Upload custom kernels
Browse files
    	
        build/torch-universal/triton_llama_mlp/__init__.py
    ADDED
    
    | 
         @@ -0,0 +1,2 @@ 
     | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            from . import layers
         
     | 
| 2 | 
         
            +
            __all__ = ["layers"]
         
     | 
    	
        build/torch-universal/triton_llama_mlp/layers.py
    ADDED
    
    | 
         @@ -0,0 +1,3 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            from .mlp import TritonLlamaMLP
         
     | 
| 2 | 
         
            +
             
     | 
| 3 | 
         
            +
            __all__ = ["TritonLlamaMLP"]
         
     | 
    	
        build/torch-universal/triton_llama_mlp/mlp.py
    ADDED
    
    | 
         @@ -0,0 +1,210 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            import torch
         
     | 
| 2 | 
         
            +
            import torch.nn as nn
         
     | 
| 3 | 
         
            +
            import triton
         
     | 
| 4 | 
         
            +
            import triton.language as tl
         
     | 
| 5 | 
         
            +
            from typing import Callable, Optional
         
     | 
| 6 | 
         
            +
             
     | 
| 7 | 
         
            +
             
     | 
| 8 | 
         
            +
            @triton.jit
         
     | 
| 9 | 
         
            +
            def matmul_kernel(
         
     | 
| 10 | 
         
            +
                    # Pointers to matrices
         
     | 
| 11 | 
         
            +
                    a_ptr, b_ptr, c_ptr,
         
     | 
| 12 | 
         
            +
                    # Matrix dimensions
         
     | 
| 13 | 
         
            +
                    M, N, K,
         
     | 
| 14 | 
         
            +
                    # The stride variables represent how much to increase the ptr by when moving by 1
         
     | 
| 15 | 
         
            +
                    # element in a particular dimension. E.g. `stride_am` is how much to increase `a_ptr`
         
     | 
| 16 | 
         
            +
                    # by to get the element one row down (A has M rows).
         
     | 
| 17 | 
         
            +
                    stride_am, stride_ak,  #
         
     | 
| 18 | 
         
            +
                    stride_bk, stride_bn,  #
         
     | 
| 19 | 
         
            +
                    stride_cm, stride_cn,
         
     | 
| 20 | 
         
            +
                    # Meta-parameters
         
     | 
| 21 | 
         
            +
                    BLOCK_SIZE_M: tl.constexpr, BLOCK_SIZE_N: tl.constexpr, BLOCK_SIZE_K: tl.constexpr,  #
         
     | 
| 22 | 
         
            +
                    GROUP_SIZE_M: tl.constexpr,  #
         
     | 
| 23 | 
         
            +
                    ACTIVATION: tl.constexpr = None #
         
     | 
| 24 | 
         
            +
            ):
         
     | 
| 25 | 
         
            +
                """Kernel for computing the matmul C = A x B.
         
     | 
| 26 | 
         
            +
                A has shape (M, K), B has shape (K, N) and C has shape (M, N)
         
     | 
| 27 | 
         
            +
                """
         
     | 
| 28 | 
         
            +
                # -----------------------------------------------------------
         
     | 
| 29 | 
         
            +
                # Map program ids `pid` to the block of C it should compute.
         
     | 
| 30 | 
         
            +
                # This is done in a grouped ordering to promote L2 data reuse.
         
     | 
| 31 | 
         
            +
                # See above `L2 Cache Optimizations` section for details.
         
     | 
| 32 | 
         
            +
                pid = tl.program_id(axis=0)
         
     | 
| 33 | 
         
            +
                num_pid_m = tl.cdiv(M, BLOCK_SIZE_M)
         
     | 
| 34 | 
         
            +
                num_pid_n = tl.cdiv(N, BLOCK_SIZE_N)
         
     | 
| 35 | 
         
            +
                num_pid_in_group = GROUP_SIZE_M * num_pid_n
         
     | 
| 36 | 
         
            +
                group_id = pid // num_pid_in_group
         
     | 
| 37 | 
         
            +
                first_pid_m = group_id * GROUP_SIZE_M
         
     | 
| 38 | 
         
            +
                group_size_m = min(num_pid_m - first_pid_m, GROUP_SIZE_M)
         
     | 
| 39 | 
         
            +
                pid_m = first_pid_m + ((pid % num_pid_in_group) % group_size_m)
         
     | 
| 40 | 
         
            +
                pid_n = (pid % num_pid_in_group) // group_size_m
         
     | 
| 41 | 
         
            +
             
     | 
| 42 | 
         
            +
                # ----------------------------------------------------------
         
     | 
| 43 | 
         
            +
                # Create pointers for the first blocks of A and B.
         
