+
return_dict: Optional[bool] = None,
|
| 348 |
+
) -> Union[Tuple, VMistralBaseModelOutputWithPast]:
|
| 349 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
| 350 |
+
|
| 351 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 352 |
+
output_hidden_states = (
|
| 353 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 354 |
+
)
|
| 355 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
| 356 |
+
|
| 357 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 358 |
+
|
| 359 |
+
# retrieve input_ids and inputs_embeds
|
| 360 |
+
if input_ids is not None and inputs_embeds is not None:
|
| 361 |
+
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
|
| 362 |
+
elif input_ids is not None:
|
| 363 |
+
batch_size, seq_length = input_ids.shape
|
| 364 |
+
elif inputs_embeds is not None:
|
| 365 |
+
batch_size, seq_length, _ = inputs_embeds.shape
|
| 366 |
+
else:
|
| 367 |
+
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
|
| 368 |
+
|
| 369 |
+
seq_length_with_past = seq_length
|
| 370 |
+
past_key_values_length = 0
|
| 371 |
+
|
| 372 |
+
if past_key_values is not None:
|
| 373 |
+
past_key_values_length = past_key_values[0][0].shape[2]
|
| 374 |
+
seq_length_with_past = seq_length_with_past + past_key_values_length
|
| 375 |
+
|
| 376 |
+
if position_ids is None:
|
| 377 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
| 378 |
+
position_ids = torch.arange(
|
| 379 |
+
past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
|
| 380 |
+
)
|
| 381 |
+
position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
|
| 382 |
+
else:
|
| 383 |
+
position_ids = position_ids.view(-1, seq_length).long()
|
| 384 |
+
|
| 385 |
+
if inputs_embeds is None:
|
| 386 |
+
inputs_embeds = self.embed_tokens(input_ids)
|
| 387 |
+
|
| 388 |
+
# START VISUAL INPUTS INTEGRATION
|
| 389 |
+
if pixel_values is not None and image_hidden_states is not None:
|
| 390 |
+
raise ValueError("You cannot specify both pixel_values and image_hidden_states at the same time")
|
| 391 |
+
elif pixel_values is not None:
|
| 392 |
+
pixel_values = pixel_values.to(dtype=self.dtype, device=input_ids.device) # fp16 compatibility
|
| 393 |
+
batch_size, num_images = pixel_values.size(0), pixel_values.size(1)
|
| 394 |
+
|
| 395 |
+
# this change allows multi image in a single batch
|
| 396 |
+
pixel_values = pixel_values.contiguous().view(batch_size, num_images, *pixel_values.shape[2:])
|
| 397 |
+
# # Remove padding images - padding images are full 0.
|
| 398 |
+
# real_images_inds = pixel_values.sum(dim=(-1, -2, -3)) != 0.0
|
| 399 |
+
# print(real_images_inds)
|
| 400 |
+
# pixel_values = pixel_values[real_images_inds]
|
| 401 |
+
# # Get sequence from the vision encoder
|
| 402 |
+
# print("shape_pixel", pixel_values.shape)
|
| 403 |
+
image_hidden_states = self.vision_model(pixel_values=pixel_values).last_hidden_state
|
| 404 |
+
|
| 405 |
+
# Modality projection
|
| 406 |
+
image_hidden_states = self.modality_projection(image_hidden_states)
|
| 407 |
+
|
| 408 |
+
if self.config.use_resampler:
|
| 409 |
+
image_hidden_states = self.perceiver_resampler(image_hidden_states)
|
| 410 |
+
elif image_hidden_states is not None:
|
| 411 |
+
image_hidden_states = image_hidden_states.to(dtype=self.dtype, device=input_ids.device)
|
| 412 |
+
|
| 413 |
+
if past_key_values is None:
|
| 414 |
+
# When we generate, we don't want to replace the potential image_token_id that we generated by images
|
| 415 |
+
# that simply don't exist
|
| 416 |
+
new_inp = self.inputs_merger(
|
| 417 |
+
input_ids=input_ids,
|
| 418 |
+
inputs_embeds=inputs_embeds,
|
| 419 |
+
image_hidden_states=image_hidden_states,
|
| 420 |
+
)
|
| 421 |
+
inputs_embeds = new_inp["inputs_embeds"]
|
| 422 |
+
|
| 423 |
+
# Can do add some token types embeddings here (image token vs text token)
|
| 424 |
+
# something like inputs_embeds += self.token_types(token_types)
|
| 425 |
+
|
| 426 |
+
# embed positions
|
| 427 |
+
if (
|
| 428 |
+
attention_mask is not None
|
| 429 |
+
and hasattr(self.config, "_flash_attn_2_enabled")
|
| 430 |
+
and self.config._flash_attn_2_enabled
|
| 431 |
+
and past_key_values is not None
|
| 432 |
+
):
|
| 433 |
+
is_padding_right = attention_mask[:, -1].sum().item() != batch_size
|
| 434 |
+
if is_padding_right:
|
| 435 |
+
raise ValueError(
|
| 436 |
+
"You are attempting to perform batched generation with padding_side='right'"
|
| 437 |
+
" this may lead to unexpected behaviour for Flash Attention version of Mistral. Make sure to "
|
| 438 |
+
" call `tokenizer.padding_side = 'left'` before tokenizing the input. "
|
| 439 |
+
)
|
| 440 |
+
# We did not implement our model using Flash attn 2
|
| 441 |
+
self.config._flash_attn_2_enabled = False
|
| 442 |
+
if not getattr(self.config, "_flash_attn_2_enabled", False):
|
| 443 |
+
# 2d mask is passed through the layers
|
| 444 |
+
# attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
|
| 445 |
+
attention_mask = _prepare_4d_causal_attention_mask(
|
| 446 |
+
attention_mask,
|
| 447 |
+
(batch_size, seq_length),
|
| 448 |
+
inputs_embeds,
|
| 449 |
+
past_key_values_length,
|
| 450 |
+
)
|
| 451 |
+
web_attention_mask = web_attention_mask.unsqueeze(1)
|
| 452 |
+
inverted_mask = 1.0 - web_attention_mask.to(inputs_embeds.dtype)
|
| 453 |
+
web_attention_mask = inverted_mask.masked_fill(
|
| 454 |
+
inverted_mask.to(torch.bool), -1.e32
|
| 455 |
+
)
|
| 456 |
+
if input_ids is not None:
|
| 457 |
+
bsz, L = input_ids.size()[:2]
