init meta files
Browse files- LICENSE +21 -0
 - config.json +37 -0
 - configuration_longcat_flash.py +216 -0
 - generation_config.json +7 -0
 - modeling_longcat_flash.py +644 -0
 - special_tokens_map.json +30 -0
 - tokenizer.json +0 -0
 - tokenizer_config.json +42 -0
 
    	
        LICENSE
    ADDED
    
    | 
         @@ -0,0 +1,21 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            MIT License
         
     | 
| 2 | 
         
            +
             
     | 
| 3 | 
         
            +
            Copyright (c) 2025 Meituan
         
     | 
| 4 | 
         
            +
             
     | 
| 5 | 
         
            +
            Permission is hereby granted, free of charge, to any person obtaining a copy
         
     | 
| 6 | 
         
            +
            of this software and associated documentation files (the "Software"), to deal
         
     | 
| 7 | 
         
            +
            in the Software without restriction, including without limitation the rights
         
     | 
| 8 | 
         
            +
            to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
         
     | 
| 9 | 
         
            +
            copies of the Software, and to permit persons to whom the Software is
         
     | 
| 10 | 
         
            +
            furnished to do so, subject to the following conditions:
         
     | 
| 11 | 
         
            +
             
     | 
| 12 | 
         
            +
            The above copyright notice and this permission notice shall be included in all
         
     | 
| 13 | 
         
            +
            copies or substantial portions of the Software.
         
     | 
| 14 | 
         
            +
             
     | 
| 15 | 
         
            +
            THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
         
     | 
| 16 | 
         
            +
            IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
         
     | 
| 17 | 
         
            +
            FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
         
     | 
| 18 | 
         
            +
            AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
         
     | 
| 19 | 
         
            +
            LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
         
     | 
| 20 | 
         
            +
            OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
         
     | 
| 21 | 
         
            +
            SOFTWARE.
         
     | 
    	
        config.json
    ADDED
    
    | 
         @@ -0,0 +1,37 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            {
         
     | 
| 2 | 
         
            +
              "architectures": [
         
     | 
| 3 | 
         
            +
                  "LongcatFlashForCausalLM"
         
     | 
| 4 | 
         
            +
              ],
         
     | 
| 5 | 
         
            +
              "attention_bias": false,
         
     | 
| 6 | 
         
            +
              "attention_dropout": 0.0,
         
     | 
| 7 | 
         
            +
              "auto_map": {
         
     | 
| 8 | 
         
            +
                  "AutoConfig": "configuration_longcat_flash.LongcatFlashConfig",
         
     | 
| 9 | 
         
            +
                  "AutoModel": "modeling_longcat_flash.LongcatFlashModel",
         
     | 
| 10 | 
         
            +
                  "AutoModelForCausalLM": "modeling_longcat_flash.LongcatFlashForCausalLM"
         
     | 
| 11 | 
         
            +
              },
         
     | 
| 12 | 
         
            +
              "vocab_size": 131072,
         
     | 
| 13 | 
         
            +
              "hidden_size": 6144,
         
     | 
| 14 | 
         
            +
              "ffn_hidden_size": 12288,
         
     | 
| 15 | 
         
            +
              "expert_ffn_hidden_size": 2048,
         
     | 
| 16 | 
         
            +
              "num_layers": 28,
         
     | 
| 17 | 
         
            +
              "num_attention_heads": 64,
         
     | 
| 18 | 
         
            +
              "kv_lora_rank": 512,
         
     | 
| 19 | 
         
            +
              "q_lora_rank": 1536,
         
     | 
| 20 | 
         
            +
              "qk_rope_head_dim": 64,
         
     | 
| 21 | 
         
            +
              "v_head_dim": 128,
         
     | 
| 22 | 
         
            +
              "qk_nope_head_dim": 128,
         
     | 
| 23 | 
         
            +
              "mla_scale_q_lora": true,
         
     | 
| 24 | 
         
            +
              "mla_scale_kv_lora": true,
         
     | 
| 25 | 
         
            +
              "routed_scaling_factor": 6.0,
         
     | 
| 26 | 
         
            +
              "n_routed_experts": 512,
         
     | 
| 27 | 
         
            +
              "max_position_embeddings": 131072,
         
     | 
| 28 | 
         
            +
              "rms_norm_eps": 1e-5,
         
     | 
| 29 | 
         
            +
              "use_cache": true,
         
     | 
| 30 | 
         
            +
              "bos_token_id": 1,
         
     | 
| 31 | 
         
            +
              "eos_token_id": 2,
         
     | 
| 32 | 
         
            +
              "rope_theta": 10000000.0,
         
     | 
| 33 | 
         
            +
              "attention_method": "MLA",
         
     | 
| 34 | 
         
            +
              "zero_expert_num": 256,
         
     | 
| 35 | 
         
            +
              "zero_expert_type": "identity",
         
     | 
| 36 | 
         
            +
              "moe_topk": 12
         
     | 
| 37 | 
         
            +
            }
         
     | 
    	
        configuration_longcat_flash.py
    ADDED
    
    | 
         @@ -0,0 +1,216 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
             
     | 
| 2 | 
         
            +
            """LongcatFlash model configuration"""
         
     | 
| 3 | 
         
            +
             
     | 
| 4 | 
         
            +
            from transformers.configuration_utils import PretrainedConfig
         
     | 
| 5 | 
         
            +
            from transformers.modeling_rope_utils import rope_config_validation
         
     | 
| 6 | 
         
            +
             
     | 
| 7 | 
         
            +
             
     | 
| 8 | 
         
            +
            LONGCAT_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
         
     | 
| 9 | 
         
            +
             
     | 
| 10 | 
         
            +
             
     | 
| 11 | 
         
            +
            class LongcatFlashConfig(PretrainedConfig):
         
     | 
| 12 | 
         
            +
                r"""
         
     | 
| 13 | 
         
            +
                This is the configuration class to store the configuration of a [`LongcatFlashModel`]. It is used to instantiate an LongcatFlash
         
     | 
| 14 | 
         
            +
                model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
         
     | 
| 15 | 
         
            +
                defaults will yield a similar configuration to that of the LongcatFlash.
         
     | 
| 16 | 
         
            +
                Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
         
     | 
| 17 | 
         
            +
                documentation from [`PretrainedConfig`] for more information.
         
     | 
| 18 | 
         
            +
             
     | 
| 19 | 
         
            +
             
     | 
| 20 | 
         
            +
                Args:
         
     | 
| 21 | 
         
            +
                    vocab_size (`int`, *optional*, defaults to 131072):
         
     | 
| 22 | 
         
            +
                        Vocabulary size of the Deep model. Defines the number of different tokens that can be represented by the
         
     | 
| 23 | 
         
            +
                        `inputs_ids` passed when calling [`LongcatFlashModel`]
         
     | 
| 24 | 
         
            +
                    hidden_size (`int`, *optional*, defaults to 7168):
         
     | 
| 25 | 
         
            +
                        Dimension of the hidden representations.
         
     | 
| 26 | 
         
            +
                    ffn_hidden_size (`int`, *optional*, defaults to 18432):
         
     | 
| 27 | 
         
            +
                        Dimension of the MLP representations.
         
     | 
| 28 | 
         
            +
                    expert_ffn_hidden_size (`int`, *optional*, defaults to 2048):
         
     | 
| 29 | 
         
            +
                        Dimension of the MoE representations.
         
     | 
| 30 | 
         
            +
                    num_layers (`int`, *optional*, defaults to 61):
         
     | 
| 31 | 
         
            +
                        Number of hidden layers in the Transformer decoder.
         
     | 
| 32 | 
         
            +
                    num_attention_heads (`int`, *optional*, defaults to 128):
         
     | 
| 33 | 
         
            +
                        Number of attention heads for each attention layer in the Transformer decoder.
         
     | 
| 34 | 
         
            +
                    num_key_value_heads (`int`, *optional*, defaults to 128):
         
     | 
| 35 | 
         
            +
                        This is the number of key_value heads that should be used to implement Grouped Query Attention. If
         
     | 
| 36 | 
         
            +
                        `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
         
     | 
| 37 | 
         
            +
                        `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
         
     | 
| 38 | 
         
            +
                        converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
         
     | 
| 39 | 
         
            +
                        by meanpooling all the original heads within that group. For more details checkout [this
         
     | 
| 40 | 
         
            +
                        paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
         
     | 
| 41 | 
         
            +
                        `num_attention_heads`.
         
     | 
| 42 | 
         
            +
                    n_routed_experts (`int`, *optional*, defaults to 256):
         
     | 
| 43 | 
         
            +
                        Number of routed experts.
         
     | 
| 44 | 
         
            +
                    routed_scaling_factor (`float`, *optional*, defaults to 2.5):
         
     | 
| 45 | 
         
            +
                        Scaling factor or routed experts.
         
     | 
| 46 | 
         
            +
                    kv_lora_rank (`int`, *optional*, defaults to 512):
         
     | 
| 47 | 
         
            +
                        Rank of the LoRA matrices for key and value projections.
         
     | 
| 48 | 
         
            +
                    q_lora_rank (`int`, *optional*, defaults to 1536):
         
     | 
| 49 | 
         
            +
                        Rank of the LoRA matrices for query projections.
         
     | 
| 50 | 
         
            +
                    qk_rope_head_dim (`int`, *optional*, defaults to 64):
         
     | 
| 51 | 
         
            +
                        Dimension of the query/key heads that use rotary position embeddings.
         
     | 
| 52 | 
         
            +
                    v_head_dim (`int`, *optional*, defaults to 128):
         
     | 
| 53 | 
         
            +
                        Dimension of the value heads.
         
     | 
| 54 | 
         
            +
                    qk_nope_head_dim (`int`, *optional*, defaults to 128):
         
     | 
| 55 | 
         
            +
                        Dimension of the query/key heads that don't use rotary position embeddings.
         
     | 
| 56 | 
         
            +
                    norm_topk_prob (`bool`, *optional*, defaults to `True`):
         
     | 
| 57 | 
         
            +
                        Whether to normalize the weights of the routed experts.
         
     | 
| 58 | 
         
            +
                    hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
         
     | 
| 59 | 
         
            +
                        The non-linear activation function (function or string) in the decoder.
         
     | 
| 60 | 
         
            +
                    max_position_embeddings (`int`, *optional*, defaults to 4096):
         
     | 
| 61 | 
         
            +
                        The maximum sequence length that this model might ever be used with.
         
     | 
| 62 | 
         
            +
                    rms_norm_eps (`float`, *optional*, defaults to 1e-06):
         
     | 
| 63 | 
         
            +
                        The epsilon used by the rms normalization layers.
         
     | 
| 64 | 
         
            +
                    use_cache (`bool`, *optional*, defaults to `True`):
         
     | 
| 65 | 
         
            +
                        Whether or not the model should return the last key/values attentions (not used by all models). Only
         
     | 
| 66 | 
         
            +
                        relevant if `config.is_decoder=True`.
         
     | 
| 67 | 
         
            +
                    pad_token_id (`int`, *optional*):
         
     | 
| 68 | 
         
            +
                        Padding token id.
         