     | 
| 44 | 
         
            +
                # We will advance this pointer as we move in the K direction
         
     | 
| 45 | 
         
            +
                # and accumulate
         
     | 
| 46 | 
         
            +
                # `a_ptrs` is a block of [BLOCK_SIZE_M, BLOCK_SIZE_K] pointers
         
     | 
| 47 | 
         
            +
                # `b_ptrs` is a block of [BLOCK_SIZE_K, BLOCK_SIZE_N] pointers
         
     | 
| 48 | 
         
            +
                # See above `Pointer Arithmetic` section for details
         
     | 
| 49 | 
         
            +
                offs_am = (pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)) % M
         
     | 
| 50 | 
         
            +
                offs_bn = (pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)) % N
         
     | 
| 51 | 
         
            +
                offs_k = tl.arange(0, BLOCK_SIZE_K)
         
     | 
| 52 | 
         
            +
                a_ptrs = a_ptr + (offs_am[:, None] * stride_am + offs_k[None, :] * stride_ak)
         
     | 
| 53 | 
         
            +
                b_ptrs = b_ptr + (offs_k[:, None] * stride_bk + offs_bn[None, :] * stride_bn)
         
     | 
| 54 | 
         
            +
             
     | 
| 55 | 
         
            +
                # -----------------------------------------------------------
         
     | 
| 56 | 
         
            +
                # Iterate to compute a block of the C matrix.
         
     | 
| 57 | 
         
            +
                # We accumulate into a `[BLOCK_SIZE_M, BLOCK_SIZE_N]` block
         
     | 
| 58 | 
         
            +
                # of fp32 values for higher accuracy.
         
     | 
| 59 | 
         
            +
                # `accumulator` will be converted back to fp16 after the loop.
         
     | 
| 60 | 
         
            +
                accumulator = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32)
         
     | 
| 61 | 
         
            +
                for k in range(0, tl.cdiv(K, BLOCK_SIZE_K)):
         
     | 
| 62 | 
         
            +
                    # Load the next block of A and B, generate a mask by checking the K dimension.
         
     | 
| 63 | 
         
            +
                    # If it is out of bounds, set it to 0.
         
     | 
| 64 | 
         
            +
                    a = tl.load(a_ptrs, mask=offs_k[None, :] < K - k * BLOCK_SIZE_K, other=0.0)
         
     | 
| 65 | 
         
            +
                    b = tl.load(b_ptrs, mask=offs_k[:, None] < K - k * BLOCK_SIZE_K, other=0.0)
         
     | 
| 66 | 
         
            +
                    # We accumulate along the K dimension.
         
     | 
| 67 | 
         
            +
                    accumulator += tl.dot(a, b)
         
     | 
| 68 | 
         
            +
                    # Advance the ptrs to the next K block.
         
     | 
| 69 | 
         
            +
                    a_ptrs += BLOCK_SIZE_K * stride_ak
         
     | 
| 70 | 
         
            +
                    b_ptrs += BLOCK_SIZE_K * stride_bk
         
     | 
| 71 | 
         
            +
                # You can fuse arbitrary activation functions here
         
     | 
| 72 | 
         
            +
                # while the accumulator is still in FP32!
         
     | 
| 73 | 
         
            +
             
     | 
| 74 | 
         
            +
                c = accumulator.to(tl.float32)
         
     | 
| 75 | 
         
            +
             
     | 
| 76 | 
         
            +
                # -----------------------------------------------------------
         
     | 
| 77 | 
         
            +
                # Write back the block of the output matrix C with masks.
         
