Upload stg_ltx_i2v_pipeline.py
Browse files- stg_ltx_i2v_pipeline.py +595 -0
stg_ltx_i2v_pipeline.py
ADDED
|
@@ -0,0 +1,595 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright 2024 Black Forest Labs and The HuggingFace Team. All rights reserved.
|
| 2 |
+
#
|
| 3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# you may not use this file except in compliance with the License.
|
| 5 |
+
# You may obtain a copy of the License at
|
| 6 |
+
#
|
| 7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
#
|
| 9 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# See the License for the specific language governing permissions and
|
| 13 |
+
# limitations under the License.
|
| 14 |
+
|
| 15 |
+
import types
|
| 16 |
+
import inspect
|
| 17 |
+
from typing import Callable, Dict, List, Optional, Union, Tuple
|
| 18 |
+
|
| 19 |
+
import numpy as np
|
| 20 |
+
import torch
|
| 21 |
+
from transformers import T5EncoderModel, T5TokenizerFast
|
| 22 |
+
|
| 23 |
+
from diffusers.callbacks import MultiPipelineCallbacks, PipelineCallback
|
| 24 |
+
from diffusers.image_processor import PipelineImageInput
|
| 25 |
+
from diffusers.loaders import FromSingleFileMixin
|
| 26 |
+
from diffusers.pipelines.ltx.pipeline_ltx_image2video import LTXImageToVideoPipeline
|
| 27 |
+
from diffusers.models.autoencoders import AutoencoderKLLTXVideo
|
| 28 |
+
from diffusers.models.transformers import LTXVideoTransformer3DModel
|
| 29 |
+
from diffusers.schedulers import FlowMatchEulerDiscreteScheduler
|
| 30 |
+
from diffusers.utils import is_torch_xla_available, logging, replace_example_docstring
|
| 31 |
+
from diffusers.utils.torch_utils import randn_tensor
|
| 32 |
+
from diffusers.video_processor import VideoProcessor
|
| 33 |
+
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
|
| 34 |
+
from diffusers.pipelines.ltx.pipeline_output import LTXPipelineOutput
|
| 35 |
+
from diffusers.models.attention_processor import Attention
|
| 36 |
+
from diffusers.models.transformers.transformer_ltx import apply_rotary_emb
|
| 37 |
+
|
| 38 |
+
import torch.nn.functional as F
|
| 39 |
+
|
| 40 |
+
if is_torch_xla_available():
|
| 41 |
+
import torch_xla.core.xla_model as xm
|
| 42 |
+
|
| 43 |
+
XLA_AVAILABLE = True
|
| 44 |
+
else:
|
| 45 |
+
XLA_AVAILABLE = False
|
| 46 |
+
|
| 47 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
| 48 |
+
|
| 49 |
+
def forward_with_stg(
|
| 50 |
+
self,
|
| 51 |
+
hidden_states: torch.Tensor,
|
| 52 |
+
encoder_hidden_states: torch.Tensor,
|
| 53 |
+
temb: torch.Tensor,
|
| 54 |
+
image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
| 55 |
+
encoder_attention_mask: Optional[torch.Tensor] = None,
|
| 56 |
+
) -> torch.Tensor:
|
| 57 |
+
|
| 58 |
+
hidden_states_ptb = hidden_states[2:]
|
| 59 |
+
encoder_hidden_states_ptb = encoder_hidden_states[2:]
|
| 60 |
+
|
| 61 |
+
batch_size = hidden_states.size(0)
|
| 62 |
+
norm_hidden_states = self.norm1(hidden_states)
|
| 63 |
+
|
| 64 |
+
num_ada_params = self.scale_shift_table.shape[0]
|
| 65 |
+
ada_values = self.scale_shift_table[None, None] + temb.reshape(batch_size, temb.size(1), num_ada_params, -1)
|
| 66 |
+
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = ada_values.unbind(dim=2)
|
| 67 |
+
norm_hidden_states = norm_hidden_states * (1 + scale_msa) + shift_msa
|
| 68 |
+
|
| 69 |
+
attn_hidden_states = self.attn1(
|
| 70 |
+
hidden_states=norm_hidden_states,
|
| 71 |
+
encoder_hidden_states=None,
|
| 72 |
+
image_rotary_emb=image_rotary_emb,
|
| 73 |
+
)
|
| 74 |
+
hidden_states = hidden_states + attn_hidden_states * gate_msa
