File size: 10,689 Bytes
de9e054
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
---
library_name: sentence-transformers
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
- matryoshka
- multilingual
- embeddings
- xlm-roberta
language:
- multilingual
- en
- ar
- de
- es
- fr
- zh
- ru
- tr
- ko
- ja
- it
- pt
- nl
license: cc-by-nc-4.0
base_model: xlm-roberta-base
metrics:
- cosine_accuracy
- cosine_precision
- cosine_recall
- cosine_f1
- cosine_ap
- dot_accuracy
- dot_precision
- dot_recall
- dot_f1
- dot_ap
- manhattan_accuracy
- manhattan_precision
- manhattan_recall
- manhattan_f1
- manhattan_ap
- euclidean_accuracy
- euclidean_precision
- euclidean_recall
- euclidean_f1
- euclidean_ap
model-index:
- name: Matryoshka Text Embedding v1
  results:
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: SciFact
      type: scifact
      config: default
      split: test
      revision: d56462d0e63a25450459c4f213e49ffdb866f7f9
    metrics:
    - type: ndcg_at_10
      value: 0.63084
      name: NDCG@10
    - type: ndcg_at_1
      value: 0.51
      name: NDCG@1
    - type: ndcg_at_3
      value: 0.578
      name: NDCG@3
    - type: ndcg_at_5
      value: 0.60648
      name: NDCG@5
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: STSBenchmark
      type: stsbenchmark
      config: default
      split: test
      revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
    metrics:
    - type: spearman
      value: 0.850616
      name: Spearman
    - type: pearson
      value: 0.838067
      name: Pearson
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: STS17
      type: sts17-crosslingual-sts
      config: en-en
      split: test
      revision: faeb762787bd10488a50c8b5be4a3b82e411949c
    metrics:
    - type: spearman
      value: 0.873981
      name: Spearman (en-en)
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: STS17
      type: sts17-crosslingual-sts
      config: es-es
      split: test
      revision: faeb762787bd10488a50c8b5be4a3b82e411949c
    metrics:
    - type: spearman
      value: 0.88079
      name: Spearman (es-es)
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: STS17
      type: sts17-crosslingual-sts
      config: ko-ko
      split: test
      revision: faeb762787bd10488a50c8b5be4a3b82e411949c
    metrics:
    - type: spearman
      value: 0.821019
      name: Spearman (ko-ko)
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: STS17
      type: sts17-crosslingual-sts
      config: ar-ar
      split: test
      revision: faeb762787bd10488a50c8b5be4a3b82e411949c
    metrics:
    - type: spearman
      value: 0.805643
      name: Spearman (ar-ar)
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: STS17
      type: sts17-crosslingual-sts
      config: en-de
      split: test
      revision: faeb762787bd10488a50c8b5be4a3b82e411949c
    metrics:
    - type: spearman
      value: 0.824516
      name: Spearman (en-de)
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: STS17
      type: sts17-crosslingual-sts
      config: nl-en
      split: test
      revision: faeb762787bd10488a50c8b5be4a3b82e411949c
    metrics:
    - type: spearman
      value: 0.819011
      name: Spearman (nl-en)
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: STS17
      type: sts17-crosslingual-sts
      config: it-en
      split: test
      revision: faeb762787bd10488a50c8b5be4a3b82e411949c
    metrics:
    - type: spearman
      value: 0.815176
      name: Spearman (it-en)
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: STS17
      type: sts17-crosslingual-sts
      config: fr-en
      split: test
      revision: faeb762787bd10488a50c8b5be4a3b82e411949c
    metrics:
    - type: spearman
      value: 0.815679
      name: Spearman (fr-en)
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: STS17
      type: sts17-crosslingual-sts
      config: en-tr
      split: test
      revision: faeb762787bd10488a50c8b5be4a3b82e411949c
    metrics:
    - type: spearman
      value: 0.748444
      name: Spearman (en-tr)
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: STS17
      type: sts17-crosslingual-sts
      config: es-en
      split: test
      revision: faeb762787bd10488a50c8b5be4a3b82e411949c
    metrics:
    - type: spearman
      value: 0.766019
      name: Spearman (es-en)
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: STS17
      type: sts17-crosslingual-sts
      config: en-ar
      split: test
      revision: faeb762787bd10488a50c8b5be4a3b82e411949c
    metrics:
    - type: spearman
      value: 0.71912
      name: Spearman (en-ar)
---

# Matryoshka Text Embedding v1

A multilingual text embedding model with Matryoshka Representation Learning, allowing flexible embedding dimensions from 64D to 1024D.

## Model Overview

This model implements Matryoshka Representation Learning, enabling you to truncate embeddings to different dimensions while maintaining good performance. This allows you to balance accuracy, speed, and storage based on your specific needs.