     | 
| 69 | 
         
            +
                    bos_token_id (`int`, *optional*, defaults to 0):
         
     | 
| 70 | 
         
            +
                        Beginning of stream token id.
         
     | 
| 71 | 
         
            +
                    eos_token_id (`int`, *optional*, defaults to 1):
         
     | 
| 72 | 
         
            +
                        End of stream token id.
         
     | 
| 73 | 
         
            +
                    tie_word_embeddings (`bool`, *optional*, defaults to `False`):
         
     | 
| 74 | 
         
            +
                        Whether to tie weight embeddings
         
     | 
| 75 | 
         
            +
                    rope_theta (`float`, *optional*, defaults to 10000.0):
         
     | 
| 76 | 
         
            +
                        The base period of the RoPE embeddings.
         
     | 
| 77 | 
         
            +
                    attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`):
         
     | 
| 78 | 
         
            +
                        Whether to use a bias in the query, key, value and output projection layers during self-attention.
         
     | 
| 79 | 
         
            +
                    attention_dropout (`float`, *optional*, defaults to 0.0):
         
     | 
| 80 | 
         
            +
                        The dropout ratio for the attention probabilities.
         
     | 
| 81 | 
         
            +
                    attention_method (`str`, *optional*, defaults to `"MLA"`):
         
     | 
| 82 | 
         
            +
                        The attention method to use.
         
     | 
| 83 | 
         
            +
                    initializer_range (`float`, *optional*, defaults to 0.006):
         
     | 
| 84 | 
         
            +
                        The initializer range for the model.
         
     | 
| 85 | 
         
            +
                    router_bias (`bool`, *optional*, defaults to `False`):
         
     | 
| 86 | 
         
            +
                        Whether to use a bias in the router.
         
     | 
| 87 | 
         
            +
                    zero_expert_num (`int`, *optional*, defaults to `None`):
         
     | 
| 88 | 
         
            +
                        The number of zero experts to use.
         
     | 
| 89 | 
         
            +
                    zero_expert_type (`str`, *optional*, defaults to `None`):
         
     | 
| 90 | 
         
            +
                        The type of zero expert to use.
         
     | 
| 91 | 
         
            +
             
     | 
| 92 | 
         
            +
                ```python
         
     | 
| 93 | 
         
            +
                >>> from transformers import LongcatFlashModel, LongcatFlashConfig
         
     | 
| 94 | 
         
            +
             
     | 
| 95 | 
         
            +
                >>> # Initializing a LongcatFlash style configuration
         
     | 
| 96 | 
         
            +
                >>> configuration = LongcatFlashConfig()
         
     | 
| 97 | 
         
            +
             
     | 
| 98 | 
         
            +
                >>> # Accessing the model configuration
         
     | 
| 99 | 
         
            +
                >>> configuration = model.config
         
     | 
| 100 | 
         
            +
                ```"""
         
     | 
| 101 | 
         
            +
             
     | 
| 102 | 
         
            +
                model_type = "longcat_flash"
         
     | 
| 103 | 
         
            +
                keys_to_ignore_at_inference = ["past_key_values"]
         
     | 
| 104 | 
         
            +
                base_model_tp_plan = {
         
     | 
| 105 | 
         
            +
                    "layers.*.self_attn.k_proj": "colwise",
         
     | 
| 106 | 
         
            +
                    "layers.*.self_attn.v_proj": "colwise",
         
     | 
| 107 | 
         
            +
                    "layers.*.self_attn.o_proj": "rowwise",
         
     | 
| 108 | 
         
            +
                    "layers.*.mlp.experts.*.gate_proj": "local_colwise",
         
     | 
| 109 | 
         
            +
                    "layers.*.mlp.experts.*.up_proj": "local_colwise",
         
     | 
| 110 | 
         
            +
                    "layers.*.mlp.experts.*.down_proj": "local_rowwise",
         
     | 
| 111 | 
         
            +
                    "layers.*.mlps.*.gate_proj": "local_colwise",
         
     | 
| 112 | 
         
            +
                    "layers.*.mlps.*.up_proj": "local_colwise",
         
     | 
| 113 | 
         
            +
                    "layers.*.mlps.*.down_proj": "local_rowwise",
         
     | 
| 114 | 
         
            +
                }
         
     | 
| 115 | 
         
            +
                base_model_pp_plan = {
         
     | 
| 116 | 
         
            +
                    "embed_tokens": (["input_ids"], ["inputs_embeds"]),
         
     | 
| 117 | 
         
            +
                    "layers": (["hidden_states", "attention_mask"], ["hidden_states"]),
         
     | 
| 118 | 
         
            +
                    "norm": (["hidden_states"], ["hidden_states"]),
         
     | 
| 119 | 
         
            +
                }
         
     | 
| 120 | 
         
            +
             
     | 
| 121 | 
         
            +
                def __init__(
         
     | 
| 122 | 
         
            +
                    self,
         
     | 
| 123 | 
         
            +
                    vocab_size=131072,
         
     | 
| 124 | 
         
            +
                    hidden_size=7168,
         
     | 
| 125 | 
         
            +
                    ffn_hidden_size=18432,
         
     | 
| 126 | 
         
            +
                    expert_ffn_hidden_size=2048,
         
     | 
| 127 | 
         
            +
                    num_layers=61,
         
     | 
| 128 | 
         
            +
                    num_attention_heads=128,
         
     | 
| 129 | 
         
            +
                    num_key_value_heads=None,
         
     | 
| 130 | 
         
            +
                    n_routed_experts=256,
         
     | 
| 131 | 
         
            +
                    routed_scaling_factor=1,
         
     | 
| 132 | 
         
            +
                    kv_lora_rank=512,
         
     | 
| 133 | 
         
            +
                    q_lora_rank=1536,
         
     | 
| 134 | 
         
            +
                    qk_rope_head_dim=64,
         
     | 
| 135 | 
         
            +
                    v_head_dim=128,
         
     | 
| 136 | 
         
            +
                    qk_nope_head_dim=128,
         
     | 
| 137 | 
         
            +
                    mla_scale_q_lora=True,
         
     | 
| 138 | 
         
            +
                    mla_scale_kv_lora=True,
         
     | 
| 139 | 
         
            +
                    moe_topk=8,
         
     | 
| 140 | 
         
            +
                    norm_topk_prob=False,
         
     | 
| 141 | 
         
            +
                    hidden_act="silu",
         
     | 
| 142 | 
         
            +
                    max_position_embeddings=4096,
         
     | 
| 143 | 
         
            +
                    rms_norm_eps=1e-6,
         
     | 
| 144 | 
         
            +
                    use_cache=True,
         
     | 
| 145 | 
         
            +
                    pad_token_id=None,
         
     | 
| 146 | 
         
            +
                    bos_token_id=0,
         
     | 
| 147 | 
         
            +
                    eos_token_id=1,
         
     | 
| 148 | 
         
            +
                    tie_word_embeddings=False,
         
     | 
| 149 | 
         
            +
                    rope_theta=10000.0,
         
     | 
| 150 | 
         
            +
                    attention_bias=False,
         
     | 
| 151 | 
         
            +
                    attention_dropout=0.0,
         
     | 
| 152 | 
         
            +
                    attention_method='MLA',
         
     | 
| 153 | 
         
            +
                    initializer_range=0.006,
         
     | 
| 154 | 
         
            +
                    router_bias=False,
         
     | 
| 155 | 
         
            +
                    zero_expert_num=None,
         
     | 
| 156 | 
         
            +
                    zero_expert_type=None,
         
     | 
| 157 | 
         
            +
                    **kwargs,
         
     | 
| 158 | 
         
            +
                ):
         
     | 
| 159 | 
         
            +
                    self.vocab_size = vocab_size
         
     | 
| 160 | 
         
            +
                    self.max_position_embeddings = max_position_embeddings
         
     | 
| 161 | 
         
            +
                    self.hidden_size = hidden_size
         
     | 
| 162 | 
         
            +
                    self.ffn_hidden_size = ffn_hidden_size
         
     | 
| 163 | 
         
            +
                    self.expert_ffn_hidden_size = expert_ffn_hidden_size
         
     | 
| 164 | 
         
            +
                    self.num_layers = num_layers
         
     | 
| 165 | 
         
            +
                    self.num_attention_heads = num_attention_heads
         
     | 
| 166 | 
         
            +
                    self.n_routed_experts = n_routed_experts
         
     | 
| 167 | 
         
            +
                    self.routed_scaling_factor = routed_scaling_factor
         
     | 
| 168 | 
         
            +
                    self.kv_lora_rank = kv_lora_rank
         
     | 
| 169 | 
         
            +
                    self.q_lora_rank = q_lora_rank
         
     | 
| 170 | 
         
            +
                    self.qk_rope_head_dim = qk_rope_head_dim
         
     | 
| 171 | 
         
            +
                    self.v_head_dim = v_head_dim
         
     | 
| 172 | 
         
            +
                    self.qk_nope_head_dim = qk_nope_head_dim
         
     | 
| 173 | 
         
            +
                    self.qk_head_dim = qk_nope_head_dim + qk_rope_head_dim
         
     | 
| 174 | 
         
            +
                    self.moe_topk = moe_topk
         
     | 
| 175 | 
         
            +
                    self.norm_topk_prob = norm_topk_prob
         
     | 
| 176 | 
         
            +
                    self.mla_scale_q_lora = mla_scale_q_lora
         
     | 
| 177 | 
         
            +
                    self.mla_scale_kv_lora = mla_scale_kv_lora
         
     | 
| 178 | 
         
            +
                    self.attention_method = attention_method
         
     | 
| 179 | 
         
            +
                    self.initializer_range = initializer_range
         
     | 
| 180 | 
         
            +
                    self.router_bias = router_bias
         
     | 
| 181 | 
         
            +
                    self.zero_expert_num = zero_expert_num
         
     | 
| 182 | 
         
            +
                    self.zero_expert_type = zero_expert_type
         
     | 
| 183 | 
         
            +
             
     | 
| 184 | 
         
            +
                    if self.attention_method == "MLA":
         
     | 
| 185 | 
         
            +
                        self.head_dim = qk_rope_head_dim
         
     | 
| 186 | 
         
            +
                    else:
         
     | 
| 187 | 
         
            +
                        ValueError('attention_method should be one of ["MLA"]')
         
     | 
| 188 | 
         
            +
             
     | 
| 189 | 
         
            +
             
     | 
| 190 | 
         
            +
                    if num_key_value_heads is None:
         
     | 
| 191 | 
         
            +
                        num_key_value_heads = num_attention_heads
         
     | 
| 192 | 
         
            +
             
     | 
| 193 | 
         
            +
                    self.num_key_value_heads = num_key_value_heads
         
     | 
| 194 | 
         
            +
                    self.hidden_act = hidden_act
         
     | 
| 195 | 
         
            +
                    self.rms_norm_eps = rms_norm_eps
         
     | 
| 196 | 
         
            +
                    self.use_cache = use_cache
         
     | 
| 197 | 
         
            +
                    self.rope_theta = rope_theta
         
     | 
| 198 | 
         
            +
                    self.attention_bias = attention_bias
         
     | 
| 199 | 
         
            +
                    self.attention_dropout = attention_dropout
         
     | 
| 200 | 
         
            +
             
     | 
| 201 | 
         
            +
                    rope_config_validation(self)
         