     | 
| 78 | 
         
            +
                offs_cm = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)
         
     | 
| 79 | 
         
            +
                offs_cn = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)
         
     | 
| 80 | 
         
            +
                c_ptrs = c_ptr + stride_cm * offs_cm[:, None] + stride_cn * offs_cn[None, :]
         
     | 
| 81 | 
         
            +
                c_mask = (offs_cm[:, None] < M) & (offs_cn[None, :] < N)
         
     | 
| 82 | 
         
            +
                tl.store(c_ptrs, c, mask=c_mask)
         
     | 
| 83 | 
         
            +
             
     | 
| 84 | 
         
            +
             
     | 
| 85 | 
         
            +
            # We can fuse `leaky_relu` by providing it as an `ACTIVATION` meta-parameter in `matmul_kernel`.
         
     | 
| 86 | 
         
            +
            @triton.jit
         
     | 
| 87 | 
         
            +
            def silu(x):
         
     | 
| 88 | 
         
            +
                return x * tl.sigmoid(x)
         
     | 
| 89 | 
         
            +
             
     | 
| 90 | 
         
            +
            def matmul(a, b, activation=""):
         
     | 
| 91 | 
         
            +
                # Check constraints.
         
     | 
| 92 | 
         
            +
                assert a.shape[1] == b.shape[0], "Incompatible dimensions"
         
     | 
| 93 | 
         
            +
                assert a.is_contiguous(), "Matrix A must be contiguous"
         
     | 
| 94 | 
         
            +
                M, K = a.shape
         
     | 
| 95 | 
         
            +
                K, N = b.shape
         
     | 
| 96 | 
         
            +
                BLOCK_SIZE_M = 32
         
     | 
| 97 | 
         
            +
                BLOCK_SIZE_N = 32
         
     | 
| 98 | 
         
            +
                BLOCK_SIZE_K = 32
         
     | 
| 99 | 
         
            +
                GROUP_SIZE_M = 8
         
     | 
| 100 | 
         
            +
                # Allocates output.
         
     | 
| 101 | 
         
            +
                c = torch.empty((M, N), device=a.device, dtype=torch.float)
         
     | 
| 102 | 
         
            +
                # 1D launch kernel where each block gets its own program.
         
     | 
| 103 | 
         
            +
                grid = lambda META: (triton.cdiv(M, META['BLOCK_SIZE_M']) * triton.cdiv(N, META['BLOCK_SIZE_N']), )
         
     | 
| 104 | 
         
            +
                matmul_kernel[grid](
         
     | 
| 105 | 
         
            +
                    a, b, c,  #
         
     | 
| 106 | 
         
            +
                    M, N, K,  #
         
     | 
| 107 | 
         
            +
                    a.stride(0), a.stride(1),  #
         
     | 
| 108 | 
         
            +
                    b.stride(0), b.stride(1),  #
         
     | 
| 109 | 
         
            +
                    c.stride(0), c.stride(1),  #
         
     | 
| 110 | 
         
            +
                    BLOCK_SIZE_M, BLOCK_SIZE_N, BLOCK_SIZE_K,  #
         
     | 
| 111 | 
         
            +
                    GROUP_SIZE_M,  #
         
     | 
| 112 | 
         
            +
                    ACTIVATION=activation  #
         
     | 
| 113 | 
         
            +
                )
         
     | 
| 114 | 
         
            +
                return c
         
     | 
| 115 | 
         
            +
             
     | 
| 116 | 
         
            +
             
     | 
| 117 | 
         
            +
            class TritonLlamaMLP(nn.Module):
         
     | 
| 118 | 
         
            +
                """LlamaMLP implementation using Triton kernels for matrix multiplication"""
         
     | 
| 119 | 
         
            +
                gate_proj: nn.Linear
         
     | 
| 120 | 
         
            +
                up_proj: nn.Linear
         
     | 
| 121 | 
         
            +
                down_proj: nn.Linear
         
     | 
| 122 | 
         
            +
                act_fn: Callable
         
     | 
| 123 | 
         
            +
                def forward(self, x):
         
