Update README.md
Browse files
README.md
CHANGED
|
@@ -1,3 +1,133 @@
|
|
| 1 |
-
---
|
| 2 |
-
license: mit
|
| 3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: mit
|
| 3 |
+
datasets:
|
| 4 |
+
- mozilla-foundation/common_voice_17_0
|
| 5 |
+
language:
|
| 6 |
+
- en
|
| 7 |
+
- es
|
| 8 |
+
- ar
|
| 9 |
+
- fr
|
| 10 |
+
- de
|
| 11 |
+
- it
|
| 12 |
+
- pt
|
| 13 |
+
- ru
|
| 14 |
+
- zh
|
| 15 |
+
- ja
|
| 16 |
+
metrics:
|
| 17 |
+
- accuracy
|
| 18 |
+
base_model:
|
| 19 |
+
- hubertsiuzdak/snac_24khz
|
| 20 |
+
pipeline_tag: audio-classification
|
| 21 |
+
tags:
|
| 22 |
+
- audio
|
| 23 |
+
- language
|
| 24 |
+
- classification
|
| 25 |
+
---
|
| 26 |
+
# Audio Language Classifier (SNAC backbone, Common Voice 17.0)
|
| 27 |
+
|
| 28 |
+
Summary:
|
| 29 |
+
- Task: Spoken language identification (10 languages)
|
| 30 |
+
- Backbone: SNAC (hubertsiuzdak/snac_24khz) with attention pooling
|
| 31 |
+
- Dataset: Mozilla Common Voice 17.0 (streaming)
|
| 32 |
+
- Sample rate: 24 kHz; Max audio length: 10 s (pad/trim)
|
| 33 |
+
- Mixed precision: FP16
|
| 34 |
+
- Best validation accuracy: 0.5016
|
| 35 |
+
- Test accuracy: 0.3830
|
| 36 |
+
|
| 37 |
+
Supported languages (labels):
|
| 38 |
+
- en, es, fr, de, it, pt, ru, zh-CN, ja, ar
|
| 39 |
+
|
| 40 |
+
Intended use:
|
| 41 |
+
- Classify the language of short speech segments (≤10 s).
|
| 42 |
+
- Not for ASR or dialect/variant classification.
|
| 43 |
+
|
| 44 |
+
Out-of-scope:
|
| 45 |
+
- Very long audio, code-switching, overlapping speakers, noisy or music-heavy inputs.
|
| 46 |
+
|
| 47 |
+
Data:
|
| 48 |
+
- Source: Mozilla Common Voice 17.0 (streaming; per-language subset).
|
| 49 |
+
- License: CC-0 (check dataset card for details).
|
| 50 |
+
- Splits: Official validation/test splits used (use_official_splits: true).
|
| 51 |
+
- Optional percent slice per split used during training: 25%.
|
| 52 |
+
|
| 53 |
+
Model architecture:
|
| 54 |
+
- Backbone: SNAC encoder (pretrained).
|
| 55 |
+
- Pooling: Attention pooling over time.
|
| 56 |
+
- Head:
|
| 57 |
+
- Linear(feature_dim → 512), ReLU, Dropout(0.1)
|
| 58 |
+
- Linear(512 → 256), ReLU, Dropout(0.1)
|
| 59 |
+
- Linear(256 → 10)
|
| 60 |
+
- Selective tuning:
|
| 61 |
+
- Start frozen (backbone_tune_strategy: "frozen")
|
| 62 |
+
- Unfreeze strategy at epoch 5: "last_n_blocks" with last_n_blocks: 1
|
| 63 |
+
- Gradient checkpointing enabled for backbone.