     | 
| 202 | 
         
            +
             
     | 
| 203 | 
         
            +
                    super().__init__(
         
     | 
| 204 | 
         
            +
                        pad_token_id=pad_token_id,
         
     | 
| 205 | 
         
            +
                        bos_token_id=bos_token_id,
         
     | 
| 206 | 
         
            +
                        eos_token_id=eos_token_id,
         
     | 
| 207 | 
         
            +
                        tie_word_embeddings=tie_word_embeddings,
         
     | 
| 208 | 
         
            +
                        **kwargs,
         
     | 
| 209 | 
         
            +
                    )
         
     | 
| 210 | 
         
            +
             
     | 
| 211 | 
         
            +
                @property
         
     | 
| 212 | 
         
            +
                def num_hidden_layers(self):
         
     | 
| 213 | 
         
            +
                    return self.num_layers
         
     | 
| 214 | 
         
            +
             
     | 
| 215 | 
         
            +
             
     | 
| 216 | 
         
            +
            __all__ = ["LongcatFlashConfig"]
         
     | 
    	
        generation_config.json
    ADDED
    
    | 
         @@ -0,0 +1,7 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            {
         
     | 
| 2 | 
         
            +
                "_from_model_config": true,
         
     | 
| 3 | 
         
            +
                "bos_token_id": 1,
         
     | 
| 4 | 
         
            +
                "eos_token_id": 2,
         
     | 
| 5 | 
         
            +
                "pad_token_id": 3,
         
     | 
| 6 | 
         
            +
                "transformers_version": "4.55.0"
         
     | 
| 7 | 
         
            +
            }
         
     | 
    	
        modeling_longcat_flash.py
    ADDED
    
    | 
         @@ -0,0 +1,644 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            from typing import Callable, Optional, Union
         
     | 
| 2 | 
         
            +
             
     | 
| 3 | 
         
            +
            import torch
         
     | 
| 4 | 
         
            +
            import torch.nn.functional as F
         
     | 
| 5 | 
         
            +
            from torch import nn
         
     | 
| 6 | 
         
            +
             
     | 
| 7 | 
         
            +
            from transformers.activations import ACT2FN
         
     | 
| 8 | 
         
            +
            from transformers.cache_utils import Cache, DynamicCache
         
     | 
| 9 | 
         
            +
            from transformers.generation import GenerationMixin
         
     | 
| 10 | 
         
            +
            from transformers.integrations import use_kernel_forward_from_hub
         
     | 
| 11 | 
         
            +
            from transformers.masking_utils import create_causal_mask
         
     | 
| 12 | 
         
            +
            from transformers.modeling_flash_attention_utils import FlashAttentionKwargs
         
     | 
| 13 | 
         
            +
            from transformers.modeling_layers import GradientCheckpointingLayer
         
     | 
| 14 | 
         
            +
            from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
         
     | 
| 15 | 
         
            +
            from transformers.modeling_rope_utils import ROPE_INIT_FUNCTIONS, dynamic_rope_update
         
     | 
| 16 | 
         
            +
            from transformers.modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel
         
     | 
| 17 | 
         
            +
            from transformers.processing_utils import Unpack
         
     | 
| 18 | 
         
            +
            from transformers.utils import TransformersKwargs, auto_docstring, can_return_tuple
         
     | 
| 19 | 
         
            +
            from transformers.utils.generic import check_model_inputs
         
     | 
| 20 | 
         
            +
            from .configuration_longcat_flash import LongcatFlashConfig
         
     | 
| 21 | 
         
            +
             
     | 
| 22 | 
         
            +
             
     | 
| 23 | 
         
            +
            @use_kernel_forward_from_hub("RMSNorm")
         
     | 
| 24 | 
         
            +
            class LongcatFlashRMSNorm(nn.Module):
         
     | 
| 25 | 
         
            +
                def __init__(self, hidden_size, eps=1e-6):
         
     | 
| 26 | 
         
            +
                    """
         
     | 
| 27 | 
         
            +
                    LongcatFlashRMSNorm is equivalent to T5LayerNorm
         
     | 
| 28 | 
         
            +
                    """
         
     | 
| 29 | 
         
            +
                    super().__init__()
         
     | 
| 30 | 
         
            +
                    self.weight = nn.Parameter(torch.ones(hidden_size))
         
     | 
| 31 | 
         
            +
                    self.variance_epsilon = eps
         
     | 
| 32 | 
         
            +
             
     | 
| 33 | 
         
            +
                def forward(self, hidden_states):
         
     | 
| 34 | 
         
            +
                    input_dtype = hidden_states.dtype
         
     | 
| 35 | 
         
            +
                    hidden_states = hidden_states.to(torch.float32)
         
     | 
| 36 | 
         
            +
                    variance = hidden_states.pow(2).mean(-1, keepdim=True)
         
     | 
| 37 | 
         
            +
                    hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
         
     | 
| 38 | 
         
            +
                    return self.weight * hidden_states.to(input_dtype)
         
     | 
| 39 | 
         
            +
             
     | 
| 40 | 
         
            +
                def extra_repr(self):
         
     | 
| 41 | 
         
            +
                    return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}"
         
     | 
| 42 | 
         
            +
             
     | 
| 43 | 
         
            +
             
     | 
| 44 | 
         
            +
            class LongcatFlashRotaryEmbedding(nn.Module):
         
     | 
| 45 | 
         
            +
                def __init__(self, config: LongcatFlashConfig, device=None):
         
     | 
| 46 | 
         
            +
                    super().__init__()
         
     | 
| 47 | 
         
            +
                    # BC: "rope_type" was originally "type"
         
     | 
| 48 | 
         
            +
                    if hasattr(config, "rope_scaling") and isinstance(config.rope_scaling, dict):
         
     | 
| 49 | 
         
            +
                        self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type"))
         
     | 
| 50 | 
         
            +
                    else:
         
     | 
| 51 | 
         
            +
                        self.rope_type = "default"
         
     | 
| 52 | 
         
            +
                    self.max_seq_len_cached = config.max_position_embeddings
         
     | 
| 53 | 
         
            +
                    self.original_max_seq_len = config.max_position_embeddings
         
     | 
| 54 | 
         
            +
             
     | 
| 55 | 
         
            +
                    self.config = config
         
     | 
| 56 | 
         
            +
                    self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]
         
     | 
| 57 | 
         
            +
             
     | 
| 58 | 
         
            +
                    inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device)
         
     | 
| 59 | 
         
            +
                    self.register_buffer("inv_freq", inv_freq, persistent=False)
         
     | 
| 60 | 
         
            +
                    self.original_inv_freq = self.inv_freq
         
     | 
| 61 | 
         
            +
             
     | 
| 62 | 
         
            +
                @torch.no_grad()
         
     | 
| 63 | 
         
            +
                @dynamic_rope_update  # power user: used with advanced RoPE types (e.g. dynamic rope)
         
     | 
| 64 | 
         
            +
                def forward(self, x, position_ids):
         
     | 
| 65 | 
         
            +
                    inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1).to(x.device)
         
     | 
| 66 | 
         
            +
                    position_ids_expanded = position_ids[:, None, :].float()
         
     | 
| 67 | 
         
            +
             
     | 
| 68 | 
         
            +
                    device_type = x.device.type if isinstance(x.device.type, str) and x.device.type != "mps" else "cpu"
         
     | 
| 69 | 
         
            +
                    with torch.autocast(device_type=device_type, enabled=False):  # Force float32
         
     | 
| 70 | 
         
            +
                        freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
         
     | 
| 71 | 
         
            +
                        emb = torch.cat((freqs, freqs), dim=-1)
         
     | 
| 72 | 
         
            +
                        cos = emb.cos() * self.attention_scaling
         
     | 
| 73 | 
         
            +
                        sin = emb.sin() * self.attention_scaling
         
     | 
| 74 | 
         
            +
             
     | 
| 75 | 
         
            +
                    return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
         
     | 
| 76 | 
         
            +
             
     | 
| 77 | 
         
            +
             
     | 
| 78 | 
         
            +
            class LongcatFlashMLP(nn.Module):
         
     | 
| 79 | 
         
            +
                def __init__(self, config, hidden_size=None, intermediate_size=None):
         
     | 
| 80 | 
         
            +
                    super().__init__()
         
     | 
| 81 | 
         
            +
                    self.config = config
         
     | 
| 82 | 
         
            +
                    self.hidden_size = config.hidden_size if hidden_size is None else hidden_size
         
     | 
| 83 | 
         
            +
                    self.intermediate_size = config.ffn_hidden_size if intermediate_size is None else intermediate_size
         
     | 
| 84 | 
         
            +
             
     | 
| 85 | 
         
            +
                    self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
         
     | 
| 86 | 
         
            +
                    self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
         
     | 
| 87 | 
         
            +
                    self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
         
     | 
| 88 | 
         
            +
                    self.act_fn = ACT2FN[config.hidden_act]
         
     | 
| 89 | 
         
            +
             
     | 
| 90 | 
         
            +
                def forward(self, x):
         
     | 
| 91 | 
         
            +
                    down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
         
     | 
| 92 | 
         
            +
                    return down_proj
         
     | 
| 93 | 
         
            +
             
     | 
| 94 | 
         
            +
             
     | 
| 95 | 
         
            +
            class LongcatFlashTopkRouter(nn.Module):
         
     | 
| 96 | 
         
            +
                def __init__(self, config):
         
     | 
| 97 | 
         
            +
                    super().__init__()
         
     | 
| 98 | 
         
            +
                    self.config = config
         
     | 
| 99 | 
         
            +
                    self.top_k = config.moe_topk
         
     | 
| 100 | 
         
            +
                    self.n_routed_experts = (
         
     | 
| 101 | 
         
            +
                        config.n_routed_experts
         
     | 
| 102 | 
         
            +
                        if config.zero_expert_num is None
         
     | 
| 103 | 
         
            +
                        else config.n_routed_experts + config.zero_expert_num
         
     | 
| 104 | 
         
            +
                    )
         
     | 
| 105 | 
         
            +
                    self.routed_scaling_factor = config.routed_scaling_factor
         
     | 
| 106 | 
         
            +
                    self.norm_topk_prob = config.norm_topk_prob
         
     | 
| 107 | 
         
            +
                    self.router_bias = config.router_bias
         
     | 
| 108 | 
         
            +
             
     | 
| 109 | 
         
            +
                    self.classifier = nn.Linear(config.hidden_size, self.n_routed_experts, bias=self.router_bias)
         
     | 
| 110 | 
         
            +
                    self.register_buffer("e_score_correction_bias", torch.zeros((self.n_routed_experts)))
         
     | 
| 111 | 
         
            +
             
     | 
| 112 | 
         
            +
                @torch.no_grad()
         
     | 
| 113 | 
         
            +
                def get_topk_indices(self, scores):
         
