Update modeling_norbert.py
Browse files- modeling_norbert.py +12 -40
modeling_norbert.py
CHANGED
|
@@ -57,14 +57,6 @@ class MaskClassifier(nn.Module):
|
|
| 57 |
nn.Dropout(config.hidden_dropout_prob),
|
| 58 |
nn.Linear(subword_embedding.size(1), subword_embedding.size(0))
|
| 59 |
)
|
| 60 |
-
self.initialize(config.hidden_size, subword_embedding)
|
| 61 |
-
|
| 62 |
-
def initialize(self, hidden_size, embedding):
|
| 63 |
-
std = math.sqrt(2.0 / (5.0 * hidden_size))
|
| 64 |
-
nn.init.trunc_normal_(self.nonlinearity[1].weight, mean=0.0, std=std, a=-2*std, b=2*std)
|
| 65 |
-
self.nonlinearity[-1].weight = embedding
|
| 66 |
-
self.nonlinearity[1].bias.data.zero_()
|
| 67 |
-
self.nonlinearity[-1].bias.data.zero_()
|
| 68 |
|
| 69 |
def forward(self, x, masked_lm_labels=None):
|
| 70 |
if masked_lm_labels is not None:
|
|
@@ -104,12 +96,6 @@ class FeedForward(nn.Module):
|
|
| 104 |
nn.Linear(config.intermediate_size, config.hidden_size, bias=False),
|
| 105 |
nn.Dropout(config.hidden_dropout_prob)
|
| 106 |
)
|
| 107 |
-
self.initialize(config.hidden_size)
|
| 108 |
-
|
| 109 |
-
def initialize(self, hidden_size):
|
| 110 |
-
std = math.sqrt(2.0 / (5.0 * hidden_size))
|
| 111 |
-
nn.init.trunc_normal_(self.mlp[1].weight, mean=0.0, std=std, a=-2*std, b=2*std)
|
| 112 |
-
nn.init.trunc_normal_(self.mlp[-2].weight, mean=0.0, std=std, a=-2*std, b=2*std)
|
| 113 |
|
| 114 |
def forward(self, x):
|
| 115 |
return self.mlp(x)
|
|
@@ -160,7 +146,6 @@ class Attention(nn.Module):
|
|
| 160 |
|
| 161 |
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
|
| 162 |
self.scale = 1.0 / math.sqrt(3 * self.head_size)
|
| 163 |
-
self.initialize()
|
| 164 |
|
| 165 |
def make_log_bucket_position(self, relative_pos, bucket_size, max_position):
|
| 166 |
sign = torch.sign(relative_pos)
|
|
@@ -170,15 +155,6 @@ class Attention(nn.Module):
|
|
| 170 |
bucket_pos = torch.where(abs_pos <= mid, relative_pos, log_pos * sign).long()
|
| 171 |
return bucket_pos
|
| 172 |
|
| 173 |
-
def initialize(self):
|
| 174 |
-
std = math.sqrt(2.0 / (5.0 * self.hidden_size))
|
| 175 |
-
nn.init.trunc_normal_(self.in_proj_qk.weight, mean=0.0, std=std, a=-2*std, b=2*std)
|
| 176 |
-
nn.init.trunc_normal_(self.in_proj_v.weight, mean=0.0, std=std, a=-2*std, b=2*std)
|
| 177 |
-
nn.init.trunc_normal_(self.out_proj.weight, mean=0.0, std=std, a=-2*std, b=2*std)
|
| 178 |
-
self.in_proj_qk.bias.data.zero_()
|
| 179 |
-
self.in_proj_v.bias.data.zero_()
|
| 180 |
-
self.out_proj.bias.data.zero_()
|
| 181 |
-
|
| 182 |
def compute_attention_scores(self, hidden_states, relative_embedding):
|
| 183 |
key_len, batch_size, _ = hidden_states.size()
|
| 184 |
query_len = key_len
|
|
@@ -246,13 +222,6 @@ class Embedding(nn.Module):
|
|
| 246 |
self.relative_embedding = nn.Parameter(torch.empty(2 * config.position_bucket_size - 1, config.hidden_size))
|
| 247 |
self.relative_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
| 248 |
|
| 249 |
-
self.initialize()
|
| 250 |
-
|
| 251 |
-
def initialize(self):
|
| 252 |
-
std = math.sqrt(2.0 / (5.0 * self.hidden_size))
|
| 253 |
-
nn.init.trunc_normal_(self.relative_embedding, mean=0.0, std=std, a=-2*std, b=2*std)
|
| 254 |
-
nn.init.trunc_normal_(self.word_embedding.weight, mean=0.0, std=std, a=-2*std, b=2*std)
|
| 255 |
-
|
| 256 |
def forward(self, input_ids):
|
| 257 |
word_embedding = self.dropout(self.word_layer_norm(self.word_embedding(input_ids)))
|
| 258 |
relative_embeddings = self.relative_layer_norm(self.relative_embedding)
|
|
@@ -273,13 +242,24 @@ class NorbertPreTrainedModel(PreTrainedModel):
|
|
| 273 |
module.activation_checkpointing = value
|
| 274 |
|
| 275 |
def _init_weights(self, module):
|
| 276 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 277 |
|
| 278 |
|
| 279 |
class NorbertModel(NorbertPreTrainedModel):
|
| 280 |
def __init__(self, config, add_mlm_layer=False, gradient_checkpointing=False, **kwargs):
|
| 281 |