|
| 64 |
+
|
| 65 |
+
Training setup:
|
| 66 |
+
- Batch size: 48
|
| 67 |
+
- Epochs: up to 100 (early stopping patience: 15)
|
| 68 |
+
- Streaming steps per epoch: 500
|
| 69 |
+
- Optimizer: AdamW (betas: 0.9, 0.999; eps: 1e-8)
|
| 70 |
+
- Learning rate: head 1e-4; backbone 2e-5 (after unfreeze)
|
| 71 |
+
- Scheduler: cosine with warmup (num_warmup_steps: 2000)
|
| 72 |
+
- Label smoothing: 0.1
|
| 73 |
+
- Max grad norm: 1.0
|
| 74 |
+
- Seed: 42
|
| 75 |
+
- Hardware: CUDA if available; FP16 enabled
|
| 76 |
+
|
| 77 |
+
Preprocessing:
|
| 78 |
+
- Mono waveform at 24 kHz; pad/trim to 10 s.
|
| 79 |
+
- Normalization handled by torchaudio/Tensor transforms in pipeline.
|
| 80 |
+
|
| 81 |
+
Evaluation results:
|
| 82 |
+
- Validation:
|
| 83 |
+
- Best accuracy: 0.5016
|
| 84 |
+
- Test:
|
| 85 |
+
- accuracy: 0.3830
|
| 86 |
+
- f1_micro: 0.3830
|
| 87 |
+
- f1_macro: 0.3624
|
| 88 |
+
- f1_weighted: 0.3666
|
| 89 |
+
- loss: 2.2467
|
| 90 |
+
|
| 91 |
+
Files and checkpoints:
|
| 92 |
+
- Checkpoints dir: ./training
|
| 93 |
+
- best_model.pt
|
| 94 |
+
- language_mapping.txt (idx: language)
|
| 95 |
+
- final_results.txt
|
| 96 |
+
|
| 97 |
+
How to use (inference):
|
| 98 |
+
```python
|
| 99 |
+
import torch
|
| 100 |
+
from models import LanguageClassifier
|
| 101 |
+
|
| 102 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 103 |
+
|
| 104 |
+
# Build and load from a directory containing best_model.pt and language_mapping.txt
|
| 105 |
+
model = LanguageClassifier.from_pretrained("training", device=device)
|
| 106 |
+
|
| 107 |
+
# Single-file prediction (auto resample to 24k, pad/trim to 10s)
|
| 108 |
+
label, prob = model.predict("example.wav", max_length_seconds=10.0, top_k=1)
|
| 109 |
+
print(label, prob)
|
| 110 |
+
|
| 111 |
+
# Top-3
|
| 112 |
+
top3 = model.predict("example.wav", top_k=3)
|
| 113 |
+
print(top3) # [('en', 0.62), ('de', 0.21), ('fr', 0.08)]
|
| 114 |
+
|
| 115 |
+
# If you already have a waveform tensor:
|
| 116 |
+
# wav: torch.Tensor [T] at 24kHz (or provide sample_rate to auto-resample)
|
| 117 |
+
# model.predict handles [T] or [B,T]
|
| 118 |
+
# label, prob = model.predict(wav, sample_rate=orig_sr, top_k=1)
|
| 119 |
+
```
|
| 120 |
+
|
| 121 |
+
Limitations and risks:
|
| 122 |
+
- Accuracy varies across speakers, accents, microphones, and noise conditions.
|
| 123 |
+
- May misclassify short utterances or code-switched speech.
|
| 124 |
+
- Not suitable for sensitive decision making without human review.
|
| 125 |
+
|
| 126 |
+
Reproducibility:
|
| 127 |
+
- Default config: ./config.yaml
|
| 128 |
+
- Training script: ./train.py
|
| 129 |
+
- To visualize internals: CHECKPOINT_DIR=training/ python viualization.py
|
| 130 |
+
|
| 131 |
+
Citation and acknowledgements:
|
| 132 |
+
- [SNAC: hubertsiuzdak/snac_24khz](https://github.com/hubertsiuzdak/snac/)
|
| 133 |
+
- [Dataset: Mozilla Common Voice 17.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_17_0)
|