|
| 458 |
+
web_attention_mask = web_attention_mask[:, :, -L:, :]
|
| 459 |
+
else:
|
| 460 |
+
print("Exiting, wrong branch")
|
| 461 |
+
exit()
|
| 462 |
+
# 4d mask is passed through the layers
|
| 463 |
+
attention_mask = _prepare_4d_causal_attention_mask(
|
| 464 |
+
attention_mask,
|
| 465 |
+
(batch_size, seq_length),
|
| 466 |
+
inputs_embeds,
|
| 467 |
+
past_key_values_length,
|
| 468 |
+
sliding_window=self.config.sliding_window,
|
| 469 |
+
)
|
| 470 |
+
attention_mask[attention_mask == -float("inf")] = torch.finfo(self.dtype).min
|
| 471 |
+
|
| 472 |
+
hidden_states = inputs_embeds
|
| 473 |
+
|
| 474 |
+
if self.gradient_checkpointing and self.training:
|
| 475 |
+
if use_cache:
|
| 476 |
+
logger.warning_once(
|
| 477 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
| 478 |
+
)
|
| 479 |
+
use_cache = False
|
| 480 |
+
|
| 481 |
+
# decoder layers
|
| 482 |
+
all_hidden_states = () if output_hidden_states else None
|
| 483 |
+
all_self_attns = () if output_attentions else None
|
| 484 |
+
next_decoder_cache = () if use_cache else None
|
| 485 |
+
|
| 486 |
+
for idx, decoder_layer in enumerate(self.layers):
|
| 487 |
+
if output_hidden_states:
|
| 488 |
+
all_hidden_states += (hidden_states,)
|
| 489 |
+
|
| 490 |
+
past_key_value = past_key_values[idx] if past_key_values is not None else None
|
| 491 |
+
|
| 492 |
+
if self.gradient_checkpointing and self.training:
|
| 493 |
+
layer_outputs = self._gradient_checkpointing_func(
|
| 494 |
+
decoder_layer.__call__,
|
| 495 |
+
hidden_states,
|
| 496 |
+
attention_mask,
|
| 497 |
+
web_attention_mask,
|
| 498 |
+
position_ids,
|
| 499 |
+
past_key_value,
|
| 500 |
+
output_attentions,
|
| 501 |
+
use_cache,
|
| 502 |
+
)
|
| 503 |
+
else:
|
| 504 |
+
layer_outputs = decoder_layer(
|
| 505 |
+
hidden_states,
|
| 506 |
+
attention_mask=attention_mask,
|
| 507 |
+
web_attention_mask=web_attention_mask,
|
| 508 |
+
position_ids=position_ids,
|
| 509 |
+
past_key_value=past_key_value,
|
| 510 |
+
output_attentions=output_attentions,
|
| 511 |
+
use_cache=use_cache,
|
| 512 |
+
)
|
| 513 |
+
|
| 514 |
+
hidden_states = layer_outputs[0]
|
| 515 |
+
|
| 516 |
+
if use_cache:
|
| 517 |
+
next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
|
| 518 |
+
|
| 519 |
+
if output_attentions:
|
| 520 |
+
all_self_attns += (layer_outputs[1],)
|
| 521 |
+
|
| 522 |
+
hidden_states = self.norm(hidden_states)
|
| 523 |
+
|
| 524 |
+
# add hidden states from the last decoder layer
|
| 525 |
+
if output_hidden_states:
|
| 526 |
+
all_hidden_states += (hidden_states,)
|
| 527 |
+
|
| 528 |
+
next_cache = next_decoder_cache if use_cache else None
|
| 529 |
+
if not return_dict:
|
| 530 |
+
return tuple(
|
| 531 |
+
v
|
| 532 |
+
for v in [hidden_states, next_cache, all_hidden_states, all_self_attns, image_hidden_states]
|
| 533 |
+
if v is not None
|
| 534 |
+
)
|
| 535 |
+
return VMistralBaseModelOutputWithPast(
|
| 536 |
+
last_hidden_state=hidden_states,
|
| 537 |
+
past_key_values=next_cache,
|
| 538 |
+
hidden_states=all_hidden_states,
|
| 539 |
+
attentions=all_self_attns,
|
| 540 |
+
image_hidden_states=image_hidden_states,
|
| 541 |
+
)
|
| 542 |
+
|
| 543 |
+
class WebForVisionText2Text(WebPreTrainedModel, WebGenerationMixin):
|
| 544 |
+
_tied_weights_keys = ["lm_head.weight"]
|
| 545 |
+
|
| 546 |
+
def __init__(self, config, vision_model=None):
|
| 547 |
+
super().__init__(config)
|
| 548 |
+
self.model = WebModel(config, vision_model=vision_model)
|
| 549 |
+
self.image_token_id = self.config.image_token_id
|
| 550 |
+
self.lm_head = DecoupledLinear(
|
| 551 |
+
in_features=config.hidden_size,
|
| 552 |
+
out_features=config.vocab_size,
|
| 553 |
+
out_additional_features=config.additional_vocab_size,
|
| 554 |
+
bias=False,
|
| 555 |
+
partially_freeze=config.freeze_lm_head,
|
| 556 |
+
)
|
| 557 |
+
|
| 558 |
+
# Initialize weights and apply final processing
|
| 559 |
+
self.post_init()
|
| 560 |
+
|
| 561 |
+
def forward(
|
| 562 |
+
self,
|
| 563 |
+
input_ids: torch.LongTensor = None,
|
| 564 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 565 |
+
web_attention_mask: Optional[torch.Tensor] = None,
|
| 566 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 567 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
| 568 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 569 |
+
pixel_values: Optional[torch.FloatTensor] = None,
|
| 570 |
+
image_hidden_states: Optional[torch.FloatTensor] = None,
|
| 571 |
+
labels: Optional[torch.LongTensor] = None,
|
| 572 |
+
use_cache: Optional[bool] = None,
|
| 573 |
+
output_attentions: Optional[bool] = None,
|
| 574 |
+
output_hidden_states: Optional[bool] = None,
|
| 575 |
+
return_dict: Optional[bool] = None,
|
| 576 |
+
html_tree = None,
|
| 577 |
+
) -> Union[Tuple, WebLMOutputWithPast]:
|
| 578 |
+
r"""
|
| 579 |
+
Args:
|
| 580 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 581 |
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
| 582 |
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
| 583 |
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
| 584 |
+
|
| 585 |
+
Returns:
|
| 586 |
+
|
| 587 |
+
"""
|
| 588 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 589 |
+
output_hidden_states = (
|
| 590 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 591 |
+
)
|
| 592 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 593 |
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