|
| 75 |
+
|
| 76 |
+
attn_hidden_states = self.attn2(
|
| 77 |
+
hidden_states,
|
| 78 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 79 |
+
image_rotary_emb=None,
|
| 80 |
+
attention_mask=encoder_attention_mask,
|
| 81 |
+
)
|
| 82 |
+
hidden_states = hidden_states + attn_hidden_states
|
| 83 |
+
norm_hidden_states = self.norm2(hidden_states) * (1 + scale_mlp) + shift_mlp
|
| 84 |
+
|
| 85 |
+
ff_output = self.ff(norm_hidden_states)
|
| 86 |
+
hidden_states = hidden_states + ff_output * gate_mlp
|
| 87 |
+
|
| 88 |
+
hidden_states[2:] = hidden_states_ptb
|
| 89 |
+
encoder_hidden_states[2:] = encoder_hidden_states_ptb
|
| 90 |
+
|
| 91 |
+
return hidden_states
|
| 92 |
+
|
| 93 |
+
class STGLTXVideoAttentionProcessor2_0:
|
| 94 |
+
r"""
|
| 95 |
+
Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0). This is
|
| 96 |
+
used in the LTX model. It applies a normalization layer and rotary embedding on the query and key vector.
|
| 97 |
+
"""
|
| 98 |
+
|
| 99 |
+
def __init__(self):
|
| 100 |
+
if not hasattr(F, "scaled_dot_product_attention"):
|
| 101 |
+
raise ImportError(
|
| 102 |
+
"LTXVideoAttentionProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0."
|
| 103 |
+
)
|
| 104 |
+
|
| 105 |
+
def __call__(
|
| 106 |
+
self,
|
| 107 |
+
attn: Attention,
|
| 108 |
+
hidden_states: torch.Tensor,
|
| 109 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
| 110 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 111 |
+
image_rotary_emb: Optional[torch.Tensor] = None,
|
| 112 |
+
) -> torch.Tensor:
|
| 113 |
+
|
| 114 |
+
hidden_states_uncond, hidden_states_text, hidden_states_perturb = hidden_states.chunk(3)
|
| 115 |
+
hidden_states_org = torch.cat([hidden_states_uncond, hidden_states_text])
|
| 116 |
+
|
| 117 |
+
emb_sin, emb_cos = image_rotary_emb
|
| 118 |
+
emb_sin_uncond, emb_sin_text, emb_sin_perturb = emb_sin.chunk(3)
|
| 119 |
+
emb_cos_uncond, emb_cos_text, emb_cos_perturb = emb_cos.chunk(3)
|
| 120 |
+
emb_sin_org = torch.cat([emb_sin_uncond, emb_sin_text])
|
| 121 |
+
emb_cos_org = torch.cat([emb_cos_uncond, emb_cos_text])
|
| 122 |
+
|
| 123 |
+
image_rotary_emb_org = (emb_sin_org, emb_cos_org)
|
| 124 |
+
image_rotary_emb_perturb = (emb_sin_perturb, emb_cos_perturb)
|
| 125 |
+
|
| 126 |
+
#----------------Original Path----------------#
|
| 127 |
+
assert encoder_hidden_states is None
|
| 128 |
+
batch_size, sequence_length, _ = (
|
| 129 |
+
hidden_states_org.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
| 130 |
+
)
|
| 131 |
+
|
| 132 |
+
if attention_mask is not None:
|
| 133 |
+
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
| 134 |
+
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
|
| 135 |
+
|
| 136 |
+
if encoder_hidden_states is None:
|
| 137 |
+
encoder_hidden_states_org = hidden_states_org
|
| 138 |
+
|
| 139 |
+
query_org = attn.to_q(hidden_states_org)
|
| 140 |
+
key_org = attn.to_k(encoder_hidden_states_org)
|
| 141 |
+
value_org = attn.to_v(encoder_hidden_states_org)
|
| 142 |
+
|
| 143 |
+
query_org = attn.norm_q(query_org)
|
| 144 |
+
key_org = attn.norm_k(key_org)
|
| 145 |
+
|
| 146 |
+
if image_rotary_emb is not None:
|
| 147 |
+
query_org = apply_rotary_emb(query_org, image_rotary_emb_org)
|
| 148 |
+
key_org = apply_rotary_emb(key_org, image_rotary_emb_org)
|
| 149 |
+
|
| 150 |
+
query_org = query_org.unflatten(2, (attn.heads, -1)).transpose(1, 2)
|
| 151 |
+
key_org = key_org.unflatten(2, (attn.heads, -1)).transpose(1, 2)
|
| 152 |
+
value_org = value_org.unflatten(2, (attn.heads, -1)).transpose(1, 2)
|
| 153 |
+
|
| 154 |