     | 
| 114 | 
         
            +
                    scores_for_choice = scores.view(-1, self.n_routed_experts) + self.e_score_correction_bias.unsqueeze(0)
         
     | 
| 115 | 
         
            +
                    topk_indices = torch.topk(scores_for_choice, k=self.top_k, dim=-1, sorted=False)[1]
         
     | 
| 116 | 
         
            +
                    return topk_indices
         
     | 
| 117 | 
         
            +
             
     | 
| 118 | 
         
            +
                def forward(self, hidden_states):
         
     | 
| 119 | 
         
            +
                    hidden_states = hidden_states.view(-1, self.config.hidden_size)
         
     | 
| 120 | 
         
            +
                    router_logits = F.linear(hidden_states.type(torch.float32), self.classifier.weight.type(torch.float32))
         
     | 
| 121 | 
         
            +
                    scores = router_logits.softmax(dim=-1)
         
     | 
| 122 | 
         
            +
                    topk_indices = self.get_topk_indices(scores)
         
     | 
| 123 | 
         
            +
                    topk_weights = scores.gather(1, topk_indices)
         
     | 
| 124 | 
         
            +
                    if self.norm_topk_prob:
         
     | 
| 125 | 
         
            +
                        denominator = topk_weights.sum(dim=-1, keepdim=True) + 1e-20
         
     | 
| 126 | 
         
            +
                        topk_weights /= denominator
         
     | 
| 127 | 
         
            +
                    topk_weights = topk_weights * self.routed_scaling_factor
         
     | 
| 128 | 
         
            +
                    return topk_indices, topk_weights
         
     | 
| 129 | 
         
            +
             
     | 
| 130 | 
         
            +
             
     | 
| 131 | 
         
            +
            class LongcatFlashMoE(nn.Module):
         
     | 
| 132 | 
         
            +
                """
         
     | 
| 133 | 
         
            +
                moe module.
         
     | 
| 134 | 
         
            +
                """
         
     | 
| 135 | 
         
            +
             
     | 
| 136 | 
         
            +
                def __init__(self, config):
         
     | 
| 137 | 
         
            +
                    super().__init__()
         
     | 
| 138 | 
         
            +
                    self.config = config
         
     | 
| 139 | 
         
            +
                    self.experts = nn.ModuleList(
         
     | 
| 140 | 
         
            +
                        [
         
     | 
| 141 | 
         
            +
                            LongcatFlashMLP(config, intermediate_size=config.expert_ffn_hidden_size)
         
     | 
| 142 | 
         
            +
                            for _ in range(config.n_routed_experts)
         
     | 
| 143 | 
         
            +
                        ]
         
     | 
| 144 | 
         
            +
                    )
         
     | 
| 145 | 
         
            +
                    self.router = LongcatFlashTopkRouter(config)
         
     | 
| 146 | 
         
            +
                    self.zero_expert_num = config.zero_expert_num
         
     | 
| 147 | 
         
            +
                    self.zero_expert_type = config.zero_expert_type
         
     | 
| 148 | 
         
            +
             
     | 
| 149 | 
         
            +
                def moe(self, hidden_states: torch.Tensor, topk_indices: torch.Tensor, topk_weights: torch.Tensor):
         
     | 
| 150 | 
         
            +
                    final_hidden_states = torch.zeros_like(hidden_states, dtype=topk_weights.dtype)
         
     | 
| 151 | 
         
            +
                    total_experts = len(self.experts) if self.zero_expert_num is None else len(self.experts) + self.zero_expert_num
         
     | 
| 152 | 
         
            +
             
     | 
| 153 | 
         
            +
                    expert_mask = torch.nn.functional.one_hot(topk_indices, num_classes=total_experts)
         
     | 
| 154 | 
         
            +
                    expert_mask = expert_mask.permute(2, 0, 1)
         
     | 
| 155 | 
         
            +
             
     | 
| 156 | 
         
            +
                    for expert_idx in range(total_experts):
         
     | 
| 157 | 
         
            +
                        expert = self.experts[expert_idx] if expert_idx < len(self.experts) else None
         
     | 
| 158 | 
         
            +
                        mask = expert_mask[expert_idx]
         
     | 
| 159 | 
         
            +
                        token_indices, weight_indices = torch.where(mask)
         
     | 
| 160 | 
         
            +
             
     | 
| 161 | 
         
            +
                        if token_indices.numel() > 0:
         
     | 
| 162 | 
         
            +
                            expert_weights = topk_weights[token_indices, weight_indices]
         
     | 
| 163 | 
         
            +
                            expert_input = hidden_states[token_indices]
         
     | 
| 164 | 
         
            +
             
     | 
| 165 | 
         
            +
                            if self.zero_expert_num is None or expert_idx < len(self.experts):
         
     | 
| 166 | 
         
            +
                                expert_output = expert(expert_input)
         
     | 
| 167 | 
         
            +
                            elif self.zero_expert_type == "identity":
         
     | 
| 168 | 
         
            +
                                expert_output = expert_input
         
     | 
| 169 | 
         
            +
                            else:
         
     | 
| 170 | 
         
            +
                                raise ValueError("Unknown condition")
         
     | 
| 171 | 
         
            +
             
     | 
| 172 | 
         
            +
                            weighted_output = expert_output * expert_weights.unsqueeze(-1)
         
     | 
| 173 | 
         
            +
                            final_hidden_states.index_add_(0, token_indices, weighted_output)
         
     | 
| 174 | 
         
            +
             
     | 
| 175 | 
         
            +
                    return final_hidden_states.type(hidden_states.dtype)
         
     | 
| 176 | 
         
            +
             
     | 
| 177 | 
         
            +
                def forward(self, hidden_states):
         
     | 
| 178 | 
         
            +
                    orig_shape = hidden_states.shape
         
     | 
| 179 | 
         
            +
                    topk_indices, topk_weights = self.router(hidden_states)
         
     | 
| 180 | 
         
            +
                    hidden_states = hidden_states.view(-1, hidden_states.shape[-1])
         
     | 
| 181 | 
         
            +
                    hidden_states = self.moe(hidden_states, topk_indices, topk_weights).view(*orig_shape)
         
     | 
| 182 | 
         
            +
                    return hidden_states
         
     | 
| 183 | 
         
            +
             
     | 
| 184 | 
         
            +
             
     | 
| 185 | 
         
            +
            def rotate_half(x):
         
     | 
| 186 | 
         
            +
                """Rotates half the hidden dims of the input."""
         
     | 
| 187 | 
         
            +
                x1 = x[..., : x.shape[-1] // 2]
         
     | 
| 188 | 
         
            +
                x2 = x[..., x.shape[-1] // 2 :]
         
     | 
| 189 | 
         
            +
                return torch.cat((-x2, x1), dim=-1)
         
     | 
| 190 | 
         
            +
             
     | 
| 191 | 
         
            +
             
     | 
| 192 | 
         
            +
            def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
         
     | 
| 193 | 
         
            +
                """
         
     | 
| 194 | 
         
            +
                This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
         
     | 
| 195 | 
         
            +
                num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
         
     | 
| 196 | 
         
            +
                """
         
     | 
| 197 | 
         
            +
                batch, num_key_value_heads, slen, head_dim = hidden_states.shape
         
     | 
| 198 | 
         
            +
                if n_rep == 1:
         
     | 
| 199 | 
         
            +
                    return hidden_states
         
     | 
| 200 | 
         
            +
                hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
         
     | 
| 201 | 
         
            +
                return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
         
     | 
| 202 | 
         
            +
             
     | 
| 203 | 
         
            +
             
     | 
| 204 | 
         
            +
            def eager_attention_forward(
         
     | 
| 205 | 
         
            +
                module: nn.Module,
         
     | 
| 206 | 
         
            +
                query: torch.Tensor,
         
     | 
| 207 | 
         
            +
                key: torch.Tensor,
         
     | 
| 208 | 
         
            +
                value: torch.Tensor,
         
     | 
| 209 | 
         
            +
                attention_mask: Optional[torch.Tensor],
         
     | 
| 210 | 
         
            +
                scaling: float,
         
     | 
| 211 | 
         
            +
                dropout: float = 0.0,
         
     | 
| 212 | 
         
            +
                **kwargs: Unpack[TransformersKwargs],
         
     | 
| 213 | 
         
            +
            ):
         
     | 
| 214 | 
         
            +
                key_states = repeat_kv(key, module.num_key_value_groups)
         
     | 
| 215 | 
         
            +
                value_states = repeat_kv(value, module.num_key_value_groups)
         
     | 
| 216 | 
         
            +
             
     | 
| 217 | 
         
            +
                attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling
         
     | 
| 218 | 
         
            +
                if attention_mask is not None:
         
     | 
| 219 | 
         
            +
                    causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
         
     | 
| 220 | 
         
            +
                    attn_weights = attn_weights + causal_mask
         
     | 
| 221 | 
         
            +
             
     | 
| 222 | 
         
            +
                attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype)
         
     | 
| 223 | 
         
            +
                attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training)
         
     | 
| 224 | 
         
            +
                attn_output = torch.matmul(attn_weights, value_states)
         
     | 
| 225 | 
         
            +
                attn_output = attn_output.transpose(1, 2).contiguous()
         
     | 
| 226 | 
         
            +
             
     | 
| 227 | 
         
            +
                return attn_output, attn_weights
         
     | 
| 228 | 
         
            +
             
     | 
| 229 | 
         
            +
             
     | 
| 230 | 
         
            +
            def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1, use_mla=False):
         
     | 
| 231 | 
         
            +
                """Applies Rotary Position Embedding to the query and key tensors.
         
     | 
| 232 | 
         
            +
             
     | 
| 233 | 
         
            +
                Args:
         
     | 
| 234 | 
         
            +
                    q (`torch.Tensor`): The query tensor.
         
     | 
| 235 | 
         
            +
                    k (`torch.Tensor`): The key tensor.
         
     | 
| 236 | 
         
            +
                    cos (`torch.Tensor`): The cosine part of the rotary embedding.
         
     | 
| 237 | 
         
            +
                    sin (`torch.Tensor`): The sine part of the rotary embedding.
         
     | 
| 238 | 
         
            +
                    position_ids (`torch.Tensor`, *optional*):
         
     | 
| 239 | 
         
            +
                        Deprecated and unused.
         