| 594 |
+
outputs = self.model(
|
| 595 |
+
input_ids=input_ids,
|
| 596 |
+
attention_mask=attention_mask,
|
| 597 |
+
web_attention_mask=web_attention_mask,
|
| 598 |
+
position_ids=position_ids,
|
| 599 |
+
past_key_values=past_key_values,
|
| 600 |
+
inputs_embeds=inputs_embeds,
|
| 601 |
+
pixel_values=pixel_values,
|
| 602 |
+
image_hidden_states=image_hidden_states,
|
| 603 |
+
use_cache=use_cache,
|
| 604 |
+
output_attentions=output_attentions,
|
| 605 |
+
output_hidden_states=output_hidden_states,
|
| 606 |
+
return_dict=return_dict,
|
| 607 |
+
)
|
| 608 |
+
|
| 609 |
+
hidden_states = outputs[0]
|
| 610 |
+
logits = self.lm_head(hidden_states)
|
| 611 |
+
logits = logits.float()
|
| 612 |
+
|
| 613 |
+
loss = None
|
| 614 |
+
if labels is not None:
|
| 615 |
+
labels = labels.to(logits.device)
|
| 616 |
+
# Shift so that tokens < n predict n
|
| 617 |
+
if attention_mask is not None:
|
| 618 |
+
shift_attention_mask = attention_mask[..., 1:].to(logits.device)
|
| 619 |
+
shift_logits = logits[..., :-1, :][shift_attention_mask != 0].contiguous()
|
| 620 |
+
shift_labels = labels[..., 1:][shift_attention_mask != 0].contiguous()
|
| 621 |
+
else:
|
| 622 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
| 623 |
+
shift_labels = labels[..., 1:].contiguous()
|
| 624 |
+
# Flatten the tokens
|
| 625 |
+
loss_fct = CrossEntropyLoss(ignore_index=-100)
|
| 626 |
+
loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
|
| 627 |
+
|
| 628 |
+
if not return_dict:
|
| 629 |
+
output = (logits,) + outputs[1:]
|
| 630 |
+
return (loss,) + output if loss is not None else output
|
| 631 |
+
# print(f"forward takes: {time.time()-start_time}")
|
| 632 |
+
|
| 633 |
+
return WebLMOutputWithPast(
|
| 634 |
+
loss=loss,
|
| 635 |
+
logits=logits,
|
| 636 |
+
past_key_values=outputs.past_key_values,
|
| 637 |
+
hidden_states=outputs.hidden_states,
|
| 638 |
+
attentions=outputs.attentions,
|
| 639 |
+
image_hidden_states=outputs.image_hidden_states,
|
| 640 |
+
html_tree = html_tree
|
| 641 |
+
)
|
| 642 |
+
|
| 643 |
+
def prepare_inputs_for_generation(self, input_ids, past=None, **kwargs
|
| 644 |
+
):
|
| 645 |
+
image_hidden_states = kwargs.pop("image_hidden_states", None)
|
| 646 |
+
if image_hidden_states is not None:
|
| 647 |
+
kwargs["pixel_values"] = None
|
| 648 |
+
|
| 649 |
+
inputs = prepare_inputs_for_generation(input_ids, past=past, **kwargs)
|
| 650 |
+
web_attention_mask, html_tree = None, kwargs.get("html_tree")
|
| 651 |
+
|
| 652 |
+
if html_tree.web_attention_mask is None :
|
| 653 |
+
attention_mask = inputs["attention_mask"]
|
| 654 |
+
web_attention_mask = torch.tril(torch.ones((attention_mask.shape[-1], attention_mask.shape[-1]), dtype = attention_mask.dtype)).unsqueeze(0)
|
| 655 |
+
html_tree.web_attention_mask = web_attention_mask
|
| 656 |
+
else:
|
| 657 |
+
html_tree = kwargs.get("html_tree")
|
| 658 |
+
input_ids = inputs["input_ids"]
|
| 659 |
+
tokenizer = html_tree.tokenizer
|
| 660 |
+
cur_decoded_token = tokenizer.convert_tokens_to_string([" "]+tokenizer.convert_ids_to_tokens(input_ids[:,-1]))
|
| 661 |
+
web_attn_range = html_tree.update_buffer([cur_decoded_token])
|
| 662 |
+
bsz, L = html_tree.web_attention_mask.size()[:2]
|
| 663 |
+
web_attention_mask = torch.zeros((bsz, L + 1, L + 1)).type_as(html_tree.web_attention_mask)
|
| 664 |
+
web_attention_mask[:, :L, :L] = html_tree.web_attention_mask
|
| 665 |
+
web_attn_range = torch.tensor(list(range(67))+[i + 67 for i in web_attn_range], dtype = web_attention_mask.dtype)
|
| 666 |
+
web_attention_mask[:, -1, web_attn_range] = 1
|
| 667 |
+
html_tree.web_attention_mask = web_attention_mask
|
| 668 |
+
if html_tree.input_ids is None :
|
| 669 |
+
html_tree.input_ids = input_ids
|
| 670 |
+
else:
|
| 671 |
+
html_tree.input_ids = torch.cat((html_tree.input_ids, input_ids), dim = 1)
|
| 672 |
+
|
| 673 |
+
unwanted_kwargs = ["token_type_ids"]
|
| 674 |
+
inputs.update({
|
| 675 |
+
"web_attention_mask": web_attention_mask.to(inputs['attention_mask'].device),
|
| 676 |
+
"html_tree": html_tree,
|
| 677 |
+
})
|
| 678 |
+
for kwarg in unwanted_kwargs:
|
| 679 |
+
inputs.pop(kwarg, None)
|
| 680 |
+
|
| 681 |
+
return inputs
|
preprocessor_config.json
ADDED
|
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"auto_map": {
|
| 3 |
+
"AutoImageProcessor": "IdeficsImageProcessor",
|
| 4 |
+
"AutoProcessor": "IdeficsProcessor"
|
| 5 |
+
},
|
| 6 |
+
"image_mean": [
|
| 7 |
+
0.5,
|
| 8 |
+
0.5,
|
| 9 |
+
0.5
|
| 10 |
+
],
|
| 11 |
+
"image_num_channels": 3,
|
| 12 |
+
"image_processor_type": "IdeficsImageProcessor",
|
| 13 |
+
"image_size": 960,
|
| 14 |
+
"image_std": [
|
| 15 |
+
0.5,
|
| 16 |
+
0.5,
|
| 17 |
+
0.5
|
| 18 |
+
],
|
| 19 |
+
"processor_class": "IdeficsProcessor"
|
| 20 |
+
}
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"bos_token": {
|
| 3 |
+
"content": "<s>",
|
| 4 |
+
"lstrip": false,
|
| 5 |
+
"normalized": false,
|
| 6 |
+
"rstrip": false,
|
| 7 |
+
"single_word": false
|
| 8 |
+
},
|
| 9 |
+
"eos_token": {
|
| 10 |
+
"content": "</s>",
|
| 11 |
+
"lstrip": false,
|
| 12 |
+
"normalized": false,
|
| 13 |
+
"rstrip": false,
|
| 14 |
+
"single_word": false
|
| 15 |
+
},
|
| 16 |
+
"pad_token": {
|
| 17 |
+
"content": "<unk>",
|
| 18 |
+
"lstrip": false,
|
| 19 |
+
"normalized": false,
|
| 20 |
+
"rstrip": false,
|
| 21 |
+
"single_word": false
|
| 22 |
+
},
|
| 23 |
+
"unk_token": {
|
| 24 |
+
"content": "<unk>",
|
| 25 |
+
