--- license: apache-2.0 language: en base_model: NousResearch/Llama-2-7b-hf datasets: - FinGPT/fingpt-convfinqa metrics: - accuracy - mean_token_accuracy pipeline_tag: text2text-generation tags: - financial-reasoning - unsloth - lora library_name: transformers model-index: - name: llama2-7b-tat-lora-fp16 results: [] --- # ๐Ÿฆ™ LLaMA 2 7B + TAT FinQA Adapter (Merged, Pre-CoT) **Repo:** `michael-sigamani/llama2-7b-tat-lora-fp16` **Base:** [NousResearch/Llama-2-7b-hf](https://huggingface.co/NousResearch/Llama-2-7b-hf) **Adapter:** [next-tat/tat-llm-7b-lora](https://huggingface.co/next-tat/tat-llm-7b-lora) **Merged:** โœ… Yes **Fine-tuned:** โŒ Not yet (this is the pre-CoT stage) **Format:** Float16 (fp16) --- ## ๐Ÿ“– Overview This model merges a FinQA-tuned adapter (TAT) into LLaMA 2 7B, producing a standalone checkpoint ready for **further fine-tuning** or **inference** on financial reasoning tasks. - ๐Ÿ“ˆ Finetuned LoRA (TAT) captures scalar reasoning from FinQA - ๐Ÿ” Merged via `peft.merge_and_unload()` into the full model - ๐Ÿงต Next step: fine-tune on `train_turn.jsonl` with chain-of-thought (CoT) supervision --- ## ๐Ÿ” Intended Usage Use this model as the **starting point** for: - ๐Ÿง  Fine-tuning on CoT financial datasets (e.g. ConvFinQA turn-based reasoning) - ๐Ÿงช Evaluation on scalar, program, and reasoning benchmarks - ๐Ÿฆ™ Export to GGUF for Ollama / llama.cpp --- ## ๐Ÿšง Not a Final Model This checkpoint **has not been CoT fine-tuned yet**. It is the output of: ```bash Base: NousResearch/Llama-2-7b-hf LoRA: next-tat/tat-llm-7b-lora (FinQA-style) Merged: Yes (fp16, no adapter required) ``` Next step: Train on chain-of-thought examples (`train_turn.jsonl`) using Unsloth or PEFT + TRL. --- ## ๐Ÿง  Merge Script ```python from transformers import AutoModelForCausalLM, AutoTokenizer from peft import PeftModel base_model = AutoModelForCausalLM.from_pretrained("NousResearch/Llama-2-7b-hf") adapter = PeftModel.from_pretrained(base_model, "next-tat/tat-llm-7b-lora") merged = adapter.merge_and_unload() merged.save_pretrained("llama2-7b-tat-lora-fp16") AutoTokenizer.from_pretrained("NousResearch/Llama-2-7b-hf").save_pretrained("llama2-7b-tat-lora-fp16") ``` --- ## ๐Ÿง‘โ€๐Ÿ’ป Maintainer **Michael Sigamani** [github.com/sigamani](https://github.com/sigamani) --- ## ๐Ÿ“œ License - Base: Meta LLaMA 2 license (via [NousResearch](https://huggingface.co/NousResearch)) - Adapter: Apache 2.0 - Merged model: Inherits original LLaMA 2 license โ€“ requires HF auth