     | 
| 124 | 
         
            +
                    # Replace nn.Linear with matmul using triton kernel
         
     | 
| 125 | 
         
            +
                    # Save original shape for reshaping back later
         
     | 
| 126 | 
         
            +
                    original_shape = x.shape
         
     | 
| 127 | 
         
            +
                    # Reshape input to 2D for matmul: (*, hidden_size) -> (batch_size*seq_len, hidden_size)
         
     | 
| 128 | 
         
            +
                    x_2d = x.reshape(-1, x.size(-1))
         
     | 
| 129 | 
         
            +
                    
         
     | 
| 130 | 
         
            +
                    # Gate projection
         
     | 
| 131 | 
         
            +
                    gate_output = matmul(x_2d, self.gate_proj.weight.t())
         
     | 
| 132 | 
         
            +
                    if self.gate_proj.bias is not None:
         
     | 
| 133 | 
         
            +
                        gate_output += self.gate_proj.bias
         
     | 
| 134 | 
         
            +
                        
         
     | 
| 135 | 
         
            +
                    # Up projection
         
     | 
| 136 | 
         
            +
                    up_output = matmul(x_2d, self.up_proj.weight.t())
         
     | 
| 137 | 
         
            +
                    if self.up_proj.bias is not None:
         
     | 
| 138 | 
         
            +
                        up_output += self.up_proj.bias
         
     | 
| 139 | 
         
            +
                        
         
     | 
| 140 | 
         
            +
                    # Apply activation function and element-wise multiplication
         
     | 
| 141 | 
         
            +
                    intermediate_output = self.act_fn(gate_output) * up_output
         
     | 
| 142 | 
         
            +
                    
         
     | 
| 143 | 
         
            +
                    # Final projection
         
     | 
| 144 | 
         
            +
                    down_output = matmul(intermediate_output, self.down_proj.weight.t())
         
     | 
| 145 | 
         
            +
                    if self.down_proj.bias is not None:
         
     | 
| 146 | 
         
            +
                        down_output += self.down_proj.bias
         
     | 
| 147 | 
         
            +
                        
         
     | 
| 148 | 
         
            +
                    # Reshape back to original dimensions: (batch_size*seq_len, hidden_size) -> (*, hidden_size)
         
     | 
| 149 | 
         
            +
                    return down_output.reshape(original_shape)
         
     | 
| 150 | 
         
            +
             
     | 
| 151 | 
         
            +
             
     | 
| 152 | 
         
            +
            # def test_triton_llama_mlp():
         
     | 
| 153 | 
         
            +
            #     """Test that TritonLlamaMLP produces the same output as LlamaMLP from transformers."""
         
     | 
| 154 | 
         
            +
            #     import torch
         
     | 
| 155 | 
         
            +
            #     import torch.nn.functional as F
         
     | 
| 156 | 
         
            +
                
         
     | 
| 157 | 
         
            +
            #     # Skip test if CUDA is not available
         
     | 
| 158 | 
         
            +
            #     if not torch.cuda.is_available():
         
     | 
| 159 | 
         
            +
            #         print("CUDA not available, skipping test")
         
     | 
| 160 | 
         
            +
            #         return True
         
     | 
| 161 | 
         
            +
                
         
     | 
| 162 | 
         
            +
            #     # Define test parameters
         
     | 
| 163 | 
         
            +
            #     batch_size = 2
         
     | 
| 164 | 
         
            +
            #     seq_len = 4
         
     | 
| 165 | 
         
            +
            #     hidden_size = 128
         
     | 
| 166 | 
         
            +
            #     intermediate_size = 256
         
     | 
| 167 | 
         
            +
                
         
     | 
| 168 | 
         
            +
            #     # Create input tensor
         
     | 
| 169 | 
         
            +
            #     x = torch.randn(batch_size, seq_len, hidden_size, device="cuda", dtype=torch.float)
         
     | 
| 170 | 
         
            +
                
         
     | 
| 171 | 
         
            +
            #     # Create a standard PyTorch implementation for comparison
         
     | 
| 172 | 
         
            +
            #     class StandardLlamaMLP(nn.Module):
         
     | 
| 173 | 
         
            +
            #         def __init__(self, hidden_size, intermediate_size):
         
     | 
| 174 | 
         
            +
            #             super().__init__()
         