"lstrip": false,
|
| 26 |
+
"normalized": false,
|
| 27 |
+
"rstrip": false,
|
| 28 |
+
"single_word": false
|
| 29 |
+
}
|
| 30 |
+
}
|
tokenizer.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"add_bos_token": true,
|
| 3 |
+
"add_eos_token": false,
|
| 4 |
+
"added_tokens_decoder": {
|
| 5 |
+
"0": {
|
| 6 |
+
"content": "<unk>",
|
| 7 |
+
"lstrip": false,
|
| 8 |
+
"normalized": false,
|
| 9 |
+
"rstrip": false,
|
| 10 |
+
"single_word": false,
|
| 11 |
+
"special": true
|
| 12 |
+
},
|
| 13 |
+
"1": {
|
| 14 |
+
"content": "<s>",
|
| 15 |
+
"lstrip": false,
|
| 16 |
+
"normalized": false,
|
| 17 |
+
"rstrip": false,
|
| 18 |
+
"single_word": false,
|
| 19 |
+
"special": true
|
| 20 |
+
},
|
| 21 |
+
"2": {
|
| 22 |
+
"content": "</s>",
|
| 23 |
+
"lstrip": false,
|
| 24 |
+
"normalized": false,
|
| 25 |
+
"rstrip": false,
|
| 26 |
+
"single_word": false,
|
| 27 |
+
"special": true
|
| 28 |
+
},
|
| 29 |
+
"32000": {
|
| 30 |
+
"content": "<fake_token_around_image>",
|
| 31 |
+
"lstrip": false,
|
| 32 |
+
"normalized": false,
|
| 33 |
+
"rstrip": false,
|
| 34 |
+
"single_word": false,
|
| 35 |
+
"special": true
|
| 36 |
+
},
|
| 37 |
+
"32001": {
|
| 38 |
+
"content": "<image>",
|
| 39 |
+
"lstrip": false,
|
| 40 |
+
"normalized": false,
|
| 41 |
+
"rstrip": false,
|
| 42 |
+
"single_word": false,
|
| 43 |
+
"special": true
|
| 44 |
+
}
|
| 45 |
+
},
|
| 46 |
+
"additional_special_tokens": [],
|
| 47 |
+
"bos_token": "<s>",
|
| 48 |
+
"clean_up_tokenization_spaces": false,
|
| 49 |
+
"eos_token": "</s>",
|
| 50 |
+
"legacy": false,
|
| 51 |
+
"model_max_length": 1000000000000000019884624838656,
|
| 52 |
+
"pad_token": "<unk>",
|
| 53 |
+
"processor_class": "IdeficsProcessor",
|
| 54 |
+
"sp_model_kwargs": {},
|
| 55 |
+
"spaces_between_special_tokens": false,
|
| 56 |
+
"tokenizer_class": "LlamaTokenizer",
|
| 57 |
+
"unk_token": "<unk>",
|
| 58 |
+
"use_default_system_prompt": true
|
| 59 |
+
}
|
vision.py
ADDED
|
@@ -0,0 +1,653 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# coding=utf-8
|
| 2 |
+
# Copyright 2023 Google AI and The HuggingFace Team. All rights reserved.
|
| 3 |
+
#
|
| 4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 5 |
+
# you may not use this file except in compliance with the License.
|
| 6 |
+
# You may obtain a copy of the License at
|
| 7 |
+
#
|
| 8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 9 |
+
#
|
| 10 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 13 |
+
# See the License for the specific language governing permissions and
|
| 14 |
+
# limitations under the License.
|
| 15 |
+
""" A simplified copy of https://huggingface.co/HuggingFaceM4/siglip-so400m-14-384-flash-attn2 """
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
from dataclasses import dataclass
|
| 19 |
+
from typing import Any, Optional, Tuple, Union
|
| 20 |
+
|
| 21 |
+
import torch
|
| 22 |
+
import torch.nn.functional as F
|
| 23 |
+
import torch.utils.checkpoint
|
| 24 |
+
from torch import nn
|
| 25 |
+
from transformers.activations import ACT2FN
|
| 26 |
+
from transformers.modeling_outputs import BaseModelOutput, BaseModelOutputWithPooling
|
| 27 |
+
from transformers.utils import (
|
| 28 |
+
ModelOutput,
|
| 29 |
+
is_flash_attn_2_available,
|
| 30 |
+
logging,)
|
| 31 |
+
|
| 32 |
+
from .configuration_vmistral import VMistralVisionConfig
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
logger = logging.get_logger(__name__)
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
if is_flash_attn_2_available():
|
| 39 |
+
from flash_attn import flash_attn_func, flash_attn_varlen_func
|
| 40 |
+
from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
# Copied from transformers.models.llama.modeling_llama._get_unpad_data
|
| 44 |
+
def _get_unpad_data(attention_mask):
|
| 45 |
+
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
|
| 46 |
+
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
|
| 47 |
+
max_seqlen_in_batch = seqlens_in_batch.max().item()
|
| 48 |
+
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0))
|
| 49 |
+
return (
|
| 50 |
+
indices,
|
| 51 |
+
cu_seqlens,
|
| 52 |
+
max_seqlen_in_batch,
|
| 53 |
+
)
|
| 54 |
+
|
| 55 |
+
|
| 56 |
+
@dataclass
|
| 57 |
+
# Copied from transformers.models.clip.modeling_clip.CLIPVisionModelOutput with CLIP->Siglip
|
| 58 |
+
class SiglipVisionModelOutput(ModelOutput):
|
| 59 |
+
"""
|
| 60 |
+
Base class for vision model's outputs that also contains image embeddings of the pooling of the last hidden states.
|
| 61 |
+
|
| 62 |
+
Args:
|
| 63 |
+
image_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim)` *optional* returned when model is initialized with `with_projection=True`):
|
| 64 |
+
The image embeddings obtained by applying the projection layer to the pooler_output.
|
| 65 |
+
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
| 66 |
+
Sequence of hidden-states at the output of the last layer of the model.
|
| 67 |
+
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
| 68 |
+
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
|
| 69 |
+
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
|
| 70 |
+
|
| 71 |
+
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
|
| 72 |
+
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
| 73 |
+
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
| 74 |
+
sequence_length)`.
|
| 75 |
+
|
| 76 |
+
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
| 77 |
+
heads.