super().__init__(config, **kwargs)
|
| 282 |
self.config = config
|
|
|
|
| 283 |
|
| 284 |
self.embedding = Embedding(config)
|
| 285 |
self.transformer = Encoder(config, activation_checkpointing=gradient_checkpointing)
|
|
@@ -414,14 +394,6 @@ class Classifier(nn.Module):
|
|
| 414 |
nn.Dropout(drop_out),
|
| 415 |
nn.Linear(config.hidden_size, num_labels)
|
| 416 |
)
|
| 417 |
-
self.initialize(config.hidden_size)
|
| 418 |
-
|
| 419 |
-
def initialize(self, hidden_size):
|
| 420 |
-
std = math.sqrt(2.0 / (5.0 * hidden_size))
|
| 421 |
-
nn.init.trunc_normal_(self.nonlinearity[1].weight, mean=0.0, std=std, a=-2*std, b=2*std)
|
| 422 |
-
nn.init.trunc_normal_(self.nonlinearity[-1].weight, mean=0.0, std=std, a=-2*std, b=2*std)
|
| 423 |
-
self.nonlinearity[1].bias.data.zero_()
|
| 424 |
-
self.nonlinearity[-1].bias.data.zero_()
|
| 425 |
|
| 426 |
def forward(self, x):
|
| 427 |
x = self.nonlinearity(x)
|
|
|
|
| 57 |
nn.Dropout(config.hidden_dropout_prob),
|
| 58 |
nn.Linear(subword_embedding.size(1), subword_embedding.size(0))
|
| 59 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 60 |
|
| 61 |
def forward(self, x, masked_lm_labels=None):
|
| 62 |
if masked_lm_labels is not None:
|
|
|
|
| 96 |
nn.Linear(config.intermediate_size, config.hidden_size, bias=False),
|
| 97 |
nn.Dropout(config.hidden_dropout_prob)
|
| 98 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 99 |
|
| 100 |
def forward(self, x):
|
| 101 |
return self.mlp(x)
|
|
|
|
| 146 |
|
| 147 |
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
|
| 148 |
self.scale = 1.0 / math.sqrt(3 * self.head_size)
|
|
|
|
| 149 |
|
| 150 |
def make_log_bucket_position(self, relative_pos, bucket_size, max_position):
|
| 151 |
sign = torch.sign(relative_pos)
|
|
|
|
| 155 |
bucket_pos = torch.where(abs_pos <= mid, relative_pos, log_pos * sign).long()
|
| 156 |
return bucket_pos
|
| 157 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 158 |
def compute_attention_scores(self, hidden_states, relative_embedding):
|
| 159 |
key_len, batch_size, _ = hidden_states.size()
|
| 160 |
query_len = key_len
|
|
|
|
| 222 |
self.relative_embedding = nn.Parameter(torch.empty(2 * config.position_bucket_size - 1, config.hidden_size))
|
| 223 |
self.relative_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
| 224 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 225 |
def forward(self, input_ids):
|
| 226 |
word_embedding = self.dropout(self.word_layer_norm(self.word_embedding(input_ids)))
|
| 227 |
relative_embeddings = self.relative_layer_norm(self.relative_embedding)
|
|
|
|
| 242 |
module.activation_checkpointing = value
|
| 243 |
|
| 244 |
def _init_weights(self, module):
|
| 245 |
+
std = math.sqrt(2.0 / (5.0 * self.hidden_size))
|
| 246 |
+
|
| 247 |
+
if isinstance(module, nn.Linear):
|
| 248 |
+
nn.init.trunc_normal_(module.weight.data, mean=0.0, std=std, a=-2*std, b=2*std)
|
| 249 |
+
if module.bias is not None:
|
| 250 |
+
module.bias.data.zero_()
|
| 251 |
+
elif isinstance(module, nn.Embedding):
|
| 252 |
+
nn.init.trunc_normal_(module.weight.data, mean=0.0, std=std, a=-2*std, b=2*std)
|
| 253 |
+
elif isinstance(module, nn.LayerNorm):
|
| 254 |
+
module.bias.data.zero_()
|
| 255 |
+
module.weight.data.fill_(1.0)
|
| 256 |
|
| 257 |
|
| 258 |
class NorbertModel(NorbertPreTrainedModel):
|
| 259 |
def __init__(self, config, add_mlm_layer=False, gradient_checkpointing=False, **kwargs):
|
| 260 |
super().__init__(config, **kwargs)
|
| 261 |
self.config = config
|
| 262 |
+
self.hidden_size = config.hidden_size
|
| 263 |
|
| 264 |
self.embedding = Embedding(config)
|
| 265 |
self.transformer = Encoder(config, activation_checkpointing=gradient_checkpointing)
|
|
|
|
| 394 |
nn.Dropout(drop_out),
|
| 395 |
nn.Linear(config.hidden_size, num_labels)
|
| 396 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 397 |
|
| 398 |
def forward(self, x):
|
| 399 |
x = self.nonlinearity(x)
|