     | 
| 175 | 
         
            +
            #             self.gate_proj = nn.Linear(hidden_size, intermediate_size, bias=False)
         
     | 
| 176 | 
         
            +
            #             self.up_proj = nn.Linear(hidden_size, intermediate_size, bias=False)
         
     | 
| 177 | 
         
            +
            #             self.down_proj = nn.Linear(intermediate_size, hidden_size, bias=False)
         
     | 
| 178 | 
         
            +
            #             self.act_fn = F.silu
         
     | 
| 179 | 
         
            +
                        
         
     | 
| 180 | 
         
            +
            #         def forward(self, x):
         
     | 
| 181 | 
         
            +
            #             return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
         
     | 
| 182 | 
         
            +
                
         
     | 
| 183 | 
         
            +
            #     # Initialize models
         
     | 
| 184 | 
         
            +
            #     standard_mlp = StandardLlamaMLP(hidden_size, intermediate_size).to("cuda").to(torch.float)
         
     | 
| 185 | 
         
            +
                
         
     | 
| 186 | 
         
            +
            #     # Create our Triton implementation
         
     | 
| 187 | 
         
            +
            #     triton_mlp = TritonLlamaMLP()
         
     | 
| 188 | 
         
            +
            #     triton_mlp.gate_proj = standard_mlp.gate_proj
         
     | 
| 189 | 
         
            +
            #     triton_mlp.up_proj = standard_mlp.up_proj
         
     | 
| 190 | 
         
            +
            #     triton_mlp.down_proj = standard_mlp.down_proj
         
     | 
| 191 | 
         
            +
            #     triton_mlp.act_fn = standard_mlp.act_fn
         
     | 
| 192 | 
         
            +
                
         
     | 
| 193 | 
         
            +
            #     # Run both implementations
         
     | 
| 194 | 
         
            +
            #     with torch.no_grad():
         
     | 
| 195 | 
         
            +
            #         standard_output = standard_mlp(x)
         
     | 
| 196 | 
         
            +
            #         triton_output = triton_mlp(x)
         
     | 
| 197 | 
         
            +
                
         
     | 
| 198 | 
         
            +
            #     # Compare outputs
         
     | 
| 199 | 
         
            +
            #     max_diff = torch.max(torch.abs(standard_output - triton_output))
         
     | 
| 200 | 
         
            +
            #     print(f"Maximum difference between standard and Triton implementation: {max_diff}")
         
     | 
| 201 | 
         
            +
                
         
     | 
| 202 | 
         
            +
            #     # Check if outputs are close enough (allowing for some floating point differences)
         
     | 
| 203 | 
         
            +
            #     is_close = torch.allclose(standard_output, triton_output, rtol=1e-2, atol=1e-2)
         
     | 
| 204 | 
         
            +
            #     print(f"Outputs match within tolerance: {is_close}")
         
     | 
| 205 | 
         
            +
                
         
     | 
| 206 | 
         
            +
            #     return is_close
         
     | 
| 207 | 
         
            +
             
     | 
| 208 | 
         
            +
            # if __name__ == "__main__":
         
     | 
| 209 | 
         
            +
            #     test_triton_llama_mlp()
         
     | 
| 210 | 
         
            +
             
     | 
    	
        torch-ext/triton_llama_mlp/mlp.py
    CHANGED
    
    | 
         @@ -71,7 +71,7 @@ def matmul_kernel( 
     | 
|
| 71 | 
         
             
                # You can fuse arbitrary activation functions here
         
     | 
| 72 | 
         
             
                # while the accumulator is still in FP32!
         
     | 
| 73 | 
         | 
| 74 | 
         
            -
                c = accumulator.to(tl. 
     | 
| 75 | 
         | 
| 76 | 
         
             
                # -----------------------------------------------------------
         
     | 
| 77 | 
         
             
                # Write back the block of the output matrix C with masks.
         
     | 
| 
         @@ -98,7 +98,7 @@ def matmul(a, b, activation=""): 
     | 
|
| 98 | 
         
             
                BLOCK_SIZE_K = 32
         
     | 
| 99 | 
         
             
                GROUP_SIZE_M = 8
         
     | 
| 100 | 
         
             
                # Allocates output.
         
     | 
| 101 | 
         
            -
                c = torch.empty((M, N), device=a.device, dtype=torch. 
     | 
| 102 | 
         