|
| 78 |
+
"""
|
| 79 |
+
|
| 80 |
+
image_embeds: Optional[torch.FloatTensor] = None
|
| 81 |
+
last_hidden_state: torch.FloatTensor = None
|
| 82 |
+
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
| 83 |
+
attentions: Optional[Tuple[torch.FloatTensor]] = None
|
| 84 |
+
|
| 85 |
+
|
| 86 |
+
class SiglipVisionEmbeddings(nn.Module):
|
| 87 |
+
def __init__(self, config: VMistralVisionConfig):
|
| 88 |
+
super().__init__()
|
| 89 |
+
self.config = config
|
| 90 |
+
self.embed_dim = config.hidden_size
|
| 91 |
+
self.image_size = config.image_size
|
| 92 |
+
self.patch_size = config.patch_size
|
| 93 |
+
|
| 94 |
+
self.patch_embedding = nn.Conv2d(
|
| 95 |
+
in_channels=config.num_channels,
|
| 96 |
+
out_channels=self.embed_dim,
|
| 97 |
+
kernel_size=self.patch_size,
|
| 98 |
+
stride=self.patch_size,
|
| 99 |
+
padding="valid",
|
| 100 |
+
)
|
| 101 |
+
|
| 102 |
+
self.num_patches = (self.image_size // self.patch_size) ** 2
|
| 103 |
+
self.num_positions = self.num_patches
|
| 104 |
+
self.position_embedding = nn.Embedding(self.num_positions, self.embed_dim)
|
| 105 |
+
self.register_buffer("position_ids", torch.arange(self.num_positions).expand((1, -1)), persistent=False)
|
| 106 |
+
|
| 107 |
+
def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor:
|
| 108 |
+
# print(self.patch_embedding)
|
| 109 |
+
patch_embeds = self.patch_embedding(pixel_values) # shape = [*, width, grid, grid]
|
| 110 |
+
embeddings = patch_embeds.flatten(2).transpose(1, 2)
|
| 111 |
+
|
| 112 |
+
embeddings = embeddings + self.position_embedding(self.position_ids)
|
| 113 |
+
return embeddings
|
| 114 |
+
|
| 115 |
+
|
| 116 |
+
# Copied from transformers.models.clip.modeling_clip.CLIPAttention with CLIP->Siglip
|
| 117 |
+
class SiglipAttention(nn.Module):
|
| 118 |
+
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
| 119 |
+
|
| 120 |
+
def __init__(self, config):
|
| 121 |
+
super().__init__()
|
| 122 |
+
self.config = config
|
| 123 |
+
self.embed_dim = config.hidden_size
|
| 124 |
+
self.num_heads = config.num_attention_heads
|
| 125 |
+
self.head_dim = self.embed_dim // self.num_heads
|
| 126 |
+
if self.head_dim * self.num_heads != self.embed_dim:
|
| 127 |
+
raise ValueError(
|
| 128 |
+
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
|
| 129 |
+
f" {self.num_heads})."
|
| 130 |
+
)
|
| 131 |
+
self.scale = self.head_dim**-0.5
|
| 132 |
+
self.dropout = config.attention_dropout
|
| 133 |
+
|
| 134 |
+
self.k_proj = nn.Linear(self.embed_dim, self.embed_dim)
|
| 135 |
+
self.v_proj = nn.Linear(self.embed_dim, self.embed_dim)
|
| 136 |
+
self.q_proj = nn.Linear(self.embed_dim, self.embed_dim)
|
| 137 |
+
self.out_proj = nn.Linear(self.embed_dim, self.embed_dim)
|
| 138 |
+
|
| 139 |
+
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
|
| 140 |
+
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
|
| 141 |
+
|
| 142 |
+
def forward(
|
| 143 |
+
self,
|
| 144 |
+
hidden_states: torch.Tensor,
|
| 145 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 146 |
+
causal_attention_mask: Optional[torch.Tensor] = None,
|
| 147 |
+
output_attentions: Optional[bool] = False,
|
| 148 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
| 149 |
+
"""Input shape: Batch x Time x Channel"""
|
| 150 |
+
|
| 151 |
+
bsz, tgt_len, embed_dim = hidden_states.size()
|
| 152 |
+
|
| 153 |
+
# get query proj
|
| 154 |
+
query_states = self.q_proj(hidden_states) * self.scale
|
| 155 |
+
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
|
| 156 |
+
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
|
| 157 |
+
|
| 158 |
+
proj_shape = (bsz * self.num_heads, -1, self.head_dim)
|
| 159 |
+
query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape)
|
| 160 |
+
key_states = key_states.view(*proj_shape)
|
| 161 |
+
value_states = value_states.view(*proj_shape)
|
| 162 |
+
|
| 163 |
+
src_len = key_states.size(1)
|
| 164 |
+
attn_weights = torch.bmm(query_states, key_states.transpose(1, 2))
|
| 165 |
+
|
| 166 |
+
if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len):
|
| 167 |
+
raise ValueError(
|
| 168 |
+
f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is"
|
| 169 |
+
f" {attn_weights.size()}"
|
| 170 |
+
)
|
| 171 |
+
|
| 172 |
+
# apply the causal_attention_mask first
|
| 173 |
+
if causal_attention_mask is not None:
|
| 174 |
+
if causal_attention_mask.size() != (bsz, 1, tgt_len, src_len):
|
| 175 |
+
raise ValueError(
|
| 176 |
+
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is"
|
| 177 |
+
f" {causal_attention_mask.size()}"
|
| 178 |
+
)
|
| 179 |
+
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + causal_attention_mask
|
| 180 |
+
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
|
| 181 |
+
|
| 182 |
+
if attention_mask is not None:
|
| 183 |
+
if attention_mask.size() != (bsz, 1, tgt_len, src_len):
|
| 184 |
+
raise ValueError(
|
| 185 |
+
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}"
|
| 186 |
+
)
|
| 187 |
+
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask
|
| 188 |
+
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
|
| 189 |
+
|
| 190 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
|
| 191 |
+
|
| 192 |
+
if output_attentions:
|
| 193 |
+
# this operation is a bit akward, but it's required to
|
| 194 |
+
# make sure that attn_weights keeps its gradient.
|
| 195 |
+
# In order to do so, attn_weights have to reshaped
|
| 196 |
+
# twice and have to be reused in the following
|
| 197 |
+
attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
|
| 198 |
+
attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len)
|
| 199 |
+
else:
|
| 200 |
+
attn_weights_reshaped = None
|
| 201 |
+
|
| 202 |
+
attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
|
| 203 |
+
|
| 204 |
+
attn_output = torch.bmm(attn_probs, value_states)
|
| 205 |
+
|
| 206 |
+
if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim):
|
| 207 |
+
raise ValueError(
|
| 208 |
+
f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is"
|
| 209 |
+
f" {attn_output.size()}"
|
| 210 |
+
)
|
| 211 |
+
|
| 212 |
+
attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim)
|
| 213 |
+
attn_output = attn_output.transpose(1, 2)
|
| 214 |
+
attn_output = attn_output.reshape(bsz, tgt_len, embed_dim)
|
| 215 |
+
|
| 216 |
+
attn_output = self.out_proj(attn_output)
|
| 217 |
+
|
| 218 |
+
return attn_output, attn_weights_reshaped
|
| 219 |
+
|
| 220 |
+
|
| 221 |
+
class SiglipFlashAttention2(SiglipAttention):
|
| 222 |
+
"""
|
| 223 |
+
Llama flash attention module. This module inherits from `LlamaAttention` as the weights of the module stays
|
| 224 |
+
untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
|
| 225 |
+
flash attention and deal with padding tokens in case the input contains any of them.