     | 
| 240 | 
         
            +
                    unsqueeze_dim (`int`, *optional*, defaults to 1):
         
     | 
| 241 | 
         
            +
                        The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
         
     | 
| 242 | 
         
            +
                        sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
         
     | 
| 243 | 
         
            +
                        that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
         
     | 
| 244 | 
         
            +
                        k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
         
     | 
| 245 | 
         
            +
                        cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
         
     | 
| 246 | 
         
            +
                        the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
         
     | 
| 247 | 
         
            +
                Returns:
         
     | 
| 248 | 
         
            +
                    `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
         
     | 
| 249 | 
         
            +
                """
         
     | 
| 250 | 
         
            +
                cos = cos.unsqueeze(unsqueeze_dim)
         
     | 
| 251 | 
         
            +
                sin = sin.unsqueeze(unsqueeze_dim)
         
     | 
| 252 | 
         
            +
             
     | 
| 253 | 
         
            +
                if use_mla:
         
     | 
| 254 | 
         
            +
                    b, h, s, d = q.shape
         
     | 
| 255 | 
         
            +
                    q = q.view(b, h, s, d // 2, 2).transpose(4, 3).reshape(b, h, s, d)
         
     | 
| 256 | 
         
            +
             
     | 
| 257 | 
         
            +
                    b, h, s, d = k.shape
         
     | 
| 258 | 
         
            +
                    k = k.view(b, h, s, d // 2, 2).transpose(4, 3).reshape(b, h, s, d)
         
     | 
| 259 | 
         
            +
             
     | 
| 260 | 
         
            +
                q_embed = (q * cos) + (rotate_half(q) * sin)
         
     | 
| 261 | 
         
            +
                k_embed = (k * cos) + (rotate_half(k) * sin)
         
     | 
| 262 | 
         
            +
                return q_embed, k_embed
         
     | 
| 263 | 
         
            +
             
     | 
| 264 | 
         
            +
             
     | 
| 265 | 
         
            +
            class LongcatFlashMLA(nn.Module):
         
     | 
| 266 | 
         
            +
                """Modified from Deepseek MLA"""
         
     | 
| 267 | 
         
            +
             
     | 
| 268 | 
         
            +
                def __init__(self, config: LongcatFlashConfig, layer_idx: int):
         
     | 
| 269 | 
         
            +
                    super().__init__()
         
     | 
| 270 | 
         
            +
                    self.config = config
         
     | 
| 271 | 
         
            +
                    self.layer_idx = layer_idx
         
     | 
| 272 | 
         
            +
                    self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads
         
     | 
| 273 | 
         
            +
                    self.attention_dropout = config.attention_dropout
         
     | 
| 274 | 
         
            +
                    self.num_heads = config.num_attention_heads
         
     | 
| 275 | 
         
            +
                    self.rope_theta = config.rope_theta
         
     | 
| 276 | 
         
            +
                    self.q_lora_rank = config.q_lora_rank
         
     | 
| 277 | 
         
            +
                    self.qk_rope_head_dim = config.qk_rope_head_dim
         
     | 
| 278 | 
         
            +
                    self.kv_lora_rank = config.kv_lora_rank
         
     | 
| 279 | 
         
            +
                    self.v_head_dim = config.v_head_dim
         
     | 
| 280 | 
         
            +
                    self.qk_nope_head_dim = config.qk_nope_head_dim
         
     | 
| 281 | 
         
            +
                    self.qk_head_dim = config.qk_head_dim
         
     | 
| 282 | 
         
            +
             
     | 
| 283 | 
         
            +
                    self.is_causal = True
         
     | 
| 284 | 
         
            +
                    if self.q_lora_rank is None:
         
     | 
| 285 | 
         
            +
                        self.q_proj = nn.Linear(config.hidden_size, self.num_heads * self.qk_head_dim, bias=False)
         
     | 
| 286 | 
         
            +
                    else:
         
     | 
| 287 | 
         
            +
                        self.q_a_proj = nn.Linear(config.hidden_size, config.q_lora_rank, bias=config.attention_bias)
         
     | 
| 288 | 
         
            +
                        self.q_a_layernorm = LongcatFlashRMSNorm(config.q_lora_rank)
         
     | 
| 289 | 
         
            +
                        self.q_b_proj = nn.Linear(config.q_lora_rank, self.num_heads * self.qk_head_dim, bias=False)
         
     | 
| 290 | 
         
            +
             
     | 
| 291 | 
         
            +
                    self.kv_a_proj_with_mqa = nn.Linear(
         
     | 
| 292 | 
         
            +
                        config.hidden_size,
         
     | 
| 293 | 
         
            +
                        self.kv_lora_rank + self.qk_rope_head_dim,
         
     | 
| 294 | 
         
            +
                        bias=config.attention_bias,
         
     | 
| 295 | 
         
            +
                    )
         
     | 
| 296 | 
         
            +
                    self.kv_a_layernorm = LongcatFlashRMSNorm(self.kv_lora_rank)
         
     | 
| 297 | 
         
            +
                    self.kv_b_proj = nn.Linear(
         
     | 
| 298 | 
         
            +
                        self.kv_lora_rank,
         
     | 
| 299 | 
         
            +
                        self.num_heads * (self.qk_nope_head_dim + self.v_head_dim),
         
     | 
| 300 | 
         
            +
                        bias=False,
         
     | 
| 301 | 
         
            +
                    )
         
     | 
| 302 | 
         
            +
             
     | 
| 303 | 
         
            +
                    self.o_proj = nn.Linear(
         
     | 
| 304 | 
         
            +
                        self.num_heads * self.v_head_dim,
         
     | 
| 305 | 
         
            +
                        config.hidden_size,
         
     | 
| 306 | 
         
            +
                        bias=config.attention_bias,
         
     | 
| 307 | 
         
            +
                    )
         
     | 
| 308 | 
         
            +
             
     | 
| 309 | 
         
            +
                    if config.mla_scale_q_lora:
         
     | 
| 310 | 
         
            +
                        self.mla_scale_q_lora = (config.hidden_size / self.q_lora_rank) ** 0.5
         
     | 
| 311 | 
         
            +
                    if config.mla_scale_kv_lora:
         
     | 
| 312 | 
         
            +
                        self.mla_scale_kv_lora = (config.hidden_size / self.kv_lora_rank) ** 0.5
         
     | 
| 313 | 
         
            +
                    self.scaling = self.qk_head_dim ** (-0.5)
         
     | 
| 314 | 
         
            +
             
     | 
| 315 | 
         
            +
                def forward(
         
     | 
| 316 | 
         
            +
                    self,
         
     | 
| 317 | 
         
            +
                    hidden_states: torch.Tensor,
         
     | 
| 318 | 
         
            +
                    position_embeddings: tuple[torch.Tensor, torch.Tensor],
         
     | 
| 319 | 
         
            +
                    attention_mask: Optional[torch.Tensor],
         
     | 
| 320 | 
         
            +
                    past_key_value: Optional[Cache] = None,
         
     | 
| 321 | 
         
            +
                    cache_position: Optional[torch.LongTensor] = None,
         
     | 
| 322 | 
         
            +
                    **kwargs: Unpack[FlashAttentionKwargs],
         
     | 
| 323 | 
         
            +
                ) -> tuple[torch.Tensor, Optional[torch.Tensor], Optional[tuple[torch.Tensor]]]:
         
     | 
| 324 | 
         
            +
                    batch_size, seq_length = hidden_states.shape[:-1]
         
     | 
| 325 | 
         
            +
                    query_shape = (batch_size, seq_length, -1, self.qk_head_dim)
         
     | 
| 326 | 
         
            +
                    key_shape = (batch_size, seq_length, -1, self.qk_nope_head_dim + self.v_head_dim)
         
     | 
| 327 | 
         
            +
             
     | 
| 328 | 
         
            +
                    q_states = self.q_b_proj(self.q_a_layernorm(self.q_a_proj(hidden_states))).view(query_shape).transpose(1, 2)
         
     | 
| 329 | 
         
            +
                    q_pass, q_rot = torch.split(q_states, [self.qk_nope_head_dim, self.qk_rope_head_dim], dim=-1)
         
     | 
| 330 | 
         
            +
             
     | 
| 331 | 
         
            +
                    # apply q_lora scaling
         
     | 
| 332 | 
         
            +
                    if self.mla_scale_q_lora is not None:
         
     | 
| 333 | 
         
            +
                        q_pass = q_pass * self.mla_scale_q_lora
         
     | 
| 334 | 
         
            +
                        q_rot = q_rot * self.mla_scale_q_lora
         
     | 
| 335 | 
         
            +
             
     | 
| 336 | 
         
            +
                    compressed_kv = self.kv_a_proj_with_mqa(hidden_states)
         
     | 
| 337 | 
         
            +
                    k_pass, k_rot = torch.split(compressed_kv, [self.kv_lora_rank, self.qk_rope_head_dim], dim=-1)
         
     | 
| 338 | 
         
            +
                    k_pass = self.kv_a_layernorm(k_pass)
         
     | 
| 339 | 
         
            +
             
     | 
| 340 | 
         
            +
                    # apply kv_lora scaling
         
     | 
| 341 | 
         
            +
                    if self.mla_scale_kv_lora is not None:
         
     | 
| 342 | 
         
            +
                        k_pass = k_pass * self.mla_scale_kv_lora
         
     | 
| 343 | 
         
            +
             
     | 
| 344 | 
         
            +
                    k_pass = self.kv_b_proj(k_pass).view(key_shape).transpose(1, 2)
         
     | 
| 345 | 
         
            +
                    k_pass, value_states = torch.split(k_pass, [self.qk_nope_head_dim, self.v_head_dim], dim=-1)
         
     | 
| 346 | 
         
            +
             
     | 
| 347 | 
         
            +
                    k_rot = k_rot.view(batch_size, 1, seq_length, self.qk_rope_head_dim)
         
     | 
| 348 | 
         
            +
             
     | 
| 349 | 
         
            +
                    cos, sin = position_embeddings
         
     | 
| 350 | 
         
            +
                    q_rot, k_rot = apply_rotary_pos_emb(q_rot, k_rot, cos, sin, use_mla=True)
         
     | 
| 351 | 
         
            +
                    k_rot = k_rot.expand(*k_pass.shape[:-1], -1)
         
     | 
| 352 | 
         
            +
             
     | 
| 353 | 
         
            +
                    query_states = torch.cat((q_pass, q_rot), dim=-1)
         
     | 
| 354 | 
         
            +
                    key_states = torch.cat((k_pass, k_rot), dim=-1)
         
     | 
| 355 | 
         
            +
             
     | 
| 356 | 
         
            +
                    if past_key_value is not None:
         
     | 
| 357 | 
         
            +
                        cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
         
     | 
| 358 | 
         
            +
                        key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
         
     | 
| 359 | 
         
            +
             
     | 
| 360 | 
         
            +
                    if self.config._attn_implementation == "flash_attention_2" and self.qk_head_dim != self.v_head_dim:
         
     | 
| 361 | 
         
            +
                        value_states = F.pad(value_states, [0, self.qk_head_dim - self.v_head_dim])
         
     | 
| 362 | 
         
            +
             
     | 
| 363 | 
         
            +
                    attention_interface: Callable = eager_attention_forward
         
     | 
| 364 | 
         
            +
                    if self.config._attn_implementation != "eager":
         
     | 
| 365 | 
         
            +
                        attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
         
     | 
| 366 | 
         
            +
             
     | 
| 367 | 
         
            +
                    attn_output, attn_weights = attention_interface(
         
     | 
| 368 | 
         
            +
                        self,
         
     | 
| 369 | 
         
            +
                        query_states,
         
     | 
| 370 | 
         
            +
                        key_states,
         
     | 
| 371 | 
         
            +
                        value_states,
         
     | 
| 372 | 
         
            +
                        attention_mask,
         
     | 
| 373 | 
         
            +
                        dropout=0.0 if not self.training else self.attention_dropout,
         