### Key Features

- **Flexible Dimensions**: Choose from 7 different embedding sizes (64D, 128D, 256D, 384D, 512D, 768D, 1024D)
- **Multilingual Support**: Trained on 100+ languages
- **Base Architecture**: XLM-RoBERTa
- **Max Sequence Length**: 8192 tokens

## Quick Start

### Installation

```python
pip install sentence-transformers
```

### Basic Usage

```python
from sentence_transformers import SentenceTransformer

# Load model
model = SentenceTransformer('matryoshka-text-embedding-v1')

# Full precision (1024D)
embeddings = model.encode(["Your text here"])

# Balanced mode (512D) - Recommended for most use cases
embeddings = model.encode(["Your text here"], truncate_dim=512)

# Fast mode (256D) - For high-throughput applications
embeddings = model.encode(["Your text here"], truncate_dim=256)

# Ultra-fast mode (128D) - For real-time applications
embeddings = model.encode(["Your text here"], truncate_dim=128)
```

## Performance Benchmarks

### SciFact (Scientific Document Retrieval)

| Dimension | NDCG@10 | Relative Performance |
|-----------|---------|---------------------|
| **1024D** | 0.6308 | 100.0% |
| **768D** | 0.6277 | 99.5% |
| **512D** | 0.6114 | 96.9% |
| **384D** | 0.6035 | 95.7% |
| **256D** | 0.5614 | 89.0% |
| **128D** | 0.4732 | 75.0% |
| **64D** | 0.3317 | 52.6% |

### STSBenchmark (English Semantic Similarity)

- **Spearman**: 0.8506 (1024D)
- **Pearson**: 0.8381 (1024D)

### STS17 (Multilingual Semantic Similarity)

**Average Spearman Correlation across languages: 0.8096**

Performance by language pair (1024D):
- Spanish (es-es): 0.8808
- English (en-en): 0.8740
- German (en-de): 0.8245
- Korean (ko-ko): 0.8210
- French (fr-en): 0.8157
- Italian (it-en): 0.8152
- Dutch (nl-en): 0.8190
- Arabic (ar-ar): 0.8056
- Turkish (en-tr): 0.7484
- Spanish-English (es-en): 0.7660
- English-Arabic (en-ar): 0.7191

## Use Cases

### High Accuracy Applications (768D-1024D)
- Scientific literature search
- Legal document retrieval
- Medical information systems

### Balanced Production (512D) - Recommended
- General web search
- E-commerce product search
- Content recommendation engines
- Knowledge base retrieval

### High-Throughput Systems (256D-384D)
- Real-time search APIs
- Large-scale document indexing
- Social media search

### Mobile & Edge Devices (64D-128D)
- Mobile applications
- IoT devices
- Browser-based search
- Resource-constrained environments

## Advanced Usage

### Semantic Search

```python
import numpy as np
from sentence_transformers import util

# Index documents with 512D (optimal balance)
documents = [
    "Artificial intelligence is transforming healthcare.",
    "Machine learning models require large datasets.",
    "Quantum computing promises exponential speedups."
]

doc_embeddings = model.encode(documents, truncate_dim=512)

# Search with same dimension
query = "How is AI used in medicine?"
query_embedding = model.encode(query, truncate_dim=512)

# Compute similarities
similarities = util.cos_sim(query_embedding, doc_embeddings)
top_result = np.argmax(similarities)

print(f"Most relevant: {documents[top_result]}")
```

### Integration with FAISS

```python
import faiss
import numpy as np

# Create embeddings with 512D
embeddings = model.encode(documents, truncate_dim=512)
embeddings = embeddings.astype('float32')

# Build FAISS index
dimension = 512
index = faiss.IndexFlatIP(dimension)
faiss.normalize_L2(embeddings)
index.add(embeddings)

# Search
query_embedding = model.encode(query, truncate_dim=512).astype('float32')
faiss.normalize_L2(query_embedding.reshape(1, -1))
distances, indices = index.search(query_embedding.reshape(1, -1), k=10)
```

## Technical Details

### Architecture
- **Base**: XLM-RoBERTa transformer encoder
- **Embedding Dimensions**: 1024 (full) with 7 supported truncation levels
- **Max Sequence Length**: 8192 tokens
- **Vocabulary Size**: 250,002 tokens
- **Parameters**: ~568M

### Training
- **Technique**: Matryoshka Representation Learning
- **Languages**: 100+ languages
- **Max Input Length**: 8192 tokens

## Model Files

- `pytorch_model.bin` - Model weights
- `config.json` - Model configuration
- `tokenizer.json` - Tokenizer configuration
- `lumees_config.json` - Matryoshka-specific configuration

## License

This model is released under the **CC-BY-NC-4.0** (Creative Commons Attribution-NonCommercial 4.0 International) license.

See the [LICENSE](LICENSE) file for full details and acknowledgments.

## Acknowledgments

This model builds upon important foundational work:

- **XLM-RoBERTa**: Base architecture for multilingual representations
- **BAAI**: For their contributions through RetroMAE and BGE-M3 papers
- **Matryoshka Representation Learning**: Training methodology (Kusupati et al., 2022)

## Citation

If you use this model in your research or application, please cite:

```bibtex
@misc{matryoshka-text-embedding-v1,
  title={Matryoshka Text Embedding v1},
  author={Hasan Kurşun and Kerem Berkay Yanık},
  year={2025},
  url={https://huggingface.co/lumees/lumees-matryoshka-embedding-v1},
  organization={Lumees},
  contact={[email protected]},
  website={https://lumees.io}
}
```