+
hidden_states_org = F.scaled_dot_product_attention(
|
| 155 |
+
query_org, key_org, value_org, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
|
| 156 |
+
)
|
| 157 |
+
hidden_states_org = hidden_states_org.transpose(1, 2).flatten(2, 3)
|
| 158 |
+
hidden_states_org = hidden_states_org.to(query_org.dtype)
|
| 159 |
+
|
| 160 |
+
hidden_states_org = attn.to_out[0](hidden_states_org)
|
| 161 |
+
hidden_states_org = attn.to_out[1](hidden_states_org)
|
| 162 |
+
#----------------------------------------------#
|
| 163 |
+
#--------------Perturbation Path---------------#
|
| 164 |
+
batch_size, sequence_length, _ = hidden_states_perturb.shape
|
| 165 |
+
|
| 166 |
+
if attention_mask is not None:
|
| 167 |
+
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
| 168 |
+
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
|
| 169 |
+
|
| 170 |
+
if encoder_hidden_states is None:
|
| 171 |
+
encoder_hidden_states_perturb = hidden_states_perturb
|
| 172 |
+
|
| 173 |
+
query_perturb = attn.to_q(hidden_states_perturb)
|
| 174 |
+
key_perturb = attn.to_k(encoder_hidden_states_perturb)
|
| 175 |
+
value_perturb = attn.to_v(encoder_hidden_states_perturb)
|
| 176 |
+
|
| 177 |
+
query_perturb = attn.norm_q(query_perturb)
|
| 178 |
+
key_perturb = attn.norm_k(key_perturb)
|
| 179 |
+
|
| 180 |
+
if image_rotary_emb is not None:
|
| 181 |
+
query_perturb = apply_rotary_emb(query_perturb, image_rotary_emb_perturb)
|
| 182 |
+
key_perturb = apply_rotary_emb(key_perturb, image_rotary_emb_perturb)
|
| 183 |
+
|
| 184 |
+
query_perturb = query_perturb.unflatten(2, (attn.heads, -1)).transpose(1, 2)
|
| 185 |
+
key_perturb = key_perturb.unflatten(2, (attn.heads, -1)).transpose(1, 2)
|
| 186 |
+
value_perturb = value_perturb.unflatten(2, (attn.heads, -1)).transpose(1, 2)
|
| 187 |
+
|
| 188 |
+
hidden_states_perturb = value_perturb
|
| 189 |
+
|
| 190 |
+
hidden_states_perturb = hidden_states_perturb.transpose(1, 2).flatten(2, 3)
|
| 191 |
+
hidden_states_perturb = hidden_states_perturb.to(query_perturb.dtype)
|
| 192 |
+
|
| 193 |
+
hidden_states_perturb = attn.to_out[0](hidden_states_perturb)
|
| 194 |
+
hidden_states_perturb = attn.to_out[1](hidden_states_perturb)
|
| 195 |
+
#----------------------------------------------#
|
| 196 |
+
|
| 197 |
+
hidden_states = torch.cat([hidden_states_org, hidden_states_perturb], dim=0)
|
| 198 |
+
|
| 199 |
+
return hidden_states
|
| 200 |
+
|
| 201 |
+
# Copied from diffusers.pipelines.flux.pipeline_flux.calculate_shift
|
| 202 |
+
def calculate_shift(
|
| 203 |
+
image_seq_len,
|
| 204 |
+
base_seq_len: int = 256,
|
| 205 |
+
max_seq_len: int = 4096,
|
| 206 |
+
base_shift: float = 0.5,
|
| 207 |
+
max_shift: float = 1.16,
|
| 208 |
+
):
|
| 209 |
+
m = (max_shift - base_shift) / (max_seq_len - base_seq_len)
|
| 210 |
+
b = base_shift - m * base_seq_len
|
| 211 |
+
mu = image_seq_len * m + b
|
| 212 |
+
return mu
|
| 213 |
+
|
| 214 |
+
|
| 215 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
|
| 216 |
+
def retrieve_timesteps(
|
| 217 |
+
scheduler,
|
| 218 |
+
num_inference_steps: Optional[int] = None,
|
| 219 |
+
device: Optional[Union[str, torch.device]] = None,
|
| 220 |
+
timesteps: Optional[List[int]] = None,
|
| 221 |
+
sigmas: Optional[List[float]] = None,
|
| 222 |
+
**kwargs,
|
| 223 |
+
):
|
| 224 |
+
r"""
|
| 225 |
+
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
|
| 226 |
+
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
|
| 227 |
+
|
| 228 |
+
Args:
|
| 229 |
+
scheduler (`SchedulerMixin`):
|
| 230 |
+
The scheduler to get timesteps from.
