--- license: cc-by-nc-sa-4.0 language: - en - zh metrics: - accuracy pipeline_tag: image-segmentation tags: - Keras - TF-Keras - Safetensors - TensorFlow - biology - agriculture - weeds - vegetation - camouflage - deep learning - imagery - segmentation - medical - forest fire - wildfire - fuel --- ![image/gif](https://cdn-uploads.huggingface.co/production/uploads/66c0d74ca15b4eed7fa90867/a_ry2xQlywVEgkshiO-fJ.gif) ### 11/20/25 Note - Added safetensors and onnx formats. Report all issues. Thanks. ### 11/20/25 Note - Colorado beetlekill wildfire fuel model is inbound. ### Model Information - fire火-fuel薪-vegetation植被-image-segmentation-1.0 - Red Green Blue (RGB) binary segmentation of particular vegetation in leaf. Shrub or tree applications.
植被叶片的红、绿、蓝二元分割。
- Likely medical applications as the model was originally designed for.
该模型最初很可能是为医疗应用而设计的。
- Originally trained to specific species. Semantically segmented for accuracy.
最初针对特定物种进行训练。为了提高准确性,进行了语义分割。
- Keras / Tensorflow .h5 supervised model.
- Opportunities are to transfer learn or further fine-tune with LoRA, etc.
使用 LoRA 进行迁移学习或进一步微调的机会
- Data sources are proprietary via hand drawn masked samples.
数据源是通过手绘的掩蔽样本专有的。
- Some extrapolation of source data to synthetic data.
将一些源数据推断为合成数据。
- Novel applications – require specific vegetation imagery.
新颖的应用——需要特定的植被图像。
- Other applications - Vegetation 2D area calculations. Wildfire / fire fuel. Land Cover change. Medical. Line clearing. Noxious weeds. Environmental assessments. Camouflage object detection.
其他应用 - 植被 2D 面积计算。野火/火灾燃料。土地覆盖变化。医疗。线路清理。有害杂草。环境评估。伪装物体检测。
![image/png](https://cdn-uploads.huggingface.co/production/uploads/66c0d74ca15b4eed7fa90867/Z3_EQy6lzfDUsXcN5a8SB.png) **Forest Fire Fuel**
LoRA adapter of base segmentation vegetation model.
**Example - Model Not currently available.**
Moderate to extreme beetle kill.
Colorado coniferous forest fuel source. ![image/png](https://cdn-uploads.huggingface.co/production/uploads/66c0d74ca15b4eed7fa90867/Jx1-lGJ2BJzqqygD7VWt-.png)
USFS fire severity for area. ![image/png](https://cdn-uploads.huggingface.co/production/uploads/66c0d74ca15b4eed7fa90867/vrdK83koWPZi7WsjyT8hM.png) LoRA adapted fuel layer overlaying USFS fire severity. ![image/png](https://cdn-uploads.huggingface.co/production/uploads/66c0d74ca15b4eed7fa90867/cL9zYCvEJfSUFVy2FV_pS.png) **Model developer**: Mark Rodrigo **Associated code**: https://github.com/mprodrigo - coming soon **Model Architecture**: Modified U-Net ### Model Input / Output Overview: - Input: 256, 256, 3 - Output: 256, 256, 1 ### Training Source Tile Example ![image/png](https://cdn-uploads.huggingface.co/production/uploads/66c0d74ca15b4eed7fa90867/jwKSpfmE9V4exKlaiMuCP.png) ### Training Source Tile Histogram ![image/png](https://cdn-uploads.huggingface.co/production/uploads/66c0d74ca15b4eed7fa90867/rIwLF5VHBNAXPyPP6GFLv.png) ### Further Reference TODO ### Example Code **Keras**
import keras model = keras.models.load_model('../model/image-segmentation-vegetation-1.0.keras')
model.summary()
or
import keras loaded_model = keras.models.load_model('/home/phantom/Projects/agverde/data/product/Agverde/z1/model/image-segmentation-vegetation-1.0.h5')
loaded_model.summary() **TensorFlow**
https://www.tensorflow.org/tutorials/keras/save_and_load ### Evaluation / Accuracy of Target Vegetation Rand Index: .92 - .96 (geographic latitude and regional vegetation color variations) ### Training and Validation data - 3840 256x256 RGB images and corresponding 256x256 binary mask images - ~ 1/3 allocated to validation - Separate test sets by latitude and region. Target species has regional color variations. ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-04 - train_batch_size: 8 - eval_batch_size: 3 - distributed_type: multi-GPU - num_devices: 2 - batch steps: 60 - eval steps: 9 - optimizer: Adam - num_epochs: 8 ### Training results | Training Loss | Epoch | Training Accuracy | |:-------------:|:------:|:-----------------:| | 0.4718 | 1 | 0.8227 | | 0.3869 | 2 | 0.8328 | | 0.3770 | 3 | 0.8403 | | 0.2557 | 4 | 0.8562 | | 0.2432 | 5 | 0.8587 | | 0.0856 | 6 | 0.9557 | | 0.0338 | 7 | 0.9870 | | 0.0303 | 8 | 0.9891 | ### Framework versions Keras 3.6.0
Tensorflow 2.16.2