--- base_model: - Qwen/Qwen2.5-Coder-7B-Instruct datasets: - luzimu/WebGen-Bench language: - en library_name: transformers license: mit metrics: - accuracy pipeline_tag: text-generation tags: - code-generation --- # WebGen-LM WebGen-LM is trained using the Bolt.diy trajectories generated from a subset of the training set of WebGen-Bench (🤗 [luzimu/WebGen-Bench](https://huggingface.co/datasets/luzimu/WebGen-Bench)). It has been introduced in the paper [WebGen-Bench: Evaluating LLMs on Generating Interactive and Functional Websites from Scratch](https://arxiv.org/abs/2505.03733). Project page: https://webgen-bench.github.io/ The training data and code can be found at [WebGen-Bench (Github)](https://github.com/mnluzimu/WebGen-Bench). The WebGen-LM family of models are as follows: |Models | HF Links | |---|---| |WebGen-LM-7B | 🤗 [luzimu/WebGen-LM-7B](https://huggingface.co/luzimu/WebGen-LM-7B) | |WebGen-LM-14B | 🤗 [luzimu/WebGen-LM-14B](https://huggingface.co/luzimu/WebGen-LM-14B) | |WebGen-LM-32B | 🤗 [luzimu/WebGen-LM-32B](https://huggingface.co/luzimu/WebGen-LM-32B) | ## Sample Usage You can use this model with the `transformers` library for text generation tasks, specifically for code generation based on instructions. ```python from transformers import AutoModelForCausalLM, AutoTokenizer import torch model_id = "luzimu/WebGen-LM-32B" tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained( model_id, torch_dtype=torch.bfloat16, device_map="auto" ) messages = [ {"role": "user", "content": "Write HTML, CSS, and JavaScript for a simple to-do list web application. The list should allow users to add and remove items."}, ] chat_input = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) model_inputs = tokenizer([chat_input], return_tensors="pt").to(model.device) generated_ids = model.generate( model_inputs.input_ids, max_new_tokens=2048, do_sample=True, temperature=0.7, top_p=0.95 ) # Decode only the newly generated tokens output_text = tokenizer.decode(generated_ids[0][model_inputs.input_ids.shape[1]:], skip_special_tokens=False) print(output_text) ``` ## Performance on WebGen-Bench ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64b0bfef2f2f9c345b87e673/ADt1JdvKw-IZ_xnS17adL.png) ## Citation If you find our project useful, please cite: ``` @misc{lu2025webgenbenchevaluatingllmsgenerating, title={WebGen-Bench: Evaluating LLMs on Generating Interactive and Functional Websites from Scratch}, author={Zimu Lu and Yunqiao Yang and Houxing Ren and Haotian Hou and Han Xiao and Ke Wang and Weikang Shi and Aojun Zhou and Mingjie Zhan and Hongsheng Li}, year={2025}, eprint={2505.03733}, archivePrefix={arXiv}, primaryClass={cs.CL}, url={https://arxiv.org/abs/2505.03733}, } @misc{lu2025webgenagentenhancinginteractivewebsite, title={WebGen-Agent: Enhancing Interactive Website Generation with Multi-Level Feedback and Step-Level Reinforcement Learning}, author={Zimu Lu and Houxing Ren and Yunqiao Yang and Ke Wang and Zhuofan Zong and Junting Pan and Mingjie Zhan and Hongsheng Li}, year={2025}, eprint={2509.22644}, archivePrefix={arXiv}, primaryClass={cs.CL}, url={https://arxiv.org/abs/2509.22644}, } ```