|
| 231 |
+
num_inference_steps (`int`):
|
| 232 |
+
The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
|
| 233 |
+
must be `None`.
|
| 234 |
+
device (`str` or `torch.device`, *optional*):
|
| 235 |
+
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
|
| 236 |
+
timesteps (`List[int]`, *optional*):
|
| 237 |
+
Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
|
| 238 |
+
`num_inference_steps` and `sigmas` must be `None`.
|
| 239 |
+
sigmas (`List[float]`, *optional*):
|
| 240 |
+
Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
|
| 241 |
+
`num_inference_steps` and `timesteps` must be `None`.
|
| 242 |
+
|
| 243 |
+
Returns:
|
| 244 |
+
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
|
| 245 |
+
second element is the number of inference steps.
|
| 246 |
+
"""
|
| 247 |
+
if timesteps is not None and sigmas is not None:
|
| 248 |
+
raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
|
| 249 |
+
if timesteps is not None:
|
| 250 |
+
accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
| 251 |
+
if not accepts_timesteps:
|
| 252 |
+
raise ValueError(
|
| 253 |
+
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
| 254 |
+
f" timestep schedules. Please check whether you are using the correct scheduler."
|
| 255 |
+
)
|
| 256 |
+
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
|
| 257 |
+
timesteps = scheduler.timesteps
|
| 258 |
+
num_inference_steps = len(timesteps)
|
| 259 |
+
elif sigmas is not None:
|
| 260 |
+
accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
| 261 |
+
if not accept_sigmas:
|
| 262 |
+
raise ValueError(
|
| 263 |
+
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
| 264 |
+
f" sigmas schedules. Please check whether you are using the correct scheduler."
|
| 265 |
+
)
|
| 266 |
+
scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
|
| 267 |
+
timesteps = scheduler.timesteps
|
| 268 |
+
num_inference_steps = len(timesteps)
|
| 269 |
+
else:
|
| 270 |
+
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
|
| 271 |
+
timesteps = scheduler.timesteps
|
| 272 |
+
return timesteps, num_inference_steps
|
| 273 |
+
|
| 274 |
+
|
| 275 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.retrieve_latents
|
| 276 |
+
def retrieve_latents(
|
| 277 |
+
encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample"
|
| 278 |
+
):
|
| 279 |
+
if hasattr(encoder_output, "latent_dist") and sample_mode == "sample":
|
| 280 |
+
return encoder_output.latent_dist.sample(generator)
|
| 281 |
+
elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax":
|
| 282 |
+
return encoder_output.latent_dist.mode()
|
| 283 |
+
elif hasattr(encoder_output, "latents"):
|
| 284 |
+
return encoder_output.latents
|
| 285 |
+
else:
|
| 286 |
+
raise AttributeError("Could not access latents of provided encoder_output")
|
| 287 |
+
|
| 288 |
+
|
| 289 |
+
class LTXImageToVideoSTGPipeline(LTXImageToVideoPipeline):
|
| 290 |
+
def extract_layers(self, file_path="./unet_info.txt"):
|
| 291 |
+
layers = []
|
| 292 |
+
with open(file_path, "w") as f:
|
| 293 |
+
for name, module in self.transformer.named_modules():
|
| 294 |
+
if "attn1" in name and "to" not in name and "add" not in name and "norm" not in name:
|
| 295 |
+
f.write(f"{name}\n")
|
| 296 |
+
layer_type = name.split(".")[0].split("_")[0]
|
| 297 |
+