             
                # 1D launch kernel where each block gets its own program.
         
     | 
| 103 | 
         
             
                grid = lambda META: (triton.cdiv(M, META['BLOCK_SIZE_M']) * triton.cdiv(N, META['BLOCK_SIZE_N']), )
         
     | 
| 104 | 
         
             
                matmul_kernel[grid](
         
     | 
| 
         @@ -166,7 +166,7 @@ class TritonLlamaMLP(nn.Module): 
     | 
|
| 166 | 
         
             
            #     intermediate_size = 256
         
     | 
| 167 | 
         | 
| 168 | 
         
             
            #     # Create input tensor
         
     | 
| 169 | 
         
            -
            #     x = torch.randn(batch_size, seq_len, hidden_size, device="cuda", dtype=torch. 
     | 
| 170 | 
         | 
| 171 | 
         
             
            #     # Create a standard PyTorch implementation for comparison
         
     | 
| 172 | 
         
             
            #     class StandardLlamaMLP(nn.Module):
         
     | 
| 
         @@ -181,7 +181,7 @@ class TritonLlamaMLP(nn.Module): 
     | 
|
| 181 | 
         
             
            #             return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
         
     | 
| 182 | 
         | 
| 183 | 
         
             
            #     # Initialize models
         
     | 
| 184 | 
         
            -
            #     standard_mlp = StandardLlamaMLP(hidden_size, intermediate_size).to("cuda").to(torch. 
     | 
| 185 | 
         | 
| 186 | 
         
             
            #     # Create our Triton implementation
         
     | 
| 187 | 
         
             
            #     triton_mlp = TritonLlamaMLP()
         
     | 
| 
         | 
|
| 71 | 
         
             
                # You can fuse arbitrary activation functions here
         
     | 
| 72 | 
         
             
                # while the accumulator is still in FP32!
         
     | 
| 73 | 
         | 
| 74 | 
         
            +
                c = accumulator.to(tl.float32)
         
     | 
| 75 | 
         | 
| 76 | 
         
             
                # -----------------------------------------------------------
         
     | 
| 77 | 
         
             
                # Write back the block of the output matrix C with masks.
         
     | 
| 
         | 
|
| 98 | 
         
             
                BLOCK_SIZE_K = 32
         
     | 
| 99 | 
         
             
                GROUP_SIZE_M = 8
         
     | 
| 100 | 
         
             
                # Allocates output.
         
     | 
| 101 | 
         
            +
                c = torch.empty((M, N), device=a.device, dtype=torch.float)
         
     | 
| 102 | 
         
             
                # 1D launch kernel where each block gets its own program.
         
     | 
| 103 | 
         
             
                grid = lambda META: (triton.cdiv(M, META['BLOCK_SIZE_M']) * triton.cdiv(N, META['BLOCK_SIZE_N']), )
         
     | 
| 104 | 
         
             
                matmul_kernel[grid](
         
     | 
| 
         | 
|
| 166 | 
         
             
            #     intermediate_size = 256
         
     | 
| 167 | 
         | 
| 168 | 
         
             
            #     # Create input tensor
         
     | 
| 169 | 
         
            +
            #     x = torch.randn(batch_size, seq_len, hidden_size, device="cuda", dtype=torch.float)
         
     | 
| 170 | 
         | 
| 171 | 
         
             
            #     # Create a standard PyTorch implementation for comparison
         
     | 
| 172 | 
         
             
            #     class StandardLlamaMLP(nn.Module):
         
     | 
| 
         | 
|
| 181 | 
         
             
            #             return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
         
     | 
| 182 | 
         | 
| 183 | 
         
             
            #     # Initialize models
         
     | 
| 184 | 
         
            +
            #     standard_mlp = StandardLlamaMLP(hidden_size, intermediate_size).to("cuda").to(torch.float)
         
     | 
| 185 | 
         | 
| 186 | 
         
             
            #     # Create our Triton implementation
         
     | 
| 187 | 
         
             
            #     triton_mlp = TritonLlamaMLP()
         
     |