|
| 226 |
+
"""
|
| 227 |
+
|
| 228 |
+
def __init__(self, *args, **kwargs):
|
| 229 |
+
super().__init__(*args, **kwargs)
|
| 230 |
+
self.is_causal = False # Hack to make sure we don't use a causal mask
|
| 231 |
+
|
| 232 |
+
def forward(
|
| 233 |
+
self,
|
| 234 |
+
hidden_states: torch.Tensor,
|
| 235 |
+
attention_mask: Optional[torch.LongTensor] = None,
|
| 236 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 237 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
| 238 |
+
output_attentions: bool = False,
|
| 239 |
+
use_cache: bool = False,
|
| 240 |
+
**kwargs,
|
| 241 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
| 242 |
+
output_attentions = False
|
| 243 |
+
|
| 244 |
+
bsz, q_len, _ = hidden_states.size()
|
| 245 |
+
|
| 246 |
+
query_states = self.q_proj(hidden_states)
|
| 247 |
+
key_states = self.k_proj(hidden_states)
|
| 248 |
+
value_states = self.v_proj(hidden_states)
|
| 249 |
+
|
| 250 |
+
# Flash attention requires the input to have the shape
|
| 251 |
+
# batch_size x seq_length x head_dim x hidden_dim
|
| 252 |
+
# therefore we just need to keep the original shape
|
| 253 |
+
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
| 254 |
+
key_states = key_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
| 255 |
+
value_states = value_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
| 256 |
+
|
| 257 |
+
kv_seq_len = key_states.shape[-2]
|
| 258 |
+
if past_key_value is not None:
|
| 259 |
+
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
|
| 260 |
+
# cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
| 261 |
+
# query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
|
| 262 |
+
|
| 263 |
+
# if past_key_value is not None:
|
| 264 |
+
# cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
|
| 265 |
+
# key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
| 266 |
+
|
| 267 |
+
# TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache
|
| 268 |
+
# to be able to avoid many of these transpose/reshape/view.
|
| 269 |
+
query_states = query_states.transpose(1, 2)
|
| 270 |
+
key_states = key_states.transpose(1, 2)
|
| 271 |
+
value_states = value_states.transpose(1, 2)
|
| 272 |
+
|
| 273 |
+
dropout_rate = self.dropout if self.training else 0.0
|
| 274 |
+
|
| 275 |
+
# In PEFT, usually we cast the layer norms in float32 for training stability reasons
|
| 276 |
+
# therefore the input hidden states gets silently casted in float32. Hence, we need
|
| 277 |
+
# cast them back in the correct dtype just to be sure everything works as expected.
|
| 278 |
+
# This might slowdown training & inference so it is recommended to not cast the LayerNorms
|
| 279 |
+
# in fp32. (LlamaRMSNorm handles it correctly)
|
| 280 |
+
|
| 281 |
+
input_dtype = query_states.dtype
|
| 282 |
+
if input_dtype == torch.float32:
|
| 283 |
+
if torch.is_autocast_enabled():
|
| 284 |
+
target_dtype = torch.get_autocast_gpu_dtype()
|
| 285 |
+
# Handle the case where the model is quantized
|
| 286 |
+
elif hasattr(self.config, "_pre_quantization_dtype"):
|
| 287 |
+
target_dtype = self.config._pre_quantization_dtype
|
| 288 |
+
else:
|
| 289 |
+
target_dtype = self.q_proj.weight.dtype
|
| 290 |
+
|
| 291 |
+
logger.warning_once(
|
| 292 |
+
"The input hidden states seems to be silently casted in float32, this might be related to the fact"
|
| 293 |
+
" you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
|
| 294 |
+
f" {target_dtype}."
|
| 295 |
+
)
|
| 296 |
+
|
| 297 |
+
query_states = query_states.to(target_dtype)
|
| 298 |
+
key_states = key_states.to(target_dtype)
|
| 299 |
+
value_states = value_states.to(target_dtype)
|
| 300 |
+
|
| 301 |
+
attn_output = self._flash_attention_forward(
|
| 302 |
+
query_states, key_states, value_states, attention_mask, q_len, dropout=dropout_rate
|
| 303 |
+
)
|
| 304 |
+
|
| 305 |
+
attn_output = attn_output.reshape(bsz, q_len, self.embed_dim).contiguous()
|
| 306 |
+
attn_output = self.out_proj(attn_output)
|
| 307 |
+
|
| 308 |
+
if not output_attentions:
|
| 309 |
+
attn_weights = None
|
| 310 |
+
|
| 311 |
+
return attn_output, attn_weights
|
| 312 |
+
|
| 313 |
+
def _flash_attention_forward(
|
| 314 |
+
self, query_states, key_states, value_states, attention_mask, query_length, dropout=0.0, softmax_scale=None
|
| 315 |
+
):
|
| 316 |
+
"""
|
| 317 |
+
Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
|
| 318 |
+
first unpad the input, then computes the attention scores and pad the final attention scores.
|
| 319 |
+
|
| 320 |
+
Args:
|
| 321 |
+
query_states (`torch.Tensor`):
|
| 322 |
+
Input query states to be passed to Flash Attention API
|
| 323 |
+
key_states (`torch.Tensor`):
|
| 324 |
+
Input key states to be passed to Flash Attention API
|
| 325 |
+
value_states (`torch.Tensor`):
|
| 326 |
+
Input value states to be passed to Flash Attention API
|
| 327 |
+
attention_mask (`torch.Tensor`):
|
| 328 |
+
The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
|
| 329 |
+
position of padding tokens and 1 for the position of non-padding tokens.
|
| 330 |
+
dropout (`int`, *optional*):
|
| 331 |
+
Attention dropout
|
| 332 |
+
softmax_scale (`float`, *optional*):
|
| 333 |
+
The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
|
| 334 |
+
"""
|
| 335 |
+
|
| 336 |
+
# TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in LlamaFlashAttention2 __init__.
|
| 337 |
+
causal = self.is_causal and query_length != 1
|
| 338 |
+
|
| 339 |
+
# Contains at least one padding token in the sequence
|
| 340 |
+
if attention_mask is not None:
|
| 341 |
+
batch_size = query_states.shape[0]
|
| 342 |
+
query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
|
| 343 |
+
query_states, key_states, value_states, attention_mask, query_length
|
| 344 |
+
)
|
| 345 |
+
|
| 346 |
+
cu_seqlens_q, cu_seqlens_k = cu_seq_lens
|
| 347 |
+
max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
|
| 348 |
+
|
| 349 |
+
attn_output_unpad = flash_attn_varlen_func(
|
| 350 |
+
query_states,
|
| 351 |
+
key_states,
|
| 352 |
+
value_states,
|
| 353 |
+
cu_seqlens_q=cu_seqlens_q,
|
| 354 |
+
cu_seqlens_k=cu_seqlens_k,
|
| 355 |
+
max_seqlen_q=max_seqlen_in_batch_q,
|
| 356 |
+
max_seqlen_k=max_seqlen_in_batch_k,
|
| 357 |
+
dropout_p=dropout,
|
| 358 |
+
softmax_scale=softmax_scale,
|
| 359 |
+
causal=causal,
|
| 360 |
+
)
|
| 361 |
+
|
| 362 |
+
attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
|
| 363 |
+
else:
|
| 364 |
+
attn_output = flash_attn_func(
|
| 365 |
+
query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal
|
| 366 |
+
)
|
| 367 |
+
|
| 368 |
+
return attn_output
|
| 369 |
+
|
| 370 |
+
def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
|
| 371 |
+
indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
|
| 372 |
+
batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
|
| 373 |
+
|
| 374 |
+
key_layer = index_first_axis(
|
| 375 |
+
key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
|
| 376 |
+
)
|
| 377 |
+
value_layer = index_first_axis(
|
| 378 |
+
value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
|
| 379 |
+
)
|
| 380 |
+
if query_length == kv_seq_len:
|
| 381 |
+
query_layer = index_first_axis(
|
| 382 |
+
query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim), indices_k
|
| 383 |
+
)
|
| 384 |
+
cu_seqlens_q = cu_seqlens_k
|
| 385 |
+
max_seqlen_in_batch_q = max_seqlen_in_batch_k
|
| 386 |
+
indices_q = indices_k
|
| 387 |
+
elif query_length == 1:
|
| 388 |
+
max_seqlen_in_batch_q = 1
|
| 389 |
+
cu_seqlens_q = torch.arange(
|
| 390 |
+
batch_size + 1, dtype=torch.int32, device=query_layer.device
|
| 391 |
+
) # There is a memcpy here, that is very bad.