layers.append((name, module))
|
| 298 |
+
|
| 299 |
+
return layers
|
| 300 |
+
|
| 301 |
+
def replace_layer_processor(self, layers, replace_processor, target_layers_idx=[]):
|
| 302 |
+
for layer_idx in target_layers_idx:
|
| 303 |
+
layers[layer_idx][1].processor = replace_processor
|
| 304 |
+
|
| 305 |
+
return
|
| 306 |
+
|
| 307 |
+
@property
|
| 308 |
+
def do_spatio_temporal_guidance(self):
|
| 309 |
+
return self._stg_scale > 0.0
|
| 310 |
+
|
| 311 |
+
@torch.no_grad()
|
| 312 |
+
def __call__(
|
| 313 |
+
self,
|
| 314 |
+
image: PipelineImageInput = None,
|
| 315 |
+
prompt: Union[str, List[str]] = None,
|
| 316 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
| 317 |
+
height: int = 512,
|
| 318 |
+
width: int = 704,
|
| 319 |
+
num_frames: int = 161,
|
| 320 |
+
frame_rate: int = 25,
|
| 321 |
+
num_inference_steps: int = 50,
|
| 322 |
+
timesteps: List[int] = None,
|
| 323 |
+
guidance_scale: float = 3,
|
| 324 |
+
num_videos_per_prompt: Optional[int] = 1,
|
| 325 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
| 326 |
+
latents: Optional[torch.Tensor] = None,
|
| 327 |
+
prompt_embeds: Optional[torch.Tensor] = None,
|
| 328 |
+
prompt_attention_mask: Optional[torch.Tensor] = None,
|
| 329 |
+
negative_prompt_embeds: Optional[torch.Tensor] = None,
|
| 330 |
+
negative_prompt_attention_mask: Optional[torch.Tensor] = None,
|
| 331 |
+
output_type: Optional[str] = "pil",
|
| 332 |
+
return_dict: bool = True,
|
| 333 |
+
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
|
| 334 |
+
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
|
| 335 |
+
max_sequence_length: int = 128,
|
| 336 |
+
stg_mode: Optional[str] = "STG-R",
|
| 337 |
+
stg_applied_layers_idx: Optional[List[int]] = [35],
|
| 338 |
+
stg_scale: Optional[float] = 1.0,
|
| 339 |
+
do_rescaling: Optional[bool] = False,
|
| 340 |
+
decode_timestep: Union[float, List[float]] = 0.0,
|
| 341 |
+
decode_noise_scale: Optional[Union[float, List[float]]] = None,
|
| 342 |
+
):
|
| 343 |
+
if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)):
|
| 344 |
+
callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs
|
| 345 |
+
|
| 346 |
+
layers = self.extract_layers()
|
| 347 |
+
|
| 348 |
+
# 1. Check inputs. Raise error if not correct
|
| 349 |
+
self.check_inputs(
|
| 350 |
+
prompt=prompt,
|
| 351 |
+
height=height,
|
| 352 |
+
width=width,
|
| 353 |
+
callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
|
| 354 |
+
prompt_embeds=prompt_embeds,
|
| 355 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
| 356 |
+
prompt_attention_mask=prompt_attention_mask,
|
| 357 |
+
negative_prompt_attention_mask=negative_prompt_attention_mask,
|
| 358 |
+
)
|
| 359 |
+
|
| 360 |
+
self._stg_scale = stg_scale
|
| 361 |
+
self._guidance_scale = guidance_scale
|
| 362 |
+
self._interrupt = False
|
| 363 |
+
|
| 364 |
+
if self.do_spatio_temporal_guidance:
|
| 365 |
+
if stg_mode == "STG-A":
|
| 366 |
+
layers = self.extract_layers()
|
| 367 |
+
replace_processor = STGLTXVideoAttentionProcessor2_0()
|
| 368 |
+
self.replace_layer_processor(layers, replace_processor, stg_applied_layers_idx)
|
| 369 |
+
elif stg_mode == "STG-R":
|
| 370 |
+
for i in stg_applied_layers_idx:
|
| 371 |
+
self.transformer.transformer_blocks[i].forward = types.MethodType(forward_with_stg, self.transformer.transformer_blocks[i])