     | 
| 374 | 
         
            +
                        scaling=self.scaling,
         
     | 
| 375 | 
         
            +
                        **kwargs,
         
     | 
| 376 | 
         
            +
                    )
         
     | 
| 377 | 
         
            +
             
     | 
| 378 | 
         
            +
                    if self.config._attn_implementation == "flash_attention_2" and self.qk_head_dim != self.v_head_dim:
         
     | 
| 379 | 
         
            +
                        attn_output = attn_output[:, :, :, : self.v_head_dim]
         
     | 
| 380 | 
         
            +
             
     | 
| 381 | 
         
            +
                    attn_output = attn_output.reshape(batch_size, seq_length, -1).contiguous()
         
     | 
| 382 | 
         
            +
                    attn_output = self.o_proj(attn_output)
         
     | 
| 383 | 
         
            +
                    return attn_output, attn_weights
         
     | 
| 384 | 
         
            +
             
     | 
| 385 | 
         
            +
             
     | 
| 386 | 
         
            +
            def create_attention_block(class_name, *args, **kwargs):
         
     | 
| 387 | 
         
            +
                attention_mapping = {"MLA": LongcatFlashMLA}
         
     | 
| 388 | 
         
            +
             
     | 
| 389 | 
         
            +
                chosen_class = attention_mapping.get(class_name)
         
     | 
| 390 | 
         
            +
                if not chosen_class:
         
     | 
| 391 | 
         
            +
                    raise ValueError(f"No class found for name: {class_name}")
         
     | 
| 392 | 
         
            +
             
     | 
| 393 | 
         
            +
                return chosen_class(*args, **kwargs)
         
     | 
| 394 | 
         
            +
             
     | 
| 395 | 
         
            +
             
     | 
| 396 | 
         
            +
            class LongcatFlashDecoderLayer(GradientCheckpointingLayer):
         
     | 
| 397 | 
         
            +
                def __init__(self, config: LongcatFlashConfig, layer_idx: int):
         
     | 
| 398 | 
         
            +
                    super().__init__()
         
     | 
| 399 | 
         
            +
                    self.layer_idx = layer_idx
         
     | 
| 400 | 
         
            +
                    self.hidden_size = config.hidden_size
         
     | 
| 401 | 
         
            +
                    self.mlp = LongcatFlashMoE(config)
         
     | 
| 402 | 
         
            +
             
     | 
| 403 | 
         
            +
                    self_attn = []
         
     | 
| 404 | 
         
            +
                    mlps = []
         
     | 
| 405 | 
         
            +
                    input_layernorm = []
         
     | 
| 406 | 
         
            +
                    post_attention_layernorm = []
         
     | 
| 407 | 
         
            +
                    for i in range(2):
         
     | 
| 408 | 
         
            +
                        self_attn.append(
         
     | 
| 409 | 
         
            +
                            create_attention_block(config.attention_method, config=config, layer_idx=layer_idx * 2 + i)
         
     | 
| 410 | 
         
            +
                        )
         
     | 
| 411 | 
         
            +
                        mlps.append(LongcatFlashMLP(config))
         
     | 
| 412 | 
         
            +
                        input_layernorm.append(LongcatFlashRMSNorm(config.hidden_size, eps=config.rms_norm_eps))
         
     | 
| 413 | 
         
            +
                        post_attention_layernorm.append(LongcatFlashRMSNorm(config.hidden_size, eps=config.rms_norm_eps))
         
     | 
| 414 | 
         
            +
             
     | 
| 415 | 
         
            +
                    self.self_attn = nn.ModuleList(self_attn)
         
     | 
| 416 | 
         
            +
                    self.mlps = nn.ModuleList(mlps)
         
     | 
| 417 | 
         
            +
                    self.input_layernorm = nn.ModuleList(input_layernorm)
         
     | 
| 418 | 
         
            +
                    self.post_attention_layernorm = nn.ModuleList(post_attention_layernorm)
         
     | 
| 419 | 
         
            +
             
     | 
| 420 | 
         
            +
                def forward(
         
     | 
| 421 | 
         
            +
                    self,
         
     | 
| 422 | 
         
            +
                    hidden_states: torch.Tensor,
         
     | 
| 423 | 
         
            +
                    attention_mask: Optional[torch.Tensor] = None,
         
     | 
| 424 | 
         
            +
                    position_ids: Optional[torch.LongTensor] = None,
         
     | 
| 425 | 
         
            +
                    past_key_value: Optional[Cache] = None,
         
     | 
| 426 | 
         
            +
                    use_cache: Optional[bool] = False,
         
     | 
| 427 | 
         
            +
                    cache_position: Optional[torch.LongTensor] = None,
         
     | 
| 428 | 
         
            +
                    position_embeddings: Optional[tuple[torch.Tensor, torch.Tensor]] = None,
         
     | 
| 429 | 
         
            +
                    **kwargs: Unpack[FlashAttentionKwargs],
         
     | 
| 430 | 
         
            +
                ) -> tuple[torch.FloatTensor, Optional[tuple[torch.FloatTensor, torch.FloatTensor]]]:
         
     | 
| 431 | 
         
            +
                    for i in range(2):
         
     | 
| 432 | 
         
            +
                        residual = hidden_states
         
     | 
| 433 | 
         
            +
             
     | 
| 434 | 
         
            +
                        hidden_states = self.input_layernorm[i](hidden_states)
         
     | 
| 435 | 
         
            +
             
     | 
| 436 | 
         
            +
                        hidden_states, _ = self.self_attn[i](
         
     | 
| 437 | 
         
            +
                            hidden_states=hidden_states,
         
     | 
| 438 | 
         
            +
                            attention_mask=attention_mask,
         
     | 
| 439 | 
         
            +
                            position_ids=position_ids,
         
     | 
| 440 | 
         
            +
                            past_key_value=past_key_value,
         
     | 
| 441 | 
         
            +
                            use_cache=use_cache,
         
     | 
| 442 | 
         
            +
                            cache_position=cache_position,
         
     | 
| 443 | 
         
            +
                            position_embeddings=position_embeddings,
         
     | 
| 444 | 
         
            +
                            **kwargs,
         
     | 
| 445 | 
         
            +
                        )
         
     | 
| 446 | 
         
            +
                        hidden_states = residual + hidden_states
         
     | 
| 447 | 
         
            +
             
     | 
| 448 | 
         
            +
                        residual = hidden_states
         
     | 
| 449 | 
         
            +
                        hidden_states = self.post_attention_layernorm[i](hidden_states)
         
     | 
| 450 | 
         
            +
             
     | 
| 451 | 
         
            +
                        if i == 0:
         
     | 
| 452 | 
         
            +
                            shortcut_mlp_output = self.mlp(hidden_states)  # shortcut output (MoE output)
         
     | 
| 453 | 
         
            +
             
     | 
| 454 | 
         
            +
                        hidden_states = self.mlps[i](hidden_states)
         
     | 
| 455 | 
         
            +
                        hidden_states = residual + hidden_states
         
     | 
| 456 | 
         
            +
                        if i == 1:
         
     | 
| 457 | 
         
            +
                            hidden_states = hidden_states + shortcut_mlp_output
         
     | 
| 458 | 
         
            +
             
     | 
| 459 | 
         
            +
                    return hidden_states
         
     | 
| 460 | 
         
            +
             
     | 
| 461 | 
         
            +
             
     | 
| 462 | 
         
            +
            @auto_docstring
         
     | 
| 463 | 
         
            +
            class LongcatFlashPreTrainedModel(PreTrainedModel):
         
     | 
| 464 | 
         
            +
                config: LongcatFlashConfig
         
     | 
| 465 | 
         
            +
                base_model_prefix = "model"
         
     | 
| 466 | 
         
            +
                supports_gradient_checkpointing = True
         
     | 
| 467 | 
         
            +
                _no_split_modules = ["LongcatFlashDecoderLayer"]
         
     | 
| 468 | 
         
            +
                _skip_keys_device_placement = ["past_key_values"]
         
     | 
| 469 | 
         
            +
                _supports_flash_attn = True
         
     | 
| 470 | 
         
            +
                _supports_sdpa = True
         
     | 
| 471 | 
         
            +
                _supports_flex_attn = True
         
     | 
| 472 | 
         
            +
                _can_compile_fullgraph = True
         
     | 
| 473 | 
         
            +
                _supports_attention_backend = True
         
     | 
| 474 | 
         
            +
                _can_record_outputs = {
         
     | 
| 475 | 
         
            +
                    "hidden_states": LongcatFlashDecoderLayer,
         
     | 
| 476 | 
         
            +
                    "attentions": LongcatFlashMLA,
         
     | 
| 477 | 
         
            +
                }
         
     | 
| 478 | 
         
            +
             
     | 
| 479 | 
         
            +
             
     | 
| 480 | 
         
            +
            @auto_docstring
         
     | 
| 481 | 
         
            +
            class LongcatFlashModel(LongcatFlashPreTrainedModel):
         
     | 
| 482 | 
         
            +
                _keys_to_ignore_on_load_unexpected = [r"model\.mtp.*"]
         
     | 
| 483 | 
         
            +
             
     | 
| 484 | 
         
            +
                def __init__(self, config: LongcatFlashConfig):
         
     | 
| 485 | 
         
            +
                    super().__init__(config)
         
     | 
| 486 | 
         
            +
                    self.padding_idx = config.pad_token_id
         
     | 
| 487 | 
         
            +
                    self.vocab_size = config.vocab_size
         
     | 
| 488 | 
         
            +
             
     | 
| 489 | 
         
            +
                    self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
         
     | 
| 490 | 
         
            +
                    self.layers = nn.ModuleList(
         
     | 
| 491 | 
         
            +
                        [LongcatFlashDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
         
     | 
| 492 | 
         
            +
                    )
         
     | 
| 493 | 
         
            +
                    self.norm = LongcatFlashRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
         
     | 
| 494 | 
         
            +
                    self.rotary_emb = LongcatFlashRotaryEmbedding(config=config)
         
     | 
| 495 | 
         
            +
                    self.gradient_checkpointing = False
         
     | 
| 496 | 
         
            +
             
     | 
| 497 | 
         
            +
                    # Initialize weights and apply final processing
         
     | 
| 498 | 
         
            +
                    self.post_init()
         
     | 
| 499 | 
         
            +
             
     | 
| 500 | 
         
            +
                @check_model_inputs
         
     | 
| 501 | 
         
            +
                @auto_docstring
         
     | 
| 502 | 
         
            +
                def forward(
         
     | 
| 503 | 
         
            +
                    self,
         
     | 
| 504 | 
         
            +
                    input_ids: Optional[torch.LongTensor] = None,
         
     | 
| 505 | 
         
            +
                    attention_mask: Optional[torch.Tensor] = None,
         
     | 
| 506 | 
         
            +
                    position_ids: Optional[torch.LongTensor] = None,
         
     | 
| 507 | 
         
            +
                    past_key_values: Optional[Cache] = None,
         
     | 
| 508 | 
         
            +
                    inputs_embeds: Optional[torch.FloatTensor] = None,
         
     | 
| 509 | 
         
            +
                    cache_position: Optional[torch.LongTensor] = None,
         
     | 
| 510 | 
         
            +
                    use_cache: Optional[bool] = None,
         
     | 
| 511 | 
         
            +
                    **kwargs: Unpack[TransformersKwargs],
         
     | 
| 512 | 
         
            +
                ) -> BaseModelOutputWithPast:
         
