Update README.md (#3)
Browse files- Update README.md (248b4eb430f3f90fa6ed37048ad75b50d774e1ee)
Co-authored-by: Kamal Raj Kanakarajan <[email protected]>
    	
        README.md
    CHANGED
    
    | @@ -12,9 +12,9 @@ set a seed for reproducibility: | |
| 12 |  | 
| 13 | 
             
            ```python
         | 
| 14 | 
             
            >>> from transformers import pipeline, set_seed
         | 
| 15 | 
            -
            >>> from transformers import BioGptTokenizer,  | 
| 16 | 
            -
            >>> model =  | 
| 17 | 
            -
            >>> tokenizer = BioGptTokenizer.from_pretrained(" | 
| 18 | 
             
            >>> generator = pipeline('text-generation', model=model, tokenizer=tokenizer)
         | 
| 19 | 
             
            >>> set_seed(42)
         | 
| 20 | 
             
            >>> generator("COVID-19 is", max_length=20, num_return_sequences=5, do_sample=True)
         | 
| @@ -28,9 +28,9 @@ set a seed for reproducibility: | |
| 28 | 
             
            Here is how to use this model to get the features of a given text in PyTorch:
         | 
| 29 |  | 
| 30 | 
             
            ```python
         | 
| 31 | 
            -
            from transformers import BioGptTokenizer,  | 
| 32 | 
            -
            tokenizer = BioGptTokenizer.from_pretrained(" | 
| 33 | 
            -
            model =  | 
| 34 | 
             
            text = "Replace me by any text you'd like."
         | 
| 35 | 
             
            encoded_input = tokenizer(text, return_tensors='pt')
         | 
| 36 | 
             
            output = model(**encoded_input)
         | 
| @@ -40,10 +40,10 @@ Beam-search decoding: | |
| 40 |  | 
| 41 | 
             
            ```python
         | 
| 42 | 
             
            import torch
         | 
| 43 | 
            -
            from transformers import BioGptTokenizer,  | 
| 44 |  | 
| 45 | 
            -
            tokenizer = BioGptTokenizer.from_pretrained(" | 
| 46 | 
            -
            model =  | 
| 47 |  | 
| 48 | 
             
            sentence = "COVID-19 is"
         | 
| 49 | 
             
            inputs = tokenizer(sentence, return_tensors="pt")
         | 
|  | |
| 12 |  | 
| 13 | 
             
            ```python
         | 
| 14 | 
             
            >>> from transformers import pipeline, set_seed
         | 
| 15 | 
            +
            >>> from transformers import BioGptTokenizer, BioGptForCausalLM
         | 
| 16 | 
            +
            >>> model = BioGptForCausalLM.from_pretrained("microsoft/biogpt")
         | 
| 17 | 
            +
            >>> tokenizer = BioGptTokenizer.from_pretrained("microsoft/biogpt")
         | 
| 18 | 
             
            >>> generator = pipeline('text-generation', model=model, tokenizer=tokenizer)
         | 
| 19 | 
             
            >>> set_seed(42)
         | 
| 20 | 
             
            >>> generator("COVID-19 is", max_length=20, num_return_sequences=5, do_sample=True)
         | 
|  | |
| 28 | 
             
            Here is how to use this model to get the features of a given text in PyTorch:
         | 
| 29 |  | 
| 30 | 
             
            ```python
         | 
| 31 | 
            +
            from transformers import BioGptTokenizer, BioGptForCausalLM
         | 
| 32 | 
            +
            tokenizer = BioGptTokenizer.from_pretrained("microsoft/biogpt")
         | 
| 33 | 
            +
            model = BioGptForCausalLM.from_pretrained("microsoft/biogpt")
         | 
| 34 | 
             
            text = "Replace me by any text you'd like."
         | 
| 35 | 
             
            encoded_input = tokenizer(text, return_tensors='pt')
         | 
| 36 | 
             
            output = model(**encoded_input)
         | 
|  | |
| 40 |  | 
| 41 | 
             
            ```python
         | 
| 42 | 
             
            import torch
         | 
| 43 | 
            +
            from transformers import BioGptTokenizer, BioGptForCausalLM, set_seed
         | 
| 44 |  | 
| 45 | 
            +
            tokenizer = BioGptTokenizer.from_pretrained("microsoft/biogpt")
         | 
| 46 | 
            +
            model = BioGptForCausalLM.from_pretrained("microsoft/biogpt")
         | 
| 47 |  | 
| 48 | 
             
            sentence = "COVID-19 is"
         | 
| 49 | 
             
            inputs = tokenizer(sentence, return_tensors="pt")
         | 

 
		