|
| 372 |
+
|
| 373 |
+
# 2. Define call parameters
|
| 374 |
+
if prompt is not None and isinstance(prompt, str):
|
| 375 |
+
batch_size = 1
|
| 376 |
+
elif prompt is not None and isinstance(prompt, list):
|
| 377 |
+
batch_size = len(prompt)
|
| 378 |
+
else:
|
| 379 |
+
batch_size = prompt_embeds.shape[0]
|
| 380 |
+
|
| 381 |
+
device = self._execution_device
|
| 382 |
+
|
| 383 |
+
# 3. Prepare text embeddings
|
| 384 |
+
(
|
| 385 |
+
prompt_embeds,
|
| 386 |
+
prompt_attention_mask,
|
| 387 |
+
negative_prompt_embeds,
|
| 388 |
+
negative_prompt_attention_mask,
|
| 389 |
+
) = self.encode_prompt(
|
| 390 |
+
prompt=prompt,
|
| 391 |
+
negative_prompt=negative_prompt,
|
| 392 |
+
do_classifier_free_guidance=self.do_classifier_free_guidance,
|
| 393 |
+
num_videos_per_prompt=num_videos_per_prompt,
|
| 394 |
+
prompt_embeds=prompt_embeds,
|
| 395 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
| 396 |
+
prompt_attention_mask=prompt_attention_mask,
|
| 397 |
+
negative_prompt_attention_mask=negative_prompt_attention_mask,
|
| 398 |
+
max_sequence_length=max_sequence_length,
|
| 399 |
+
device=device,
|
| 400 |
+
)
|
| 401 |
+
if self.do_classifier_free_guidance and not self.do_spatio_temporal_guidance:
|
| 402 |
+
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
|
| 403 |
+
prompt_attention_mask = torch.cat([negative_prompt_attention_mask, prompt_attention_mask], dim=0)
|
| 404 |
+
elif self.do_classifier_free_guidance and self.do_spatio_temporal_guidance:
|
| 405 |
+
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds, prompt_embeds], dim=0)
|
| 406 |
+
prompt_attention_mask = torch.cat([negative_prompt_attention_mask, prompt_attention_mask, prompt_attention_mask], dim=0)
|
| 407 |
+
|
| 408 |
+
# 4. Prepare latent variables
|
| 409 |
+
if latents is None:
|
| 410 |
+
image = self.video_processor.preprocess(image, height=height, width=width)
|
| 411 |
+
image = image.to(device=device, dtype=prompt_embeds.dtype)
|
| 412 |
+
|
| 413 |
+
num_channels_latents = self.transformer.config.in_channels
|
| 414 |
+
latents, conditioning_mask = self.prepare_latents(
|
| 415 |
+
image,
|
| 416 |
+
batch_size * num_videos_per_prompt,
|
| 417 |
+
num_channels_latents,
|
| 418 |
+
height,
|
| 419 |
+
width,
|
| 420 |
+
num_frames,
|
| 421 |
+
torch.float32,
|
| 422 |
+
device,
|
| 423 |
+
generator,
|
| 424 |
+
latents,
|
| 425 |
+
)
|
| 426 |
+
|
| 427 |
+
if self.do_classifier_free_guidance and not self.do_spatio_temporal_guidance:
|
| 428 |
+
conditioning_mask = torch.cat([conditioning_mask, conditioning_mask])
|
| 429 |
+
elif self.do_classifier_free_guidance and self.do_spatio_temporal_guidance:
|
| 430 |
+
conditioning_mask = torch.cat([conditioning_mask, conditioning_mask, conditioning_mask])
|
| 431 |
+
|
| 432 |
+
# 5. Prepare timesteps
|
| 433 |
+
latent_num_frames = (num_frames - 1) // self.vae_temporal_compression_ratio + 1
|
| 434 |
+
latent_height = height // self.vae_spatial_compression_ratio
|
| 435 |
+
latent_width = width // self.vae_spatial_compression_ratio
|
| 436 |
+
video_sequence_length = latent_num_frames * latent_height * latent_width
|
| 437 |
+
sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps)
|
| 438 |
+
mu = calculate_shift(
|
| 439 |
+
video_sequence_length,
|
| 440 |
+