     | 
| 513 | 
         
            +
                    if (input_ids is None) ^ (inputs_embeds is not None):
         
     | 
| 514 | 
         
            +
                        raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
         
     | 
| 515 | 
         
            +
             
     | 
| 516 | 
         
            +
                    if inputs_embeds is None:
         
     | 
| 517 | 
         
            +
                        inputs_embeds: torch.Tensor = self.embed_tokens(input_ids)
         
     | 
| 518 | 
         
            +
             
     | 
| 519 | 
         
            +
                    if use_cache and past_key_values is None:
         
     | 
| 520 | 
         
            +
                        past_key_values = DynamicCache()
         
     | 
| 521 | 
         
            +
             
     | 
| 522 | 
         
            +
                    if cache_position is None:
         
     | 
| 523 | 
         
            +
                        past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
         
     | 
| 524 | 
         
            +
                        cache_position: torch.Tensor = torch.arange(
         
     | 
| 525 | 
         
            +
                            past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
         
     | 
| 526 | 
         
            +
                        )
         
     | 
| 527 | 
         
            +
             
     | 
| 528 | 
         
            +
                    if position_ids is None:
         
     | 
| 529 | 
         
            +
                        position_ids = cache_position.unsqueeze(0)
         
     | 
| 530 | 
         
            +
             
     | 
| 531 | 
         
            +
                    causal_mask = create_causal_mask(
         
     | 
| 532 | 
         
            +
                        config=self.config,
         
     | 
| 533 | 
         
            +
                        input_embeds=inputs_embeds,
         
     | 
| 534 | 
         
            +
                        attention_mask=attention_mask,
         
     | 
| 535 | 
         
            +
                        cache_position=cache_position,
         
     | 
| 536 | 
         
            +
                        past_key_values=past_key_values,
         
     | 
| 537 | 
         
            +
                        position_ids=position_ids,
         
     | 
| 538 | 
         
            +
                    )
         
     | 
| 539 | 
         
            +
             
     | 
| 540 | 
         
            +
                    hidden_states = inputs_embeds
         
     | 
| 541 | 
         
            +
                    position_embeddings = self.rotary_emb(hidden_states, position_ids)
         
     | 
| 542 | 
         
            +
             
     | 
| 543 | 
         
            +
                    for decoder_layer in self.layers[: self.config.num_hidden_layers]:
         
     | 
| 544 | 
         
            +
                        hidden_states = decoder_layer(
         
     | 
| 545 | 
         
            +
                            hidden_states,
         
     | 
| 546 | 
         
            +
                            attention_mask=causal_mask,
         
     | 
| 547 | 
         
            +
                            position_ids=position_ids,
         
     | 
| 548 | 
         
            +
                            past_key_value=past_key_values,
         
     | 
| 549 | 
         
            +
                            cache_position=cache_position,
         
     | 
| 550 | 
         
            +
                            position_embeddings=position_embeddings,
         
     | 
| 551 | 
         
            +
                            **kwargs,
         
     | 
| 552 | 
         
            +
                        )
         
     | 
| 553 | 
         
            +
             
     | 
| 554 | 
         
            +
                    hidden_states = self.norm(hidden_states)
         
     | 
| 555 | 
         
            +
                    return BaseModelOutputWithPast(
         
     | 
| 556 | 
         
            +
                        last_hidden_state=hidden_states,
         
     | 
| 557 | 
         
            +
                        past_key_values=past_key_values,
         
     | 
| 558 | 
         
            +
                    )
         
     | 
| 559 | 
         
            +
             
     | 
| 560 | 
         
            +
             
     | 
| 561 | 
         
            +
            @auto_docstring
         
     | 
| 562 | 
         
            +
            class LongcatFlashForCausalLM(LongcatFlashPreTrainedModel, GenerationMixin):
         
     | 
| 563 | 
         
            +
                _tied_weights_keys = ["lm_head.weight"]
         
     | 
| 564 | 
         
            +
                _tp_plan = {"lm_head": "colwise_rep"}
         
     | 
| 565 | 
         
            +
                _pp_plan = {"lm_head": (["hidden_states"], ["logits"])}
         
     | 
| 566 | 
         
            +
                _keys_to_ignore_on_load_unexpected = [r"model\.mtp.*"]
         
     | 
| 567 | 
         
            +
             
     | 
| 568 | 
         
            +
                def __init__(self, config):
         
     | 
| 569 | 
         
            +
                    super().__init__(config)
         
     | 
| 570 | 
         
            +
                    self.model = LongcatFlashModel(config)
         
     | 
| 571 | 
         
            +
                    self.vocab_size = config.vocab_size
         
     | 
| 572 | 
         
            +
                    self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
         
     | 
| 573 | 
         
            +
             
     | 
| 574 | 
         
            +
                    # Initialize weights and apply final processing
         
     | 
| 575 | 
         
            +
                    self.post_init()
         
     | 
| 576 | 
         
            +
             
     | 
| 577 | 
         
            +
                def set_decoder(self, decoder):
         
     | 
| 578 | 
         
            +
                    self.model = decoder
         
     | 
| 579 | 
         
            +
             
     | 
| 580 | 
         
            +
                def get_decoder(self):
         
     | 
| 581 | 
         
            +
                    return self.model
         
     | 
| 582 | 
         
            +
             
     | 
| 583 | 
         
            +
                @can_return_tuple
         
     | 
| 584 | 
         
            +
                @auto_docstring
         
     | 
| 585 | 
         
            +
                def forward(
         
     | 
| 586 | 
         
            +
                    self,
         
     | 
| 587 | 
         
            +
                    input_ids: Optional[torch.LongTensor] = None,
         
     | 
| 588 | 
         
            +
                    attention_mask: Optional[torch.Tensor] = None,
         
     | 
| 589 | 
         
            +
                    position_ids: Optional[torch.LongTensor] = None,
         
     | 
| 590 | 
         
            +
                    past_key_values: Optional[Cache] = None,
         
     | 
| 591 | 
         
            +
                    inputs_embeds: Optional[torch.FloatTensor] = None,
         
     | 
| 592 | 
         
            +
                    labels: Optional[torch.LongTensor] = None,
         
     | 
| 593 | 
         
            +
                    use_cache: Optional[bool] = None,
         
     | 
| 594 | 
         
            +
                    cache_position: Optional[torch.LongTensor] = None,
         
     | 
| 595 | 
         
            +
                    logits_to_keep: Union[int, torch.Tensor] = 0,
         
     | 
| 596 | 
         
            +
                    **kwargs: Unpack[TransformersKwargs],
         
     | 
| 597 | 
         
            +
                ) -> CausalLMOutputWithPast:
         
     | 
| 598 | 
         
            +
                    r"""
         
     | 
| 599 | 
         
            +
                    Example:
         
     | 
| 600 | 
         
            +
             
     | 
| 601 | 
         
            +
                    ```python
         
     | 
| 602 | 
         
            +
                    >>> from transformers import AutoTokenizer, LongcatFlashForCausalLM
         
     | 
| 603 | 
         
            +
             
     | 
| 604 | 
         
            +
                    >>> model = LongcatFlashForCausalLM.from_pretrained("meta-longcat_flash/LongcatFlash-2-7b-hf")
         
     | 
| 605 | 
         
            +
                    >>> tokenizer = AutoTokenizer.from_pretrained("meta-longcat_flash/LongcatFlash-2-7b-hf")
         
     | 
| 606 | 
         
            +
             
     | 
| 607 | 
         
            +
                    >>> prompt = "Hey, are you conscious? Can you talk to me?"
         
     | 
| 608 | 
         
            +
                    >>> inputs = tokenizer(prompt, return_tensors="pt")
         
     | 
| 609 | 
         
            +
             
     | 
| 610 | 
         
            +
                    >>> # Generate
         
     | 
| 611 | 
         
            +
                    >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
         
     | 
| 612 | 
         
            +
                    >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
         
     | 
| 613 | 
         
            +
                    "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
         
     | 
| 614 | 
         
            +
                    ```"""
         
     | 
| 615 | 
         
            +
                    outputs: BaseModelOutputWithPast = self.model(
         
     | 
| 616 | 
         
            +
                        input_ids=input_ids,
         
     | 
| 617 | 
         
            +
                        attention_mask=attention_mask,
         
     | 
| 618 | 
         
            +
                        position_ids=position_ids,
         
     | 
| 619 | 
         
            +
                        past_key_values=past_key_values,
         
     | 
| 620 | 
         
            +
                        inputs_embeds=inputs_embeds,
         
     | 
| 621 | 
         
            +
                        use_cache=use_cache,
         
     | 
| 622 | 
         
            +
                        cache_position=cache_position,
         
     | 
| 623 | 
         
            +
                        **kwargs,
         
     | 
| 624 | 
         
            +
                    )
         
     | 
| 625 | 
         
            +
             
     | 
| 626 | 
         
            +
                    hidden_states = outputs.last_hidden_state
         
     | 
| 627 | 
         
            +
                    # Only compute necessary logits, and do not upcast them to float if we are not computing the loss
         
     | 
| 628 | 
         
            +
                    slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
         
     | 
| 629 | 
         
            +
                    logits = self.lm_head(hidden_states[:, slice_indices, :])
         
     | 
| 630 | 
         
            +
             
     | 
| 631 | 
         
            +
                    loss = None
         
     | 
| 632 | 
         
            +
                    if labels is not None:
         
     | 
| 633 | 
         
            +
                        loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.config.vocab_size, **kwargs)
         
     | 
| 634 | 
         
            +
             
     | 
| 635 | 
         
            +
                    return CausalLMOutputWithPast(
         
     | 
| 636 | 
         
            +
                        loss=loss,
         
     | 
| 637 | 
         
            +
                        logits=logits,
         
     | 
| 638 | 
         
            +
                        past_key_values=outputs.past_key_values,
         
     | 
| 639 | 
         
            +
                        hidden_states=outputs.hidden_states,
         
     | 
| 640 | 
         
            +
                        attentions=outputs.attentions,
         
     | 
| 641 | 
         
            +
                    )
         
     | 
| 642 | 
         
            +
             
     | 
| 643 | 
         
            +
             
     | 
| 644 | 
         
            +
            __all__ = ["LongcatFlashPreTrainedModel", "LongcatFlashModel", "LongcatFlashForCausalLM"]
         
     | 
    	
        special_tokens_map.json
    ADDED
    
    | 
         @@ -0,0 +1,30 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            {
         