|
| 392 |
+
indices_q = cu_seqlens_q[:-1]
|
| 393 |
+
query_layer = query_layer.squeeze(1)
|
| 394 |
+
else:
|
| 395 |
+
# The -q_len: slice assumes left padding.
|
| 396 |
+
attention_mask = attention_mask[:, -query_length:]
|
| 397 |
+
query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
|
| 398 |
+
|
| 399 |
+
return (
|
| 400 |
+
query_layer,
|
| 401 |
+
key_layer,
|
| 402 |
+
value_layer,
|
| 403 |
+
indices_q,
|
| 404 |
+
(cu_seqlens_q, cu_seqlens_k),
|
| 405 |
+
(max_seqlen_in_batch_q, max_seqlen_in_batch_k),
|
| 406 |
+
)
|
| 407 |
+
|
| 408 |
+
|
| 409 |
+
# Copied from transformers.models.clip.modeling_clip.CLIPMLP with CLIP->Siglip
|
| 410 |
+
class SiglipMLP(nn.Module):
|
| 411 |
+
def __init__(self, config):
|
| 412 |
+
super().__init__()
|
| 413 |
+
self.config = config
|
| 414 |
+
self.activation_fn = ACT2FN[config.hidden_act]
|
| 415 |
+
self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
|
| 416 |
+
self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
|
| 417 |
+
|
| 418 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
| 419 |
+
hidden_states = self.fc1(hidden_states)
|
| 420 |
+
hidden_states = self.activation_fn(hidden_states)
|
| 421 |
+
hidden_states = self.fc2(hidden_states)
|
| 422 |
+
return hidden_states
|
| 423 |
+
|
| 424 |
+
|
| 425 |
+
# Copied from transformers.models.clip.modeling_clip.CLIPEncoderLayer with CLIP->Siglip
|
| 426 |
+
class SiglipEncoderLayer(nn.Module):
|
| 427 |
+
def __init__(self, config: VMistralVisionConfig):
|
| 428 |
+
super().__init__()
|
| 429 |
+
self.embed_dim = config.hidden_size
|
| 430 |
+
self.self_attn = (
|
| 431 |
+
SiglipAttention(config)
|
| 432 |
+
# if not getattr(config, "_flash_attn_2_enabled", False)
|
| 433 |
+
# else SiglipFlashAttention2(config)
|
| 434 |
+
)
|
| 435 |
+
self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
|
| 436 |
+
self.mlp = SiglipMLP(config)
|
| 437 |
+
self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
|
| 438 |
+
|
| 439 |
+
def forward(
|
| 440 |
+
self,
|
| 441 |
+
hidden_states: torch.Tensor,
|
| 442 |
+
attention_mask: torch.Tensor,
|
| 443 |
+
causal_attention_mask: torch.Tensor,
|
| 444 |
+
output_attentions: Optional[bool] = False,
|
| 445 |
+
) -> Tuple[torch.FloatTensor]:
|
| 446 |
+
"""
|
| 447 |
+
Args:
|
| 448 |
+
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
| 449 |
+
attention_mask (`torch.FloatTensor`): attention mask of size
|
| 450 |
+
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
|
| 451 |
+
`(config.encoder_attention_heads,)`.
|
| 452 |
+
output_attentions (`bool`, *optional*):
|
| 453 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
| 454 |
+
returned tensors for more detail.
|
| 455 |
+
"""
|
| 456 |
+
residual = hidden_states
|
| 457 |
+
|
| 458 |
+
hidden_states = self.layer_norm1(hidden_states)
|
| 459 |
+
hidden_states, attn_weights = self.self_attn(
|
| 460 |
+
hidden_states=hidden_states,
|
| 461 |
+
attention_mask=attention_mask,
|
| 462 |
+
causal_attention_mask=causal_attention_mask,
|
| 463 |
+
output_attentions=output_attentions,
|
| 464 |
+
)
|
| 465 |
+
hidden_states = residual + hidden_states
|
| 466 |
+
|
| 467 |
+
residual = hidden_states
|
| 468 |
+
hidden_states = self.layer_norm2(hidden_states)
|
| 469 |
+
hidden_states = self.mlp(hidden_states)
|
| 470 |
+
hidden_states = residual + hidden_states
|
| 471 |
+
|
| 472 |
+
outputs = (hidden_states,)
|
| 473 |
+
|
| 474 |
+
if output_attentions:
|
| 475 |
+
outputs += (attn_weights,)
|
| 476 |
+
|
| 477 |
+
return outputs
|
| 478 |
+
|
| 479 |
+
|
| 480 |
+
# Copied from transformers.models.clip.modeling_clip.CLIPEncoder with CLIP->Siglip
|
| 481 |
+
class SiglipEncoder(nn.Module):
|
| 482 |
+
"""
|
| 483 |
+
Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a
|
| 484 |
+
[`SiglipEncoderLayer`].