self.scheduler.config.base_image_seq_len,
|
| 441 |
+
self.scheduler.config.max_image_seq_len,
|
| 442 |
+
self.scheduler.config.base_shift,
|
| 443 |
+
self.scheduler.config.max_shift,
|
| 444 |
+
)
|
| 445 |
+
timesteps, num_inference_steps = retrieve_timesteps(
|
| 446 |
+
self.scheduler,
|
| 447 |
+
num_inference_steps,
|
| 448 |
+
device,
|
| 449 |
+
timesteps,
|
| 450 |
+
sigmas=sigmas,
|
| 451 |
+
mu=mu,
|
| 452 |
+
)
|
| 453 |
+
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
|
| 454 |
+
self._num_timesteps = len(timesteps)
|
| 455 |
+
|
| 456 |
+
# 6. Prepare micro-conditions
|
| 457 |
+
latent_frame_rate = frame_rate / self.vae_temporal_compression_ratio
|
| 458 |
+
rope_interpolation_scale = (
|
| 459 |
+
1 / latent_frame_rate,
|
| 460 |
+
self.vae_spatial_compression_ratio,
|
| 461 |
+
self.vae_spatial_compression_ratio,
|
| 462 |
+
)
|
| 463 |
+
|
| 464 |
+
# 7. Denoising loop
|
| 465 |
+
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
| 466 |
+
for i, t in enumerate(timesteps):
|
| 467 |
+
if self.interrupt:
|
| 468 |
+
continue
|
| 469 |
+
|
| 470 |
+
if self.do_classifier_free_guidance and not self.do_spatio_temporal_guidance:
|
| 471 |
+
latent_model_input = torch.cat([latents] * 2)
|
| 472 |
+
elif self.do_classifier_free_guidance and self.do_spatio_temporal_guidance:
|
| 473 |
+
latent_model_input = torch.cat([latents] * 3)
|
| 474 |
+
|
| 475 |
+
latent_model_input = latent_model_input.to(prompt_embeds.dtype)
|
| 476 |
+
|
| 477 |
+
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
| 478 |
+
timestep = t.expand(latent_model_input.shape[0])
|
| 479 |
+
timestep = timestep.unsqueeze(-1) * (1 - conditioning_mask)
|
| 480 |
+
|
| 481 |
+
noise_pred = self.transformer(
|
| 482 |
+
hidden_states=latent_model_input,
|
| 483 |
+
encoder_hidden_states=prompt_embeds,
|
| 484 |
+
timestep=timestep,
|
| 485 |
+
encoder_attention_mask=prompt_attention_mask,
|
| 486 |
+
num_frames=latent_num_frames,
|
| 487 |
+
height=latent_height,
|
| 488 |
+
width=latent_width,
|
| 489 |
+
rope_interpolation_scale=rope_interpolation_scale,
|
| 490 |
+
return_dict=False,
|
| 491 |
+
)[0]
|
| 492 |
+
noise_pred = noise_pred.float()
|
| 493 |
+
|
| 494 |
+
if self.do_classifier_free_guidance and not self.do_spatio_temporal_guidance:
|
| 495 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
| 496 |
+
noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)
|
| 497 |
+
timestep, _ = timestep.chunk(2)
|
| 498 |
+
elif self.do_classifier_free_guidance and self.do_spatio_temporal_guidance:
|
| 499 |
+
noise_pred_uncond, noise_pred_text, noise_pred_perturb = noise_pred.chunk(3)
|
| 500 |
+
noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond) \
|
| 501 |
+
+ self._stg_scale * (noise_pred_text - noise_pred_perturb)
|
| 502 |
+
timestep, _, _ = timestep.chunk(3)
|
| 503 |
+
|
| 504 |
+
if do_rescaling:
|
| 505 |
+
rescaling_scale = 0.7
|
| 506 |
+
factor = noise_pred_text.std() / noise_pred.std()
|
| 507 |
+
factor = rescaling_scale * factor + (1 - rescaling_scale)
|
| 508 |
+
noise_pred = noise_pred * factor
|
| 509 |
+
|
| 510 |
+
# compute the previous noisy sample x_t -> x_t-1
|
| 511 |
+
noise_pred = self._unpack_latents(
|
| 512 |
+
noise_pred,
|
| 513 |
+
latent_num_frames,
|
| 514 |
+
latent_height,
|
| 515 |
+
latent_width,
|
| 516 |