     | 
| 2 | 
         
            +
              "bos_token": {
         
     | 
| 3 | 
         
            +
                "content": "<longcat_s>",
         
     | 
| 4 | 
         
            +
                "lstrip": false,
         
     | 
| 5 | 
         
            +
                "normalized": false,
         
     | 
| 6 | 
         
            +
                "rstrip": false,
         
     | 
| 7 | 
         
            +
                "single_word": false
         
     | 
| 8 | 
         
            +
              },
         
     | 
| 9 | 
         
            +
              "eos_token": {
         
     | 
| 10 | 
         
            +
                "content": "</longcat_s>",
         
     | 
| 11 | 
         
            +
                "lstrip": false,
         
     | 
| 12 | 
         
            +
                "normalized": false,
         
     | 
| 13 | 
         
            +
                "rstrip": false,
         
     | 
| 14 | 
         
            +
                "single_word": false
         
     | 
| 15 | 
         
            +
              },
         
     | 
| 16 | 
         
            +
              "pad_token": {
         
     | 
| 17 | 
         
            +
                "content": "<longcat_pad>",
         
     | 
| 18 | 
         
            +
                "lstrip": false,
         
     | 
| 19 | 
         
            +
                "normalized": false,
         
     | 
| 20 | 
         
            +
                "rstrip": false,
         
     | 
| 21 | 
         
            +
                "single_word": false
         
     | 
| 22 | 
         
            +
              },
         
     | 
| 23 | 
         
            +
              "unk_token": {
         
     | 
| 24 | 
         
            +
                "content": "<longcat_unk>",
         
     | 
| 25 | 
         
            +
                "lstrip": false,
         
     | 
| 26 | 
         
            +
                "normalized": false,
         
     | 
| 27 | 
         
            +
                "rstrip": false,
         
     | 
| 28 | 
         
            +
                "single_word": false
         
     | 
| 29 | 
         
            +
              }
         
     | 
| 30 | 
         
            +
            }
         
     | 
    	
        tokenizer.json
    ADDED
    
    | 
         The diff for this file is too large to render. 
		See raw diff 
     | 
| 
         | 
    	
        tokenizer_config.json
    ADDED
    
    | 
         @@ -0,0 +1,42 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            {
         
     | 
| 2 | 
         
            +
              "add_bos_token": false,
         
     | 
| 3 | 
         
            +
              "add_eos_token": true,
         
     | 
| 4 | 
         
            +
              "add_prefix_space": false,
         
     | 
| 5 | 
         
            +
              "bos_token": {
         
     | 
| 6 | 
         
            +
                "__type": "AddedToken",
         
     | 
| 7 | 
         
            +
                "content": "<longcat_s>",
         
     | 
| 8 | 
         
            +
                "lstrip": false,
         
     | 
| 9 | 
         
            +
                "normalized": true,
         
     | 
| 10 | 
         
            +
                "rstrip": false,
         
     | 
| 11 | 
         
            +
                "single_word": false
         
     | 
| 12 | 
         
            +
              },
         
     | 
| 13 | 
         
            +
              "clean_up_tokenization_spaces": false,
         
     | 
| 14 | 
         
            +
              "eos_token": {
         
     | 
| 15 | 
         
            +
                "__type": "AddedToken",
         
     | 
| 16 | 
         
            +
                "content": "</longcat_s>",
         
     | 
| 17 | 
         
            +
                "lstrip": false,
         
     | 
| 18 | 
         
            +
                "normalized": true,
         
     | 
| 19 | 
         
            +
                "rstrip": false,
         
     | 
| 20 | 
         
            +
                "single_word": false
         
     | 
| 21 | 
         
            +
              },
         
     | 
| 22 | 
         
            +
              "model_max_length": 131072,
         
     | 
| 23 | 
         
            +
              "pad_token": {
         
     | 
| 24 | 
         
            +
                "__type": "AddedToken",
         
     | 
| 25 | 
         
            +
                "content": "<longcat_pad>",
         
     | 
| 26 | 
         
            +
                "lstrip": false,
         
     | 
| 27 | 
         
            +
                "normalized": true,
         
     | 
| 28 | 
         
            +
                "rstrip": false,
         
     | 
| 29 | 
         
            +
                "single_word": false
         
     | 
| 30 | 
         
            +
              },
         
     | 
| 31 | 
         
            +
              "sp_model_kwargs": {},
         
     | 
| 32 | 
         
            +
              "tokenizer_class": "BloomTokenizer",
         
     | 
| 33 | 
         
            +
              "unk_token": {
         
     | 
| 34 | 
         
            +
                "__type": "AddedToken",
         
     | 
| 35 | 
         
            +
                "content": "<longcat_unk>",
         
     | 
| 36 | 
         
            +
                "lstrip": false,
         
     | 
| 37 | 
         
            +
                "normalized": true,
         
     | 
| 38 | 
         
            +
                "rstrip": false,
         
     | 
| 39 | 
         
            +
                "single_word": false
         
     | 
| 40 | 
         
            +
              },
         
     | 
| 41 | 
         
            +
              "chat_template": "{%- set tool_choice = tool_choice | default('auto') %}\n{%- set ns = namespace(rounds = 0, tool_types = [], last_query_index = -1) %}\n\n{%- if tools and tool_choice != 'none' %}\n    {{- \"# Tools\n\" }}\n    {{- \"You have access to the following tools: \n\n\" }}\n    {%- for tool in tools %}\n        {%- if tool.type in ['code_interpreter', 'function'] %}\n            {%- if tool.type not in ns.tool_types %}\n                {%- set ns.tool_types = ns.tool_types + [tool.type] %}\n                {{- \"## Tool namespace: \" ~ tool.type ~ \"\n\n\" }}\n            {%- endif %}\n            {%- if tool.type == 'code_interpreter' %}\n                {%- set tool = {\"type\":\"code_interpreter\",\"function\":{\"name\":\"code_interpreter_preview\",\"description\":\"The code will be executed in a stateful Jupyter notebook sandbox environment, only supports local computation, data processing, and file operations. \nCode sandbox environment (network isolated) Any external network requests or online API calls are prohibited. \nIf online functionality is needed, please use other permitted tools. \nCode will respond with the output of the execution or time out after 60.0 seconds. \",\"parameters\":{\"type\":\"object\",\"properties\":{\"language\":{\"type\":\"string\",\"description\":\"The programming language of the code to be executed. Available values: python (Default), java, go, js, ts, c, c++.\"},\"code\":{\"type\":\"string\",\"description\":\"Python code to be executed must not include the following:\n- Importing network libraries such as requests, httplib, etc.\n- Any form of HTTP requests.\n- External API calls.\n- Network port operations. Example: ```python\nimport pandas as pd\npd.DataFrame({'A':[1,2]})\n```\"},\"timeout\":{\"type\":\"number\",\"description\":\"The maximum execution time of the code, in seconds. Default is 60.0.\"}}},\"required\":[\"code\"]}} %}\n            {%- endif %}\n            {{- \"### Tool name: \" + tool.function.name + \"\n\n\" }}\n            {{- \"Description: \" + tool.function.description + \"\n\n\" }}\n            {{- \"InputSchema: \n\" + tool.function.parameters | tojson(indent=2) + \"\n\n\" }}\n        {%- endif %}\n    {%- endfor %}\n    {{- '**Note**: For each function call, return a json object with function name and arguments within <longcat_tool_call></longcat_tool_call> XML tags as follows:\n<longcat_tool_call>\n{\"name\": <function-name>, \"arguments\": <args-dict>}\n</longcat_tool_call>\n' }}\n    {{- 'When multiple functions need to be called simultaneously, each function call should be wrapped in its own <longcat_tool_call> tag and placed consecutively. For example:\n<longcat_tool_call>\n{\"name\": <function-name>, \"arguments\": <args-dict>}\n</longcat_tool_call><longcat_tool_call>\n{\"name\": <function-name>, \"arguments\": <args-dict>}\n</longcat_tool_call>\n\n' }}\n    {{- \"# Messages\n\" }}\n\n    {%- for idx in range(messages|length - 1) %}\n        {%- set msg = messages[idx] %}\n        {%- if msg.role == 'assistant' and not msg.tool_calls %}\n            {%- set ns.last_query_index = idx %}\n        {%- endif %}\n    {%- endfor%}\n{%- endif %}\n\n{%- for msg in messages %}\n    {%- if msg.role == \"system\" %}\n        {{- \"SYSTEM:\" + msg.content }}\n    {%- elif msg.role == \"user\" %}\n        {%- if loop.first %}\n            {{- \"[Round \" ~ (ns.rounds) ~ \"] USER:\" }}\n        {%- else %}\n            {{- \" [Round \" ~ (ns.rounds) ~ \"] USER:\"}}\n        {%- endif %}\n        {%- set ns.rounds = ns.rounds + 1 %}\n        {%- if msg[\"files\"] %}\n            {{- '<longcat_files>\n' ~ msg.files | tojson(indent=2) ~ '\n</longcat_files>' }}\n        {%- endif %}\n        {{- msg.content }}\n    {%- elif msg.role == \"assistant\" %}\n        {{- \" ASSISTANT:\" }}\n        {%- if enable_thinking == true and msg.reasoning_content and ns.tool_types != [] and loop.index0 > ns.last_query_index %}\n            {{- \"\n<longcat_think>\n\" ~ msg.reasoning_content ~ \"\n</longcat_think>\n\" }}\n        {%- endif %}\n        {%- if msg.content%}\n            {{- msg.content }}\n        {%- endif %}\n        {%- if msg.tool_calls %}\n            {%- for tool_call in msg.tool_calls -%}\n                {{- \"<longcat_tool_call>\n\" -}}\n                {%- if tool_call.function.arguments is string -%}\n                    {\"name\": \"{{ tool_call.function.name}}\", \"arguments\": {{tool_call.function.arguments}}}\n                {%- else -%}\n                    {\"name\": \"{{ tool_call.function.name}}\", \"arguments\": {{tool_call.function.arguments | tojson}}}\n                {%- endif -%}\n                {{- \"\n</longcat_tool_call>\" }}\n            {%- endfor %}\n        {%- endif %}\n    {%- elif msg.role == \"tool\" %}\n        {{- \" TOOL:\" -}}\n        {%- if msg.name -%}\n            {\"name\": {{msg.name | tojson}}, \"content\": {{msg.content | tojson}}}\n        {%- else -%}\n            {\"content\": {{msg.content | tojson}}}\n        {%- endif -%}\n    {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %} \n    {%- if enable_thinking == true %}\n        {{- \" /think_on\" }}\n        {%- if thinking_budget %}\n            {%- if thinking_budget < 1024 %}\n                {%- set thinking_budget = 1024 %}\n            {%- endif%}\n            {{- \"\nthinking_budget: < \" ~ thinking_budget ~ \".\"}}\n        {%- endif %}\n        {{- \" ASSISTANT:<longcat_think>\n\"}}\n    {%- elif enable_thinking == false %}\n        {{- \" /think_off ASSISTANT:<longcat_think>\n\n</longcat_think>\n\" }}\n    {%- else %}\n        {{- \" ASSISTANT:\" }}\n    {%- endif %}\n{%- endif %}"
         
     | 
| 42 | 
         
            +
            }
         
     |