Update README.md
Browse files
README.md
CHANGED
|
@@ -1,7 +1,7 @@
|
|
| 1 |
---
|
| 2 |
license: apache-2.0
|
| 3 |
---
|
| 4 |
-
#
|
| 5 |
|
| 6 |
## Model Description
|
| 7 |
|
|
@@ -22,7 +22,7 @@ To load and use this model with Hugging Face Transformers:
|
|
| 22 |
import torch
|
| 23 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 24 |
|
| 25 |
-
model_name = "maomaocun/
|
| 26 |
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
| 27 |
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, trust_remote_code=True).to("cuda")
|
| 28 |
|
|
@@ -35,7 +35,7 @@ prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_
|
|
| 35 |
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
| 36 |
input_ids = inputs['input_ids']
|
| 37 |
attention_mask = inputs.get('attention_mask', torch.ones_like(input_ids))
|
| 38 |
-
|
| 39 |
input_ids=input_ids,
|
| 40 |
attention_mask=attention_mask,
|
| 41 |
max_gen_length=1024,
|
|
@@ -43,10 +43,9 @@ for chunk in model.generate(
|
|
| 43 |
threshold=0.9,
|
| 44 |
streaming=True,
|
| 45 |
eos_token_id=126348
|
| 46 |
-
)
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
print(text, end='', flush=True)
|
| 50 |
```
|
| 51 |
|
| 52 |
For block diffusion-style inference, customize the generation loop to manage KV cache and block outputs as needed.
|
|
@@ -55,10 +54,10 @@ For block diffusion-style inference, customize the generation loop to manage KV
|
|
| 55 |
|
| 56 |
The following table compares performance across key evaluation benchmarks. Results are reported as accuracy percentages where applicable.
|
| 57 |
|
| 58 |
-
| Model | GSM8K | GPQA | BBH | MATH | HumanEval | MBPP |
|
| 59 |
-
|
| 60 |
-
| LLaDA 8B Base in Pure Diffusion | 69.06 | 31.91 | 44.77 | 30.84 | 32.92 | 40.
|
| 61 |
-
| LLaDA 8B Instruct in
|
| 62 |
-
|
|
| 63 |
|
| 64 |
These results demonstrate competitive performance, particularly in code generation (HumanEval, MBPP) and reasoning tasks (BBH, MATH), with gains over the base instruct variant in several areas.
|
|
|
|
| 1 |
---
|
| 2 |
license: apache-2.0
|
| 3 |
---
|
| 4 |
+
# dLLM-Var
|
| 5 |
|
| 6 |
## Model Description
|
| 7 |
|
|
|
|
| 22 |
import torch
|
| 23 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 24 |
|
| 25 |
+
model_name = "maomaocun/dLLM-Var"
|
| 26 |
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
| 27 |
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, trust_remote_code=True).to("cuda")
|
| 28 |
|
|
|
|
| 35 |
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
| 36 |
input_ids = inputs['input_ids']
|
| 37 |
attention_mask = inputs.get('attention_mask', torch.ones_like(input_ids))
|
| 38 |
+
result = model.generate(
|
| 39 |
input_ids=input_ids,
|
| 40 |
attention_mask=attention_mask,
|
| 41 |
max_gen_length=1024,
|
|
|
|
| 43 |
threshold=0.9,
|
| 44 |
streaming=True,
|
| 45 |
eos_token_id=126348
|
| 46 |
+
)
|
| 47 |
+
text = tokenizer.batch_decode(result, skip_special_tokens=True)
|
| 48 |
+
print(text)
|
|
|
|
| 49 |
```
|
| 50 |
|
| 51 |
For block diffusion-style inference, customize the generation loop to manage KV cache and block outputs as needed.
|
|
|
|
| 54 |
|
| 55 |
The following table compares performance across key evaluation benchmarks. Results are reported as accuracy percentages where applicable.
|
| 56 |
|
| 57 |
+
| Model | GSM8K | GPQA | BBH | MATH | HumanEval | MBPP | MMLU-Generate |
|
| 58 |
+
|--------------------------------|-------|-------|-------|-------|-----------|-------|---------------|
|
| 59 |
+
| LLaDA 8B Base in Pure Diffusion | 69.06 | 31.91 | 44.77 | 30.84 | 32.92 | 40.80 | 65.9 |
|
| 60 |
+
| LLaDA 8B Instruct in Semi-ar Diffusion | 77.48 | 29.01 | 51.49 | 22.32 | 38.71 | 39.20 | 65.5 |
|
| 61 |
+
| dLLM-Var Block Diffusion | 77.40 | 33.03 | 48.74 | 31.94 | 40.24 | 42.00 | 65.53 |
|
| 62 |
|
| 63 |
These results demonstrate competitive performance, particularly in code generation (HumanEval, MBPP) and reasoning tasks (BBH, MATH), with gains over the base instruct variant in several areas.
|