+
self.transformer_spatial_patch_size,
|
| 517 |
+
self.transformer_temporal_patch_size,
|
| 518 |
+
)
|
| 519 |
+
latents = self._unpack_latents(
|
| 520 |
+
latents,
|
| 521 |
+
latent_num_frames,
|
| 522 |
+
latent_height,
|
| 523 |
+
latent_width,
|
| 524 |
+
self.transformer_spatial_patch_size,
|
| 525 |
+
self.transformer_temporal_patch_size,
|
| 526 |
+
)
|
| 527 |
+
|
| 528 |
+
noise_pred = noise_pred[:, :, 1:]
|
| 529 |
+
noise_latents = latents[:, :, 1:]
|
| 530 |
+
pred_latents = self.scheduler.step(noise_pred, t, noise_latents, return_dict=False)[0]
|
| 531 |
+
|
| 532 |
+
latents = torch.cat([latents[:, :, :1], pred_latents], dim=2)
|
| 533 |
+
latents = self._pack_latents(
|
| 534 |
+
latents, self.transformer_spatial_patch_size, self.transformer_temporal_patch_size
|
| 535 |
+
)
|
| 536 |
+
|
| 537 |
+
if callback_on_step_end is not None:
|
| 538 |
+
callback_kwargs = {}
|
| 539 |
+
for k in callback_on_step_end_tensor_inputs:
|
| 540 |
+
callback_kwargs[k] = locals()[k]
|
| 541 |
+
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
|
| 542 |
+
|
| 543 |
+
latents = callback_outputs.pop("latents", latents)
|
| 544 |
+
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
|
| 545 |
+
|
| 546 |
+
# call the callback, if provided
|
| 547 |
+
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
| 548 |
+
progress_bar.update()
|
| 549 |
+
|
| 550 |
+
if XLA_AVAILABLE:
|
| 551 |
+
xm.mark_step()
|
| 552 |
+
|
| 553 |
+
if output_type == "latent":
|
| 554 |
+
video = latents
|
| 555 |
+
else:
|
| 556 |
+
latents = self._unpack_latents(
|
| 557 |
+
latents,
|
| 558 |
+
latent_num_frames,
|
| 559 |
+
latent_height,
|
| 560 |
+
latent_width,
|
| 561 |
+
self.transformer_spatial_patch_size,
|
| 562 |
+
self.transformer_temporal_patch_size,
|
| 563 |
+
)
|
| 564 |
+
latents = self._denormalize_latents(
|
| 565 |
+
latents, self.vae.latents_mean, self.vae.latents_std, self.vae.config.scaling_factor
|
| 566 |
+
)
|
| 567 |
+
latents = latents.to(prompt_embeds.dtype)
|
| 568 |
+
|
| 569 |
+
if not self.vae.config.timestep_conditioning:
|
| 570 |
+
timestep = None
|
| 571 |
+
else:
|
| 572 |
+
noise = torch.randn(latents.shape, generator=generator, device=device, dtype=latents.dtype)
|
| 573 |
+
if not isinstance(decode_timestep, list):
|
| 574 |
+
decode_timestep = [decode_timestep] * batch_size
|
| 575 |
+
if decode_noise_scale is None:
|
| 576 |
+
decode_noise_scale = decode_timestep
|
| 577 |
+
elif not isinstance(decode_noise_scale, list):
|
| 578 |
+
decode_noise_scale = [decode_noise_scale] * batch_size
|
| 579 |
+
|
| 580 |
+
timestep = torch.tensor(decode_timestep, device=device, dtype=latents.dtype)
|
| 581 |
+
decode_noise_scale = torch.tensor(decode_noise_scale, device=device, dtype=latents.dtype)[
|
| 582 |
+
:, None, None, None, None
|
| 583 |
+
]
|
| 584 |
+
latents = (1 - decode_noise_scale) * latents + decode_noise_scale * noise
|
| 585 |
+
|
| 586 |
+
video = self.vae.decode(latents, timestep, return_dict=False)[0]
|
| 587 |
+
video = self.video_processor.postprocess_video(video, output_type=output_type)
|
| 588 |
+
|
| 589 |
+
# Offload all models
|
| 590 |
+
self.maybe_free_model_hooks()
|
| 591 |
+
|
| 592 |
+
if not return_dict:
|
| 593 |
+
return (video,)
|
| 594 |
+
|
| 595 |
+
return LTXPipelineOutput(frames=video)
|