|
| 485 |
+
|
| 486 |
+
Args:
|
| 487 |
+
config: SiglipConfig
|
| 488 |
+
"""
|
| 489 |
+
|
| 490 |
+
def __init__(self, config):
|
| 491 |
+
super().__init__()
|
| 492 |
+
self.config = config
|
| 493 |
+
self.layers = nn.ModuleList([SiglipEncoderLayer(config) for _ in range(config.num_hidden_layers)])
|
| 494 |
+
self.gradient_checkpointing = False
|
| 495 |
+
|
| 496 |
+
def forward(
|
| 497 |
+
self,
|
| 498 |
+
inputs_embeds,
|
| 499 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 500 |
+
causal_attention_mask: Optional[torch.Tensor] = None,
|
| 501 |
+
output_attentions: Optional[bool] = None,
|
| 502 |
+
output_hidden_states: Optional[bool] = None,
|
| 503 |
+
return_dict: Optional[bool] = None,
|
| 504 |
+
) -> Union[Tuple, BaseModelOutput]:
|
| 505 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 506 |
+
output_hidden_states = (
|
| 507 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 508 |
+
)
|
| 509 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 510 |
+
|
| 511 |
+
encoder_states = () if output_hidden_states else None
|
| 512 |
+
all_attentions = () if output_attentions else None
|
| 513 |
+
|
| 514 |
+
hidden_states = inputs_embeds
|
| 515 |
+
for idx, encoder_layer in enumerate(self.layers):
|
| 516 |
+
if output_hidden_states:
|
| 517 |
+
encoder_states = encoder_states + (hidden_states,)
|
| 518 |
+
if self.gradient_checkpointing and self.training:
|
| 519 |
+
|
| 520 |
+
def create_custom_forward(module):
|
| 521 |
+
def custom_forward(*inputs):
|
| 522 |
+
return module(*inputs, output_attentions)
|
| 523 |
+
|
| 524 |
+
return custom_forward
|
| 525 |
+
|
| 526 |
+
layer_outputs = torch.utils.checkpoint.checkpoint(
|
| 527 |
+
create_custom_forward(encoder_layer),
|
| 528 |
+
hidden_states,
|
| 529 |
+
attention_mask,
|
| 530 |
+
causal_attention_mask,
|
| 531 |
+
)
|
| 532 |
+
else:
|
| 533 |
+
layer_outputs = encoder_layer(
|
| 534 |
+
hidden_states,
|
| 535 |
+
attention_mask,
|
| 536 |
+
causal_attention_mask,
|
| 537 |
+
output_attentions=output_attentions,
|
| 538 |
+
)
|
| 539 |
+
|
| 540 |
+
hidden_states = layer_outputs[0]
|
| 541 |
+
|
| 542 |
+
if output_attentions:
|
| 543 |
+
all_attentions = all_attentions + (layer_outputs[1],)
|
| 544 |
+
|
| 545 |
+
if output_hidden_states:
|
| 546 |
+
encoder_states = encoder_states + (hidden_states,)
|
| 547 |
+
|
| 548 |
+
if not return_dict:
|
| 549 |
+
return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
|
| 550 |
+
return BaseModelOutput(
|
| 551 |
+
last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions
|
| 552 |
+
)
|
| 553 |
+
|
| 554 |
+
|
| 555 |
+
class SiglipVisionTransformer(nn.Module):
|
| 556 |
+
def __init__(self, config: VMistralVisionConfig):
|
| 557 |
+
super().__init__()
|
| 558 |
+
self.config = config
|
| 559 |
+
embed_dim = config.hidden_size
|
| 560 |
+
|
| 561 |
+
self.embeddings = SiglipVisionEmbeddings(config)
|
| 562 |
+
self.encoder = SiglipEncoder(config)
|
| 563 |
+
self.post_layernorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
|
| 564 |
+
self.head = SiglipMultiheadAttentionPoolingHead(config)
|
| 565 |
+
|
| 566 |
+
def forward(
|
| 567 |
+
self,
|
| 568 |
+
pixel_values,
|
| 569 |
+
output_attentions: Optional[bool] = None,
|
| 570 |
+
output_hidden_states: Optional[bool] = None,
|
| 571 |
+
return_dict: Optional[bool] = None,
|
| 572 |
+
) -> Union[Tuple, BaseModelOutputWithPooling]:
|
| 573 |
+
r"""
|
| 574 |
+
Returns:
|
| 575 |
+
|
| 576 |
+
"""
|
| 577 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 578 |
+
output_hidden_states = (
|
| 579 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 580 |
+
)
|
| 581 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 582 |
+
|
| 583 |
+
hidden_states = self.embeddings(pixel_values)
|
| 584 |
+
# print("hidden_states", hidden_states.shape)
|
| 585 |
+
encoder_outputs = self.encoder(
|
| 586 |
+
inputs_embeds=hidden_states,
|
| 587 |
+
output_attentions=output_attentions,
|
| 588 |
+
output_hidden_states=output_hidden_states,
|
| 589 |
+
return_dict=return_dict,
|
| 590 |
+
)
|
| 591 |
+
|
| 592 |
+
last_hidden_state = encoder_outputs[0]
|
| 593 |
+
last_hidden_state = self.post_layernorm(last_hidden_state)
|
| 594 |
+
|
| 595 |
+
pooled_output = self.head(last_hidden_state)
|
| 596 |
+
|
| 597 |
+
if not return_dict:
|
| 598 |
+
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
|
| 599 |
+
|
| 600 |
+
return BaseModelOutputWithPooling(
|
| 601 |
+
last_hidden_state=last_hidden_state,
|
| 602 |
+
pooler_output=pooled_output,
|
| 603 |
+
hidden_states=encoder_outputs.hidden_states,
|
| 604 |
+
attentions=encoder_outputs.attentions,
|
| 605 |
+
)
|
| 606 |
+
|
| 607 |
+
|
| 608 |
+
class SiglipMultiheadAttentionPoolingHead(nn.Module):
|
| 609 |
+
"""Multihead Attention Pooling."""
|
| 610 |
+
|
| 611 |
+
def __init__(self, config: VMistralVisionConfig):
|
| 612 |
+
super().__init__()
|
| 613 |
+
|
| 614 |
+
self.probe = nn.Parameter(torch.randn(1, 1, config.hidden_size))
|
| 615 |
+
self.attention = torch.nn.MultiheadAttention(config.hidden_size, config.num_attention_heads, batch_first=True)
|
| 616 |
+
self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
| 617 |
+
self.mlp = SiglipMLP(config)
|
| 618 |
+
|
| 619 |
+
def forward(self, hidden_state):
|
| 620 |
+
batch_size = hidden_state.shape[0]
|
| 621 |
+
probe = self.probe.repeat(batch_size, 1, 1)
|
| 622 |
+
|
| 623 |
+
hidden_state = self.attention(probe, hidden_state, hidden_state)[0]
|
| 624 |
+
|
| 625 |
+
residual = hidden_state
|
| 626 |
+
hidden_state = self.layernorm(hidden_state)
|
| 627 |
+
hidden_state = residual + self.mlp(hidden_state)
|
| 628 |
+
|
| 629 |
+
return hidden_state[:, 0]
|
| 630 |
+
|
| 631 |
+
|
| 632 |
+
class SiglipVisionModel(nn.Module):
|
| 633 |
+
def __init__(self, config: VMistralVisionConfig):
|
| 634 |
+
super().__init__()
|
| 635 |
+
|
| 636 |
+
self.config = config
|
| 637 |
+
self.vision_model = SiglipVisionTransformer(config)
|
| 638 |
+
|
| 639 |
+
def forward(
|
| 640 |
+
self,
|
| 641 |
+
pixel_values,
|
| 642 |
+
output_attentions: Optional[bool] = None,
|
| 643 |
+
output_hidden_states: Optional[bool] = None,
|
| 644 |
+
return_dict: Optional[bool] = None,
|
| 645 |
+
) -> Union[Tuple, BaseModelOutputWithPooling]:
|
| 646 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 647 |
+
|
| 648 |
+
return self.vision_model(
|
| 649 |
+
pixel_values=pixel_values,
|
| 650 |
+
output_attentions=output_attentions,
|
| 651 |
+
output_hidden_states=output_hidden_states,
|
| 652 |
+
return_dict=return_dict,
|
| 653 |
+
)
|